Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Mar. Drugs, Volume 13, Issue 2 (February 2015), Pages 697-1083

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-25
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial Marine Drugs Best Paper Award 2015
Mar. Drugs 2015, 13(2), 1068-1070; doi:10.3390/md13021068
Received: 23 January 2015 / Accepted: 11 February 2015 / Published: 16 February 2015
PDF Full-text (292 KB) | HTML Full-text | XML Full-text
Abstract
Marine Drugs began a “Best Paper Award” in 2013 [1,2] to recognize outstanding papers published in our journal in the area of research, development, and production of drugs from the sea, including marine natural product chemistry. We are pleased to announce the third
[...] Read more.
Marine Drugs began a “Best Paper Award” in 2013 [1,2] to recognize outstanding papers published in our journal in the area of research, development, and production of drugs from the sea, including marine natural product chemistry. We are pleased to announce the third annual “Marine Drugs Best Paper Award” for 2015. Nominations were selected by the Editor-in-Chief and Associate Editors of Marine Drugs from all papers published in 2011; reviews and articles being evaluated separately. The following five papers have won a “Best Paper Award”:[...] Full article
Figures

Research

Jump to: Editorial, Review

Open AccessArticle Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection
Mar. Drugs 2015, 13(2), 697-712; doi:10.3390/md13020697
Received: 31 October 2014 / Accepted: 6 January 2015 / Published: 26 January 2015
Cited by 16 | PDF Full-text (816 KB) | HTML Full-text | XML Full-text
Abstract
Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence
[...] Read more.
Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV) in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata), and of its mixture with a fucoidan (SP from Cladosiphon okamuranus), against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage. Full article
(This article belongs to the Special Issue Marine Anti-infective Agents)
Open AccessArticle Antitumor and Antimicrobial Potential of Bromoditerpenes Isolated from the Red Alga, Sphaerococcus coronopifolius
Mar. Drugs 2015, 13(2), 713-726; doi:10.3390/md13020713
Received: 16 November 2014 / Accepted: 7 January 2015 / Published: 26 January 2015
Cited by 12 | PDF Full-text (479 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cancer and infectious diseases continue to be a major public health problem, and new drugs are necessary. As marine organisms are well known to provide a wide range of original compounds, the aim of this study was to investigate the bioactivity of the
[...] Read more.
Cancer and infectious diseases continue to be a major public health problem, and new drugs are necessary. As marine organisms are well known to provide a wide range of original compounds, the aim of this study was to investigate the bioactivity of the main constituents of the cosmopolitan red alga, Sphaerococcus coronopifolius. The structure of several bromoditerpenes was determined by extensive spectroscopic analysis and comparison with literature data. Five molecules were isolated and characterized which include a new brominated diterpene belonging to the rare dactylomelane family and named sphaerodactylomelol (1), along with four already known sphaerane bromoditerpenes (25). Antitumor activity was assessed by cytotoxicity and anti-proliferative assays on an in vitro model of human hepatocellular carcinoma (HepG-2 cells). Antimicrobial activity was evaluated against four pathogenic microorganisms: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Compound 4 exhibited the highest antimicrobial activity against S. aureus (IC50 6.35 µM) and compound 5 the highest anti-proliferative activity on HepG-2 cells (IC50 42.9 µM). The new diterpene, sphaerodactylomelol (1), induced inhibition of cell proliferation (IC50 280 µM) and cytotoxicity (IC50 720 µM) on HepG-2 cells and showed antimicrobial activity against S. aureus (IC50 96.3 µM). Full article
(This article belongs to the Special Issue Bioactive Halogenated Metabolites of Marine Origin)
Open AccessCommunication In Vivo Metabolism Study of Xiamenmycin A in Mouse Plasma by UPLC-QTOF-MS and LC-MS/MS
Mar. Drugs 2015, 13(2), 727-740; doi:10.3390/md13020727
Received: 5 December 2014 / Accepted: 13 January 2015 / Published: 28 January 2015
Cited by 3 | PDF Full-text (620 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Xiamenmycin A is an antifibrotic leading compound with a benzopyran skeleton that is isolated from mangrove-derived Streptomyces xiamenensis. As a promising small molecule for fibrotic diseases, less information is known about its metabolic characteristics in vivo. In this study, the time-course of
[...] Read more.
Xiamenmycin A is an antifibrotic leading compound with a benzopyran skeleton that is isolated from mangrove-derived Streptomyces xiamenensis. As a promising small molecule for fibrotic diseases, less information is known about its metabolic characteristics in vivo. In this study, the time-course of xiamenmycin A in mouse plasma was investigated by relative quantification. After two types of administration of xiamenmycin A at a single dose of 10 mg/kg, the plasma concentrations were measured quantitatively by LC-MS/MS. The dynamic changes in the xiamenmycin A concentration showed rapid absorption and quick elimination in plasma post-administration. Four metabolites (M1–M4) were identified in blood by UPLC-QTOF-MS, and xiamenmycin B (M3) is the principal metabolite in vivo, as verified by comparison of the authentic standard sample. The structures of other metabolites were identified based on the characteristics of their MS and MS/MS data. The newly identified metabolites are useful for understanding the metabolism of xiamenmycin A in vivo, aiming at the development of an anti-fibrotic drug candidate for the therapeutic treatment of excessive fibrotic diseases. Full article
Open AccessArticle The Effects of Omega-3 Fatty Acid on Vitamin D Activation in Hemodialysis Patients: A Pilot Study
Mar. Drugs 2015, 13(2), 741-755; doi:10.3390/md13020741
Received: 25 September 2014 / Revised: 29 December 2014 / Accepted: 21 January 2015 / Published: 28 January 2015
Cited by 3 | PDF Full-text (532 KB) | HTML Full-text | XML Full-text
Abstract
The high incidence of cardiovascular disease and vitamin D deficiency in chronic kidney disease patients is well known. Vitamin D activation by omega-3 fatty acid (FA) supplementation may explain the cardioprotective effects exerted by omega-3 FA. We hypothesized that omega-3 FA and 25-hydroxyvitamin
[...] Read more.
The high incidence of cardiovascular disease and vitamin D deficiency in chronic kidney disease patients is well known. Vitamin D activation by omega-3 fatty acid (FA) supplementation may explain the cardioprotective effects exerted by omega-3 FA. We hypothesized that omega-3 FA and 25-hydroxyvitamin D (25(OH)D) supplementation may increase 1,25-dihydroxyvitamin D (1,25(OH)2D) levels compared to 25(OH)D supplementation alone in hemodialysis (HD) patients that have insufficient or deficient 25(OH)D levels. We enrolled patients that were treated for at least six months with 25(OH)D < 30 ng/mL (NCT01596842). Patients were randomized to treatment for 12 weeks with cholecalciferol supplemented with omega-3 FA or a placebo. Levels of 25(OH)D and 1,25(OH)2D were measured after 12 weeks. The erythrocyte membrane FA contents were also measured. Levels of 25(OH)D were increased in both groups at 12 weeks compared to baseline. The 1,25(OH)2D levels at 12 weeks compared to baseline showed a tendency to increase in the omega-3 FA group. The oleic acid and monounsaturated FA content decreased, while the omega-3 index increased in the omega-3 FA group. Omega-3 FA supplementation may be partly associated with vitamin D activation, although increased 25(OH)D levels caused by short-term cholecalciferol supplementation were not associated with vitamin D activation in HD patients. Full article
(This article belongs to the Special Issue Marine Functional Food Products - Cardiovascular Diseases)
Open AccessArticle Intracellular Immunohistochemical Detection of Tetrodotoxin in Pleurobranchaea maculata (Gastropoda) and Stylochoplana sp. (Turbellaria)
Mar. Drugs 2015, 13(2), 756-769; doi:10.3390/md13020756
Received: 12 December 2014 / Revised: 6 January 2015 / Accepted: 23 January 2015 / Published: 28 January 2015
Cited by 6 | PDF Full-text (1241 KB) | HTML Full-text | XML Full-text
Abstract
Tetrodotoxin (TTX), is a potent neurotoxin targeting sodium channels that has been identified in multiple marine and terrestrial organisms. It was recently detected in the Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from New Zealand. Knowledge on the distribution of TTX within
[...] Read more.
Tetrodotoxin (TTX), is a potent neurotoxin targeting sodium channels that has been identified in multiple marine and terrestrial organisms. It was recently detected in the Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from New Zealand. Knowledge on the distribution of TTX within these organisms is important to assist in elucidating the origin and ecological role of this toxin. Intracellular micro-distribution of TTX was investigated using a monoclonal antibody-based immunoenzymatic technique. Tetrodotoxin was strongly localized in neutral mucin cells and the basement membrane of the mantle, the oocytes and follicles of the gonad tissue, and in the digestive tissue of P. maculata. The ova and pharynx were the only two structures to contain TTX in Stylochoplana sp. Using liquid chromatography-mass spectrometry, TTX was identified in the larvae and eggs, but not the gelatinous egg cases of P. maculata. Tetrodotoxin was present in egg masses of Stylochoplana sp. These data suggest that TTX has a defensive function in adult P. maculata, who then invest this in their progeny for protection. Localization in the digestive tissue of P. maculata potentially indicates a dietary source of TTX. Stylochoplana sp. may use TTX in prey capture and for the protection of offspring. Full article
(This article belongs to the Special Issue Emerging Marine Toxins)
Open AccessArticle Synthesis of the Oligosaccharides Related to Branching Sites of Fucosylated Chondroitin Sulfates from Sea Cucumbers
Mar. Drugs 2015, 13(2), 770-787; doi:10.3390/md13020770
Received: 1 December 2014 / Revised: 29 December 2014 / Accepted: 22 January 2015 / Published: 2 February 2015
Cited by 12 | PDF Full-text (666 KB) | HTML Full-text | XML Full-text
Abstract
Natural anionic polysaccharides fucosylated chondroitin sulfates (FCS) from sea cucumbers attract great attention nowadays due to their ability to influence various biological processes, such as blood coagulation, thrombosis, angiogenesis, inflammation, bacterial and viral adhesion. To determine pharmacophore fragments in FCS we have started
[...] Read more.
Natural anionic polysaccharides fucosylated chondroitin sulfates (FCS) from sea cucumbers attract great attention nowadays due to their ability to influence various biological processes, such as blood coagulation, thrombosis, angiogenesis, inflammation, bacterial and viral adhesion. To determine pharmacophore fragments in FCS we have started systematic synthesis of oligosaccharides with well-defined structure related to various fragments of these polysaccharides. In this communication, the synthesis of non-sulfated and selectively O-sulfated di- and trisaccharides structurally related to branching sites of FCS is described. The target compounds are built up of propyl β-d-glucuronic acid residue bearing at O-3 α-l-fucosyl or α-l-fucosyl-(1→3)-α-l-fucosyl substituents. O-Sulfation pattern in the fucose units of the synthetic targets was selected according to the known to date holothurian FCS structures. Stereospecific α-glycoside bond formation was achieved using 2-O-benzyl-3,4-di-O-chloroacetyl-α-l-fucosyl trichloroacetimidate as a donor. Stereochemical outcome of the glycosylation was explained by the remote participation of the chloroacetyl groups with the formation of the stabilized glycosyl cations, which could be attacked by the glycosyl acceptor only from the α-side. The experimental results were in good agreement with the SCF/MP2 calculated energies of such participation. The synthesized oligosaccharides are regarded as model compounds for the determination of a structure-activity relationship in FCS. Full article
(This article belongs to the Special Issue Synthesis around Marine Natural Products)
Figures

Open AccessArticle Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats
Mar. Drugs 2015, 13(2), 788-805; doi:10.3390/md13020788
Received: 2 October 2014 / Revised: 22 December 2014 / Accepted: 21 January 2015 / Published: 2 February 2015
Cited by 10 | PDF Full-text (1344 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar
[...] Read more.
Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium. Full article
(This article belongs to the Special Issue Marine Functional Food Products - Cardiovascular Diseases)
Open AccessArticle Design, Synthesis and Biological Evaluation of Novel Bromophenol Derivatives Incorporating Indolin-2-One Moiety as Potential Anticancer Agents
Mar. Drugs 2015, 13(2), 806-823; doi:10.3390/md13020806
Received: 31 December 2014 / Accepted: 27 January 2015 / Published: 2 February 2015
Cited by 5 | PDF Full-text (1301 KB) | HTML Full-text | XML Full-text
Abstract
A series of bromophenol derivatives containing indolin-2-one moiety were designed and evaluated that for their anticancer activities against A549, Bel7402, HepG2, HeLa and HCT116 cancer cell lines using MTT assay in vitro. Among them, seven compounds (4g4i, 5h
[...] Read more.
A series of bromophenol derivatives containing indolin-2-one moiety were designed and evaluated that for their anticancer activities against A549, Bel7402, HepG2, HeLa and HCT116 cancer cell lines using MTT assay in vitro. Among them, seven compounds (4g4i, 5h, 6d, 7a, 7b) showed potent activity against the tested five human cancer cell lines. Wound-healing assay demonstrated that compound 4g can be used as a potent compound for inactivating invasion and metastasis by inhibiting the migration of cancer cells. The structure–activity relationships (SARs) of bromophenol derivatives had been discussed, which were useful for exploring and developing bromophenol derivatives as novel anticancer drugs. Full article
(This article belongs to the Special Issue Synthesis around Marine Natural Products)
Figures

Open AccessArticle Synthesis and Biological Evaluation of Carbocyclic Analogues of Pachastrissamine
Mar. Drugs 2015, 13(2), 824-837; doi:10.3390/md13020824
Received: 8 January 2015 / Revised: 20 January 2015 / Accepted: 26 January 2015 / Published: 3 February 2015
Cited by 12 | PDF Full-text (650 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of carbocyclic analogues of naturally-occurring marine sphingolipid pachastrissamine were prepared and biologically evaluated. The analogues were efficiently synthesized via a tandem enyne/diene-ene metathesis reaction as a key step. We found that the analogue 4b exhibited comparable cytotoxicity and more potent inhibitory
[...] Read more.
A series of carbocyclic analogues of naturally-occurring marine sphingolipid pachastrissamine were prepared and biologically evaluated. The analogues were efficiently synthesized via a tandem enyne/diene-ene metathesis reaction as a key step. We found that the analogue 4b exhibited comparable cytotoxicity and more potent inhibitory activity against sphingosine kinases, compared to pachastrissamine. Molecular modeling studies were conducted to provide more detailed insight into the binding mode of 4b in sphingosine kinase. In our docking model, pachastrissamine and 4b were able to effectively bind to the binding pocket of sphingosine kinase 1 as co-crystalized sphingosine. However, 4b showed a hydrophobic interaction with Phe192, which suggests that it contributes to its increased inhibitory activity against sphingosine kinase 1. Full article
(This article belongs to the collection Marine Compounds and Cancer) Printed Edition available
Figures

Open AccessArticle Ω3 Supplementation and Intermittent Hypobaric Hypoxia Induce Cardioprotection Enhancing Antioxidant Mechanisms in Adult Rats
Mar. Drugs 2015, 13(2), 838-860; doi:10.3390/md13020838
Received: 11 November 2014 / Revised: 13 January 2015 / Accepted: 16 January 2015 / Published: 4 February 2015
Cited by 5 | PDF Full-text (460 KB) | HTML Full-text | XML Full-text
Abstract
Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the
[...] Read more.
Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg−1·day−1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)—normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p < 0.05); reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 μmol/mg prot.; p < 0.05); and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection. Full article
(This article belongs to the Special Issue Marine Functional Food Products - Cardiovascular Diseases)
Open AccessArticle Coral-Derived Compound WA-25 Inhibits Angiogenesis by Attenuating the VEGF/VEGFR2 Signaling Pathway
Mar. Drugs 2015, 13(2), 861-878; doi:10.3390/md13020861
Received: 11 August 2014 / Revised: 20 January 2015 / Accepted: 26 January 2015 / Published: 6 February 2015
Cited by 8 | PDF Full-text (1408 KB) | HTML Full-text | XML Full-text
Abstract
Background: WA-25 (dihydroaustrasulfone alcohol, a synthetic derivative of marine compound WE-2) suppresses atherosclerosis in rats by reducing neointima formation. Because angiogenesis plays a critical role in the pathogenesis of atherosclerosis, the present study investigated the angiogenic function and mechanism of WA-25. Methods
[...] Read more.
Background: WA-25 (dihydroaustrasulfone alcohol, a synthetic derivative of marine compound WE-2) suppresses atherosclerosis in rats by reducing neointima formation. Because angiogenesis plays a critical role in the pathogenesis of atherosclerosis, the present study investigated the angiogenic function and mechanism of WA-25. Methods: The angiogenic effect of WA-25 was evaluated using a rat aortic ring assay and transgenic zebrafish models were established using transgenic Tg(fli-1:EGFP)y1 and Tg(kdrl:mCherryci5-fli1a:negfpy7) zebrafish embryos. In addition, the effect of WA-25 on distinct angiogenic processes, including matrix metalloproteinase (MMP) expression, endothelial cell proliferation and migration, as well as tube formation, was studied using human umbilical vein endothelial cells (HUVECs). The effect of WA-25 on the endothelial vascular endothelial growth factor (VEGF) signaling pathway was elucidated using qRT-PCR, immunoblot analysis, immunofluorescence and flow cytometric analyses. Results: The application of WA-25 perturbed the development of intersegmental vessels in transgenic zebrafish. Moreover, WA-25 potently suppressed microvessel sprouting in organotypic rat aortic rings. Among cultured endothelial cells, WA-25 significantly and dose-dependently inhibited MMP-2/MMP-9 expression, proliferation, migration and tube formation in HUVECs. Mechanistic studies revealed that WA-25 significantly reduced the VEGF release by reducing VEGF expression at the mRNA and protein levels. In addition, WA-25 reduced surface VEGF receptor 2 (VEGFR2/Flk-1) expression by repressing the VEGFR2 mRNA level. Finally, an exogenous VEGF supply partially rescued the WA-25-induced angiogenesis blockage in vitro and in vivo. Conclusions: WA-25 is a potent angiogenesis inhibitor that acts through the down-regulation of VEGF and VEGFR2 in endothelial cells. General Significance: WA-25 may constitute a novel anti-angiogenic drug that acts by targeting endothelial VEGF/VEGFR2 signaling. Full article
Open AccessArticle New Insights on the Terpenome of the Red Seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta)
Mar. Drugs 2015, 13(2), 879-902; doi:10.3390/md13020879
Received: 14 September 2014 / Revised: 17 December 2014 / Accepted: 12 January 2015 / Published: 10 February 2015
Cited by 9 | PDF Full-text (974 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The red seaweeds belonging to the genus Laurencia are well known as halogenated secondary metabolites producers, mainly terpenoids and acetogennins. Several of these chemicals exhibit important ecological roles and biotechnological applications. However, knowledge regarding the genes involved in the biosynthesis of these compounds
[...] Read more.
The red seaweeds belonging to the genus Laurencia are well known as halogenated secondary metabolites producers, mainly terpenoids and acetogennins. Several of these chemicals exhibit important ecological roles and biotechnological applications. However, knowledge regarding the genes involved in the biosynthesis of these compounds is still very limited. We detected 20 different genes involved in the biosynthesis of terpenoid precursors, and 21 different genes coding for terpene synthases that are responsible for the chemical modifications of the terpenoid precursors, resulting in a high diversity of carbon chemical skeletons. In addition, we demonstrate through molecular and cytochemical approaches the occurrence of the mevalonate pathway involved in the biosynthesis of terpenes in L. dendroidea. This is the first report on terpene synthase genes in seaweeds, enabling further studies on possible heterologous biosynthesis of terpenes from L. dendroidea exhibiting ecological or biotechnological interest. Full article
(This article belongs to the Special Issue Terpenoids of Marine Origin)
Open AccessArticle Involvement of JNK and Caspase Activation in Hoiamide A-Induced Neurotoxicity in Neocortical Neurons
Mar. Drugs 2015, 13(2), 903-919; doi:10.3390/md13020903
Received: 31 December 2014 / Revised: 24 January 2015 / Accepted: 3 February 2015 / Published: 10 February 2015
Cited by 6 | PDF Full-text (1071 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The frequent occurrence of Moorea producens (formerly Lyngbya majuscula) blooms has been associated with adverse effects on human health. Hoiamide A is a structurally unique cyclic depsipeptide isolated from an assemblage of the marine cyanobacteria M. producens and Phormidium gracile.
[...] Read more.
The frequent occurrence of Moorea producens (formerly Lyngbya majuscula) blooms has been associated with adverse effects on human health. Hoiamide A is a structurally unique cyclic depsipeptide isolated from an assemblage of the marine cyanobacteria M. producens and Phormidium gracile. We examined the influence of hoiamide A on neurite outgrowth in neocortical neurons and found that it suppressed neurite outgrowth with an IC50 value of 4.89 nM. Further study demonstrated that hoiamide A stimulated lactic acid dehydrogenase (LDH) efflux, nuclear condensation and caspase-3 activity with EC50 values of 3.66, 2.55 and 4.33 nM, respectively. These data indicated that hoiamide A triggered a unique neuronal death profile that involves both necrotic and apoptotic mechanisms. The similar potencies and similar time-response relationships between LDH efflux and caspase-3 activation/nuclear condensation suggested that both necrosis and apoptosis may derive from interaction with a common molecular target. The broad-spectrum caspase inhibitor, Z-VAD-FMK completely inhibited hoiamide A-induced neurotoxicity. Additionally, hoiamide A stimulated JNK phosphorylation, and a JNK inhibitor attenuated hoiamide A-induced neurotoxicity. Collectively, these data demonstrate that hoiamide A-induced neuronal death requires both JNK and caspase signaling pathways. The potent neurotoxicity and unique neuronal cell death profile of hoiamide A represents a novel neurotoxic chemotype from marine cyanobacteria. Full article
(This article belongs to the Special Issue Emerging Marine Toxins)
Open AccessArticle The Chemically Synthesized Ageladine A-Derivative LysoGlow84 Stains Lysosomes in Viable Mammalian Brain Cells and Specific Structures in the Marine Flatworm Macrostomum lignano
Mar. Drugs 2015, 13(2), 920-935; doi:10.3390/md13020920
Received: 15 December 2014 / Revised: 29 January 2015 / Accepted: 30 January 2015 / Published: 11 February 2015
Cited by 2 | PDF Full-text (1254 KB) | HTML Full-text | XML Full-text
Abstract
Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84). The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a
[...] Read more.
Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84). The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese (IV) oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation) was observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise cell viability, as demonstrated by several viability assays, but revealed a promising property of this compound for staining of cellular vesicles. Conventional fluorescence microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 was further observed around the worms’ anterior gut and the female genital pore which were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye that stains lysosomes and other acidic compartments in cultured cells and in worms. Full article
Figures

Open AccessArticle Conformational Analysis of the Oligosaccharides Related to Side Chains of Holothurian Fucosylated Chondroitin Sulfates
Mar. Drugs 2015, 13(2), 936-947; doi:10.3390/md13020936
Received: 8 December 2014 / Accepted: 3 February 2015 / Published: 12 February 2015
Cited by 2 | PDF Full-text (1198 KB) | HTML Full-text | XML Full-text
Abstract
Anionic polysaccharides fucosylated chondroitin sulfates (FCS) from holothurian species were shown to affect various biological processes, such as metastasis, angiogenesis, clot formation, thrombosis, inflammation, and some others. To understand the mechanism of FCSs action, knowledge about their spatial arrangement is required. We have
[...] Read more.
Anionic polysaccharides fucosylated chondroitin sulfates (FCS) from holothurian species were shown to affect various biological processes, such as metastasis, angiogenesis, clot formation, thrombosis, inflammation, and some others. To understand the mechanism of FCSs action, knowledge about their spatial arrangement is required. We have started the systematic synthesis, conformational analysis, and study of biological activity of the oligosaccharides related to various fragments of these types of natural polysaccharides. In this communication, five molecules representing distinct structural fragments of chondroitin sulfate have been studied by means of molecular modeling and NMR. These are three disaccharides and two trisaccharides containing fucose and glucuronic acid residues with one sulfate group per each fucose residue or without it. Long-range C–H coupling constants were used for the verification of the theoretical models. The presence of two conformers for both linkage types was revealed. For the Fuc–GlA linkage, the dominant conformer was the same as described previously in a literature as the molecular dynamics (MD) average in a dodechasaccharide FCS fragment representing the backbone chain of the polysaccharide including GalNAc residues. This shows that the studied oligosaccharides, in addition to larger ones, may be considered as reliable models for Quantitative Structure-Activity Relationship (QSAR) studies to reveal pharmacophore fragments of FCS. Full article
(This article belongs to the collection Marine Polysaccharides)
Figures

Open AccessArticle Design and Synthesis of Novel Xyloketal Derivatives and Their Protective Activities against H2O2-Induced HUVEC Injury
Mar. Drugs 2015, 13(2), 948-973; doi:10.3390/md13020948
Received: 27 November 2014 / Revised: 31 January 2015 / Accepted: 4 February 2015 / Published: 12 February 2015
Cited by 4 | PDF Full-text (1464 KB) | HTML Full-text | XML Full-text
Abstract
In this work, we designed and synthesized a series of amide derivatives (113), benzoxazine derivatives (1628) and amino derivatives (2930) from xyloketal B. All 28 new derivatives and seven known compounds
[...] Read more.
In this work, we designed and synthesized a series of amide derivatives (113), benzoxazine derivatives (1628) and amino derivatives (2930) from xyloketal B. All 28 new derivatives and seven known compounds (14, 15, 3135) were evaluated for their protection against H2O2-induced HUVEC injury. 23 and 24 exhibited more potential protective activities than other derivatives; and the EC50 values of them and the leading compound 31 (xyloketal B) were 5.10, 3.59 and 15.97 μM, respectively. Meanwhile, a comparative molecular similarity indices analysis (CoMSIA) was constructed to explain the structural activity relationship of these xyloketal derivatives. This 3D QSAR model from CoMSIA suggested that the derived model exhibited good predictive ability in the external test-set validation. Derivative 24 fit well with the COMSIA map, therefore it possessed the highest activity of all compounds. Compounds 23, 24 and 31 (xyloketal B) were further to examine in the JC-1 mitochondrial membrane potential (MMP) assay of HUVECs using flow cytometry (FCM). The result indicated that 23 and 24 significantly inhibited H2O2-induced decrease of the cell mitochondrial membrane potential (ΔΨm) at 25 μM. Collectively, the protective effects of xyloketals on H2O2-induced endothelial cells may be generated from oxidation action by restraining ROS and reducing the MMP. Full article
Figures

Open AccessArticle Effects of n-3 Polyunsaturated Fatty Acids (ω-3) Supplementation on Some Cardiovascular Risk Factors with a Ketogenic Mediterranean Diet
Mar. Drugs 2015, 13(2), 996-1009; doi:10.3390/md13020996
Received: 9 October 2014 / Revised: 27 January 2015 / Accepted: 6 February 2015 / Published: 13 February 2015
Cited by 9 | PDF Full-text (387 KB) | HTML Full-text | XML Full-text
Abstract
Background: the ketogenic diet (KD) has become a widely used nutritional approach for weight loss. Some of the KD’s positive effects on metabolism and cardiovascular risk factors are similar to those seen after n-3 polyunsaturated fatty acids (ω-3) supplementation. We hypothesized that
[...] Read more.
Background: the ketogenic diet (KD) has become a widely used nutritional approach for weight loss. Some of the KD’s positive effects on metabolism and cardiovascular risk factors are similar to those seen after n-3 polyunsaturated fatty acids (ω-3) supplementation. We hypothesized that a ketogenic Mediterranean diet with phytoextracts combined with ω-3 supplementation may have increased positive effects on cardiovascular risk factors and inflammation. Methods: We analyzed 34 male overweight subjects; aged between 25 and 65 years who were overall healthy apart from overweight. The subjects followed a ketogenic diet protocol for four weeks; with (KDO3) or without (KD) ω-3 supplementation. Results: All subjects experienced a significant loss of body weight and body fat and there was no significant differences between treatment (body weight: KD—4.7 kg, KDO3—4.03 kg, body fat KD—5.41 kg, KDO3—5.86 kg). There were also significant decreases in total cholesterol, LDL-c, and glucose levels. Triglycerides and insulin levels decreased more in KDO3 vs. KD subjects, with a significant difference. All the investigated inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased significantly in KDO3 subjects whilst only TNF-α showed a significant decrease in KD subjects over the 12 month study period. No significant changes were observed in anti-inflammatory cytokines (IL-10 and IL-1Ra), creatinine, urea and uric acid. Adiponectin increased significantly only in the KDO3 group. Conclusions: ω-3 supplementation improved the positive effects of a ketogenic Mediterranean diet with phytoextracts on some cardiovascular/metabolic risk factors and inflammatory state. Full article
(This article belongs to the Special Issue Marine Functional Food Products - Cardiovascular Diseases)
Figures

Open AccessArticle Marine Bromophenol Bis (2,3-Dibromo-4,5-dihydroxy-phenyl)-methane Inhibits the Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells via Modulating β1-Integrin/FAK Signaling
Mar. Drugs 2015, 13(2), 1010-1025; doi:10.3390/md13021010
Received: 31 December 2014 / Revised: 30 January 2015 / Accepted: 2 February 2015 / Published: 13 February 2015
Cited by 11 | PDF Full-text (996 KB) | HTML Full-text | XML Full-text
Abstract
Bis (2,3-dibromo-4,5-dihydroxy-phenyl)-methane (BDDPM) is a natural bromophenol compound derived from marine algae. Previous reports have shown that BDDPM possesses antimicrobial activity. In the present study, we found that BDDPM has cytotoxic activity on a wide range of tumor cells, including BEL-7402 cells (IC
[...] Read more.
Bis (2,3-dibromo-4,5-dihydroxy-phenyl)-methane (BDDPM) is a natural bromophenol compound derived from marine algae. Previous reports have shown that BDDPM possesses antimicrobial activity. In the present study, we found that BDDPM has cytotoxic activity on a wide range of tumor cells, including BEL-7402 cells (IC50 = 8.7 μg/mL). Further studies have shown that prior to the onset of apoptosis, the BDDPM induces BEL-7402 cell detachment by decreasing the adherence of cells to the extracellular matrix (ECM). Detachment experiments have shown that the treatment of BEL-7402 cells with low concentrations of BDDPM (5.0 μg/mL) significantly inhibits cell adhesion to fibronectin and collagen IV as well as cell migration and invasion. High doses of BDDPM (10.0 μg/mL) completely inhibit the migration of BEL-7402 cells, and the expression level of MMPs (MMP-2 and MMP-9) is significantly decreased. Moreover, the expression of β1-integrin and focal adhesion kinase (FAK) is found to be down-regulated by BDDPM. This study suggests that BDDPM has a potential to be developed as a novel anticancer therapeutic agent due to its anti-metastatic activity and also indicates that BDDPM, which has a unique chemical structure, could serve as a lead compound for rational drug design and for future development of anticancer agents. Full article
(This article belongs to the collection Marine Compounds and Cancer) Printed Edition available
Open AccessArticle Omega-3 Fatty Acid Intervention Suppresses Lipopolysaccharide-Induced Inflammation and Weight Loss in Mice
Mar. Drugs 2015, 13(2), 1026-1036; doi:10.3390/md13021026
Received: 24 November 2014 / Revised: 30 January 2015 / Accepted: 2 February 2015 / Published: 13 February 2015
Cited by 4 | PDF Full-text (1053 KB) | HTML Full-text | XML Full-text
Abstract
Bacterial endotoxin lipopolysaccharide (LPS)-induced sepsis is a critical medical condition, characterized by a severe systemic inflammation and rapid loss of muscle mass. Preventive and therapeutic strategies for this complex disease are still lacking. Here, we evaluated the effect of omega-3 (n-3)
[...] Read more.
Bacterial endotoxin lipopolysaccharide (LPS)-induced sepsis is a critical medical condition, characterized by a severe systemic inflammation and rapid loss of muscle mass. Preventive and therapeutic strategies for this complex disease are still lacking. Here, we evaluated the effect of omega-3 (n-3) polyunsaturated fatty acid (PUFA) intervention on LPS-challenged mice with respect to inflammation, body weight and the expression of Toll-like receptor 4 (TLR4) pathway components. LPS administration induced a dramatic loss of body weight within two days. Treatment with n-3 PUFA not only stopped loss of body weight but also gradually reversed it back to baseline levels within one week. Accordingly, the animals treated with n-3 PUFA exhibited markedly lower levels of inflammatory cytokines or markers in plasma and tissues, as well as down-regulation of TLR4 pathway components compared to animals without n-3 PUFA treatment or those treated with omega-6 PUFA. Our data demonstrate that n-3 PUFA intervention can suppress LPS-induced inflammation and weight loss via, at least in part, down-regulation of pro-inflammatory targets of the TLR4 signaling pathway, and highlight the therapeutic potential of n-3 PUFA in the management of sepsis. Full article
(This article belongs to the Special Issue Marine Lipids)
Open AccessArticle Briarenolides K and L, New Anti-Inflammatory Briarane Diterpenoids from an Octocoral Briareum sp. (Briareidae)
Mar. Drugs 2015, 13(2), 1037-1050; doi:10.3390/md13021037
Received: 5 January 2015 / Revised: 5 February 2015 / Accepted: 6 February 2015 / Published: 13 February 2015
Cited by 8 | PDF Full-text (710 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Two new briarane-type diterpenoids, briarenolides K (1) and L (2), were isolated from an octocoral identified as Briareum sp. The structures of new briaranes 1 and 2 were elucidated by spectroscopic methods. In the in vitro anti-inflammatory effects test,
[...] Read more.
Two new briarane-type diterpenoids, briarenolides K (1) and L (2), were isolated from an octocoral identified as Briareum sp. The structures of new briaranes 1 and 2 were elucidated by spectroscopic methods. In the in vitro anti-inflammatory effects test, briaranes 1 and 2 were found to significantly inhibit the accumulation of the pro-inflammatory iNOS protein of the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Full article
Open AccessArticle Fucoidan from Fucus vesiculosus Protects against Alcohol-Induced Liver Damage by Modulating Inflammatory Mediators in Mice and HepG2 Cells
Mar. Drugs 2015, 13(2), 1051-1067; doi:10.3390/md13021051
Received: 31 December 2014 / Revised: 30 January 2015 / Accepted: 10 February 2015 / Published: 16 February 2015
Cited by 10 | PDF Full-text (625 KB) | HTML Full-text | XML Full-text
Abstract
Fucoidan is an l-fucose-enriched sulfated polysaccharide isolated from brown algae and marine invertebrates. In this study, we investigated the protective effect of fucoidan from Fucus vesiculosus on alcohol-induced murine liver damage. Liver injury was induced by oral administration of 25% alcohol with or
[...] Read more.
Fucoidan is an l-fucose-enriched sulfated polysaccharide isolated from brown algae and marine invertebrates. In this study, we investigated the protective effect of fucoidan from Fucus vesiculosus on alcohol-induced murine liver damage. Liver injury was induced by oral administration of 25% alcohol with or without fucoidan (30 mg/kg or 60 mg/kg) for seven days. Alcohol administration increased serum aspartate aminotransferase and alanine aminotransferase levels, but these increases were suppressed by the treatment of fucoidan. Transforming growth factor beta 1 (TGF-β1), a liver fibrosis-inducing factor, was highly expressed in the alcohol-fed group and human hepatoma HepG2 cell; however, the increase in TGF-β1 expression was reduced following fucoidan administration. Treatment with fucoidan was also found to significantly reduce the production of inflammation-promoting cyclooygenase-2 and nitric oxide, while markedly increasing the expression of the hepatoprotective enzyme, hemeoxygenase-1, on murine liver and HepG2 cells. Taken together, the antifibrotic and anti-inflammatory effects of fucoidan on alcohol-induced liver damage may provide valuable insights into developing new therapeutics or interventions. Full article
(This article belongs to the Special Issue Marine Functional Food)
Figures

Open AccessArticle Fish Oil N-3 Fatty Acids Increase Adiponectin and Decrease Leptin Levels in Patients with Systemic Lupus Erythematosus
Mar. Drugs 2015, 13(2), 1071-1083; doi:10.3390/md13021071
Received: 20 November 2014 / Revised: 26 January 2015 / Accepted: 28 January 2015 / Published: 16 February 2015
Cited by 3 | PDF Full-text (522 KB) | HTML Full-text | XML Full-text
Abstract
Cardiovascular disease (CVD) has emerged as an important cause of death in patients with systemic lupus erythematosus (SLE). Reduced adiponectin and elevated leptin levels may contribute to CVD in SLE patients. The purpose of this study was to verify the effects of fish
[...] Read more.
Cardiovascular disease (CVD) has emerged as an important cause of death in patients with systemic lupus erythematosus (SLE). Reduced adiponectin and elevated leptin levels may contribute to CVD in SLE patients. The purpose of this study was to verify the effects of fish oil (FO) on adiponectin and leptin in patients with SLE. Biochemical and disease activity analysis were performed. Patients with SLE were divided in two groups: patients who used fish oil for four months and patients who did not use fish oil. Patients with SLE who used FO had a significant decrease in SLE disease activity index (SLEDAI) score (p ˂ 0.023) in relation to baseline. SLE patients who used fish oil had increased adiponectin levels (p ˂ 0.026) and decreased leptin levels (p ˂ 0.024) compared to baseline values, whereas there were no differences in adiponectin and leptin levels in patients with SLE who did not use fish oil. In conclusion, the findings of increased serum adiponectin an decreased leptin levels after 120 days in the fish oil group, reinforce the importance of evaluating prospective studies of fish and fish oil fish ingestion on these adipokines in an attempt to decrease cardiovascular risk factors in patients with SLE. Full article
(This article belongs to the Special Issue Marine Functional Food Products - Cardiovascular Diseases)

Review

Jump to: Editorial, Research

Open AccessReview Trabectedin in Soft Tissue Sarcomas
Mar. Drugs 2015, 13(2), 974-983; doi:10.3390/md13020974
Received: 23 December 2014 / Revised: 27 January 2015 / Accepted: 2 February 2015 / Published: 12 February 2015
Cited by 8 | PDF Full-text (414 KB) | HTML Full-text | XML Full-text
Abstract
Soft tissue sarcomas are a group of rare tumors derived from mesenchymal tissue, accounting for about 1% of adult cancers. There are over 60 different histological subtypes, each with their own unique biological behavior and response to systemic therapy. The outcome for patients
[...] Read more.
Soft tissue sarcomas are a group of rare tumors derived from mesenchymal tissue, accounting for about 1% of adult cancers. There are over 60 different histological subtypes, each with their own unique biological behavior and response to systemic therapy. The outcome for patients with metastatic soft tissue sarcoma is poor with few available systemic treatment options. For decades, the mainstay of management has consisted of doxorubicin with or without ifosfamide. Trabectedin is a synthetic agent derived from the Caribbean tunicate, Ecteinascidia turbinata. This drug has a number of potential mechanisms of action, including binding the DNA minor groove, interfering with DNA repair pathways and the cell cycle, as well as interacting with transcription factors. Several phase II trials have shown that trabectedin has activity in anthracycline and alkylating agent-resistant soft tissue sarcoma and suggest use in the second- and third-line setting. More recently, trabectedin has shown similar progression-free survival to doxorubicin in the first-line setting and significant activity in liposarcoma and leiomyosarcoma subtypes. Trabectedin has shown a favorable toxicity profile and has been approved in over 70 countries for the treatment of metastatic soft tissue sarcoma. This manuscript will review the development of trabectedin in soft tissue sarcomas. Full article
(This article belongs to the collection Marine Compounds and Cancer) Printed Edition available
Open AccessReview Selective Blocking Effects of 4,9-Anhydrotetrodotoxin, Purified from a Crude Mixture of Tetrodotoxin Analogues, on NaV1.6 Channels and Its Chemical Aspects
Mar. Drugs 2015, 13(2), 984-995; doi:10.3390/md13020984
Received: 24 December 2014 / Revised: 30 January 2015 / Accepted: 3 February 2015 / Published: 12 February 2015
Cited by 6 | PDF Full-text (518 KB) | HTML Full-text | XML Full-text
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin found in a number of marine creatures including the pufferfish, where it is synthesized by bacteria and accumulated through the food chain. It is a potent and selective blocker of some types of voltage-gated Na+ channel
[...] Read more.
Tetrodotoxin (TTX) is a potent neurotoxin found in a number of marine creatures including the pufferfish, where it is synthesized by bacteria and accumulated through the food chain. It is a potent and selective blocker of some types of voltage-gated Na+ channel (NaV channel). 4,9-Anhydrotetrodotoxin (4,9-anhydroTTX) was purified from a crude mixture of TTX analogues (such as TTX, 4-epiTTX, 6-epiTTX, 11-oxoTTX and 11-deoxyTTX) by the use of liquid chromatography-fluorescence detection (LC-FLD) techniques. Recently, it has been reported that 4,9-anhydroTTX selectively blocks the activity of NaV1.6 channels with a blocking efficacy 40–160 times higher than that for other TTX-sensitive NaV1.x channel isoforms. However, little attention has been paid to the molecular properties of the α-subunit in NaV1.6 channels and the characteristics of binding of 4,9-anhydroTTX. From a functional point of view, it is important to determine the relative expression of NaV1.6 channels in a wide variety of tissues. The aim of this review is to discuss briefly current knowledge about the pharmacology of 4,9-anhydroTTX, and provide an analysis of the molecular structure of native NaV1.6 channels. In addition, chemical aspects of 4,9-anhydroTTX are briefly covered. Full article
(This article belongs to the Special Issue Emerging Marine Toxins)
Back to Top