E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Phenolics and Polyphenolics 2015"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (30 November 2015)

Special Issue Editors

Guest Editor
Dr. Paula Andrade

REQUIMTE/LAQV, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
Website | E-Mail
Fax: +351-226093390
Interests: metabolite profiling of natural matrices; natural agents for inflammation; neurodegenerative disorders
Guest Editor
Dr. Patrícia Valentão

REQUIMTE/LAQV, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
Website | E-Mail
Fax: +351-226093390
Interests: metabolite profiling of natural matrices, marine and terrestrial; evaluation of bioactive agents from natural sources; marine organisms as source of bioactive agents; natural anti-inflammatory agents; neurodegenerative diseases

Special Issue Information

Dear Colleagues,

Phenolic compounds are a category of phytochemicals widely distributed in nature and found in the human diet. Despite their important role in taxonomic issues, due to their biological properties, phenolics and polyphenolics have been extensively studied and there is evidence of their relevance in disease prevention, including major human diseases such as cancer, diabetes, cardiovascular disease, and neurodegenerative diseases. These compounds are metabolized in vivo and circulate in the organism as derivatives that are also bioactive.

This Special Issue will focus on several aspects related to these compounds, from synthesis to extraction, analysis, metabolism and bioactivity, also covering bioavailability and toxicological features, by exploring the relevant contemporary scientific literature to provide a general perspective of this broad area.

Dr. Paula Andrade
Dr. Patrícia Valentão
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Green synthesis and extraction
  • Analytical trends
  • Metabolism and bioavailability
  • Pharmacological properties
  • Structure–activity relationships
  • Toxicity

Published Papers (14 papers)

View options order results:
result details:
Displaying articles 1-14
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Antinociceptive and Anti-Inflammatory Effects of Zerumbone against Mono-Iodoacetate-Induced Arthritis
Int. J. Mol. Sci. 2016, 17(2), 249; doi:10.3390/ijms17020249
Received: 25 December 2015 / Revised: 5 February 2016 / Accepted: 6 February 2016 / Published: 18 February 2016
Cited by 10 | PDF Full-text (1755 KB) | HTML Full-text | XML Full-text
Abstract
The fresh rhizome of Zingiber zerumbet Smith (Zingiberaceae) is used as a food flavoring and also serves as a folk medicine as an antipyretic and for analgesics in Taiwan. Zerumbone, a monocyclic sesquiterpene was isolated from the rhizome of Z. zerumbet and is
[...] Read more.
The fresh rhizome of Zingiber zerumbet Smith (Zingiberaceae) is used as a food flavoring and also serves as a folk medicine as an antipyretic and for analgesics in Taiwan. Zerumbone, a monocyclic sesquiterpene was isolated from the rhizome of Z. zerumbet and is the major active compound. In this study, the anti-inflammatory and antinociceptive effects of zerumbone on arthritis were explored using in vitro and in vivo models. Results showed that zerumbone inhibited inducible nitric oxide (NO) synthase (iNOS), cyclooxygenase (COX)-2 expressions, and NO and prostaglandin E2 (PGE2) production, but induced heme oxygenase (HO)-1 expression in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. When zerumbone was co-treated with an HO-1 inhibitor (tin protoporphyrin (SnPP)), the NO inhibitory effects of zerumbone were recovered. The above results suggest that zerumbone inhibited iNOS and COX-2 through induction of the HO-1 pathway. Moreover, matrix metalloproteinase (MMP)-13 and COX-2 expressions of interleukin (IL)-1β-stimulated primary rat chondrocytes were inhibited by zerumbone. In an in vivo assay, an acetic acid-induced writhing response in mice was significantly reduced by treatment with zerumbone. Furthermore, zerumbone reduced paw edema and the pain response in a mono-iodoacetate (MIA)-induced rat osteoarthritis model. Therefore, we suggest that zerumbone possesses anti-inflammatory and antinociceptive effects which indicate zerumbone could be a potential candidate for osteoarthritis treatment. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Technological Implications of Modifying the Extent of Cell Wall-Proanthocyanidin Interactions Using Enzymes
Int. J. Mol. Sci. 2016, 17(1), 123; doi:10.3390/ijms17010123
Received: 16 December 2015 / Revised: 8 January 2016 / Accepted: 11 January 2016 / Published: 18 January 2016
Cited by 3 | PDF Full-text (882 KB) | HTML Full-text | XML Full-text
Abstract
The transference and reactivity of proanthocyanidins is an important issue that affects the technological processing of some fruits, such as grapes and apples. These processes are affected by proanthocyanidins bound to cell wall polysaccharides, which are present in high concentrations during the processing
[...] Read more.
The transference and reactivity of proanthocyanidins is an important issue that affects the technological processing of some fruits, such as grapes and apples. These processes are affected by proanthocyanidins bound to cell wall polysaccharides, which are present in high concentrations during the processing of the fruits. Therefore, the effective extraction of proanthocyanidins from fruits to their juices or derived products will depend on the ability to manage these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the role of pure hydrolytic enzymes (polygalacturonase and cellulose) and a commercial enzyme containing these two activities on the extent of proanthocyanidin-cell wall interactions. The results showed that the modification promoted by enzymes reduced the amount of proanthocyanidins adsorbed to cell walls since they contributed to the degradation and release of the cell wall polysaccharides, which diffused into the model solution. Some of these released polysaccharides also presented some reactivity towards the proanthocyanidins present in a model solution. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle The Flaxseed-Derived Lignan Phenolic Secoisolariciresinol Diglucoside (SDG) Protects Non-Malignant Lung Cells from Radiation Damage
Int. J. Mol. Sci. 2016, 17(1), 7; doi:10.3390/ijms17010007
Received: 23 November 2015 / Revised: 8 December 2015 / Accepted: 14 December 2015 / Published: 22 December 2015
Cited by 6 | PDF Full-text (1768 KB) | HTML Full-text | XML Full-text
Abstract
Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS) has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed’s protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG). SDG is
[...] Read more.
Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS) has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed’s protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG). SDG is a free radical scavenger, shown in cell free systems to protect DNA from radiation-induced damage. The objective of this study was to investigate the in vitro radioprotective efficacy of SDG in murine lung cells. Protection against irradiation (IR)-induced DNA double and single strand breaks was assessed by γ-H2AX labeling and alkaline comet assay, respectively. The role of SDG in modulating the levels of cytoprotective enzymes was evaluated by qPCR and confirmed by Western blotting. Additionally, effects of SDG on clonogenic survival of irradiated cells were evaluated. SDG protected cells from IR-induced death and ameliorated DNA damage by reducing mean comet tail length and percentage of γ-H2AX positive cells. Importantly, SDG significantly increased gene and protein levels of antioxidant HO-1, GSTM1 and NQO1. Our results identify the potent radioprotective properties of the synthetic biphenolic SDG, preventing DNA damage and enhancing the antioxidant capacity of normal lung cells; thus, rendering SDG a potential radioprotector against radiation exposure. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma
Int. J. Mol. Sci. 2015, 16(12), 29980-29995; doi:10.3390/ijms161226218
Received: 21 October 2015 / Revised: 26 November 2015 / Accepted: 8 December 2015 / Published: 16 December 2015
Cited by 4 | PDF Full-text (4652 KB) | HTML Full-text | XML Full-text
Abstract
Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an
[...] Read more.
Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10–20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Application of Green Tea Catechin for Inducing the Osteogenic Differentiation of Human Dedifferentiated Fat Cells in Vitro
Int. J. Mol. Sci. 2015, 16(12), 27988-28000; doi:10.3390/ijms161226081
Received: 11 September 2015 / Revised: 16 November 2015 / Accepted: 18 November 2015 / Published: 25 November 2015
Cited by 2 | PDF Full-text (1872 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Despite advances in stem cell biology, there are few effective techniques to promote the osteogenic differentiation of human primary dedifferentiated fat (DFAT) cells. We attempted to investigate whether epigallocatechin-3-gallate (EGCG), the main component of green tea catechin, facilitates early osteogenic differentiation and mineralization
[...] Read more.
Despite advances in stem cell biology, there are few effective techniques to promote the osteogenic differentiation of human primary dedifferentiated fat (DFAT) cells. We attempted to investigate whether epigallocatechin-3-gallate (EGCG), the main component of green tea catechin, facilitates early osteogenic differentiation and mineralization on DFAT cells in vitro. DFAT cells were treated with EGCG (1.25–10 μM) in osteogenic medium (OM) with or without 100 nM dexamethasone (Dex) for 12 days (hereafter two osteogenic media were designated as OM(Dex) and OM). Supplementation of 1.25 μM EGCG to both the media effectively increased the mRNA expression of collagen 1 (COL1A1) and runt-related transcription factor 2 (RUNX2) and also increased proliferation and mineralization. Compared to OM(Dex) with EGCG, OM with EGCG induced earlier expression for COL1A1 and RUNX2 at day 1 and higher mineralization level at day 12. OM(Dex) with 10 μM EGCG remarkably hampered the proliferation of the DFAT cells. These results suggest that OM(without Dex) with EGCG might be a preferable medium to promote proliferation and to induce osteoblast differentiation of DFAT cells. Our findings provide an insight for the combinatory use of EGCG and DFAT cells for bone regeneration and stem cell-based therapy. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity
Int. J. Mol. Sci. 2015, 16(11), 26850-26870; doi:10.3390/ijms161125988
Received: 19 September 2015 / Revised: 27 October 2015 / Accepted: 2 November 2015 / Published: 10 November 2015
Cited by 1 | PDF Full-text (3941 KB) | HTML Full-text | XML Full-text
Abstract
Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains
[...] Read more.
Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated “structure-activity relationship” for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS
Int. J. Mol. Sci. 2015, 16(8), 18396-18411; doi:10.3390/ijms160818396
Received: 6 July 2015 / Revised: 30 July 2015 / Accepted: 30 July 2015 / Published: 7 August 2015
Cited by 8 | PDF Full-text (778 KB) | HTML Full-text | XML Full-text
Abstract
Previous findings on the capacity of Hibiscus sabdariffa (HS) polyphenols to ameliorate metabolic disturbances justify the necessity of studies oriented to find the potential metabolites responsible for such an effect. The present study examined the intestinal epithelial membrane permeability of polyphenols present in
[...] Read more.
Previous findings on the capacity of Hibiscus sabdariffa (HS) polyphenols to ameliorate metabolic disturbances justify the necessity of studies oriented to find the potential metabolites responsible for such an effect. The present study examined the intestinal epithelial membrane permeability of polyphenols present in a phenolic-enriched Hibiscus sabdariffa extract (PEHS), free and encapsulated, using the Caco-2 cell line. Additionally, selected polyphenols (quercetin, quercetin-3-glucoside, quercetin-3-glucuronide, and N-feruloyltyramine) were also studied in the same absorption model. The powerful analytical platform used ultra-high-performance liquid chromatography coupled with ultra-high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-ESI-UHR-Qq-TOF-MS), and enabled the characterization of seven new compounds in PEHS. In the permeation study, only a few compounds were able to cross the cell monolayer and the permeability was lower when the extract was in an encapsulated form. Pure compounds showed a moderate absorption in all cases. Nevertheless, these preliminary results may need further research to understand the complete absorption mechanism of Hibiscus polyphenols. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Potential Effects of Phytoestrogen Genistein in Modulating Acute Methotrexate Chemotherapy-Induced Osteoclastogenesis and Bone Damage in Rats
Int. J. Mol. Sci. 2015, 16(8), 18293-18311; doi:10.3390/ijms160818293
Received: 8 July 2015 / Accepted: 3 August 2015 / Published: 6 August 2015
Cited by 4 | PDF Full-text (3047 KB) | HTML Full-text | XML Full-text
Abstract
Chemotherapy-induced bone damage is a frequent side effect which causes diminished bone mineral density and fracture in childhood cancer sufferers and survivors. The intensified use of anti-metabolite methotrexate (MTX) and other cytotoxic drugs has led to the need for a mechanistic understanding of
[...] Read more.
Chemotherapy-induced bone damage is a frequent side effect which causes diminished bone mineral density and fracture in childhood cancer sufferers and survivors. The intensified use of anti-metabolite methotrexate (MTX) and other cytotoxic drugs has led to the need for a mechanistic understanding of chemotherapy-induced bone loss and for the development of protective treatments. Using a young rat MTX-induced bone loss model, we investigated potential bone protective effects of phytoestrogen genistein. Oral gavages of genistein (20 mg/kg) were administered daily, for seven days before, five days during, and three days after five once-daily injections (sc) of MTX (0.75 mg/kg). MTX treatment reduced body weight gain and tibial metaphyseal trabecular bone volume (p < 0.001), increased osteoclast density on the trabecular bone surface (p < 0.05), and increased the bone marrow adipocyte number in lower metaphyseal bone (p < 0.001). Genistein supplementation preserved body weight gain (p < 0.05) and inhibited ex vivo osteoclast formation of bone marrow cells from MTX-treated rats (p < 0.001). However, MTX-induced changes in bone volume, trabecular architecture, metaphyseal mRNA expression of pro-osteoclastogenic cytokines, and marrow adiposity were not significantly affected by the co-administration of genistein. This study suggests that genistein may suppress MTX-induced osteoclastogenesis; however, further studies are required to examine its potential in protecting against MTX chemotherapy-induced bone damage. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles
Int. J. Mol. Sci. 2015, 16(8), 17696-17718; doi:10.3390/ijms160817696
Received: 19 May 2015 / Revised: 24 July 2015 / Accepted: 28 July 2015 / Published: 31 July 2015
Cited by 9 | PDF Full-text (1013 KB) | HTML Full-text | XML Full-text
Abstract
The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer’s
[...] Read more.
The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer’s disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Impact of the β-Lactam Resistance Modifier (−)-Epicatechin Gallate on the Non-Random Distribution of Phospholipids across the Cytoplasmic Membrane of Staphylococcus aureus
Int. J. Mol. Sci. 2015, 16(8), 16710-16727; doi:10.3390/ijms160816710
Received: 23 June 2015 / Revised: 17 July 2015 / Accepted: 17 July 2015 / Published: 23 July 2015
Cited by 3 | PDF Full-text (3056 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The polyphenol (−)-epicatechin gallate (ECg) inserts into the cytoplasmic membrane (CM) of methicillin-resistant Staphylococcus aureus (MRSA) and reversibly abrogates resistance to β-lactam antibiotics. ECg elicits an increase in MRSA cell size and induces thickened cell walls. As ECg partially delocalizes penicillin-binding protein PBP2
[...] Read more.
The polyphenol (−)-epicatechin gallate (ECg) inserts into the cytoplasmic membrane (CM) of methicillin-resistant Staphylococcus aureus (MRSA) and reversibly abrogates resistance to β-lactam antibiotics. ECg elicits an increase in MRSA cell size and induces thickened cell walls. As ECg partially delocalizes penicillin-binding protein PBP2 from the septal division site, reduces PBP2 and PBP2a complexation and induces CM remodelling, we examined the impact of ECg membrane intercalation on phospholipid distribution across the CM and determined if ECg affects the equatorial, orthogonal mode of division. The major phospholipids of the staphylococcal CM, lysylphosphatidylglycerol (LPG), phosphatidylglycerol (PG), and cardiolipin (CL), were distributed in highly asymmetric fashion; 95%–97% of LPG was associated with the inner leaflet whereas PG (~90%) and CL (~80%) were found predominantly in the outer leaflet. ECg elicited small, significant changes in LPG distribution. Atomic force microscopy established that ECg-exposed cells divided in similar fashion to control bacteria, with a thickened band of encircling peptidoglycan representing the most recent plane of cell division, less distinct ribs indicative of previous sites of orthogonal division and concentric rings and “knobbles” representing stages of peptidoglycan remodelling during the cell cycle. Preservation of staphylococcal membrane lipid asymmetry and mode of division in sequential orthogonal planes appear key features of ECg-induced stress. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Local Controlled Release of Polyphenol Conjugated with Gelatin Facilitates Bone Formation
Int. J. Mol. Sci. 2015, 16(6), 14143-14157; doi:10.3390/ijms160614143
Received: 20 April 2015 / Revised: 28 May 2015 / Accepted: 8 June 2015 / Published: 23 June 2015
Cited by 2 | PDF Full-text (2757 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Catechins are extensively used in health care treatments. Nevertheless, there is scarce information about the feasibility of local administration with polyphenols for bone regeneration therapy, possibly due to lack of effective delivery systems. Here we demonstrated that the epigallocatechin-3-gallate-conjugated gelatin (EGCG/Gel) prepared by
[...] Read more.
Catechins are extensively used in health care treatments. Nevertheless, there is scarce information about the feasibility of local administration with polyphenols for bone regeneration therapy, possibly due to lack of effective delivery systems. Here we demonstrated that the epigallocatechin-3-gallate-conjugated gelatin (EGCG/Gel) prepared by an aqueous chemical synthesis using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-morpholinium chloride (DMT-MM) gradually disintegrated with time and facilitated bone formation in a critical size defect of a mouse calvaria. Conjugation of EGCG with the Gel generated cross-linking between the two molecules, thereby leading to a retardation of the degradation of the EGCG/Gel and to a delayed release of EGCG. The prepared EGCG/Gels represented significant osteogenic capability compared with that of the uncross-linked Gel and the cross-linked Gel with uncombined-EGCG. In vitro experiments disclosed that the EGCG/Gel induced osteoblastogenesis of a mouse mesenchymal stem cell line (D1 cells) within 14 days. Using fluorescently-labeled EGCG/Gel, we found that the fraction of EGCG/Gel adsorbed onto the cell membrane of the D1 cells possibly via a Gel-cell interaction. The interaction might confer the long-term effects of EGCG on the cells, resulting in a potent osteogenic capability of the EGCG/Gel in vivo. These results should provide insight into local controlled release of polyphenols for bone therapy. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Quantitative Structure-Antioxidant Activity Models of Isoflavonoids: A Theoretical Study
Int. J. Mol. Sci. 2015, 16(6), 12891-12906; doi:10.3390/ijms160612891
Received: 20 May 2015 / Revised: 1 June 2015 / Accepted: 3 June 2015 / Published: 8 June 2015
Cited by 5 | PDF Full-text (735 KB) | HTML Full-text | XML Full-text
Abstract
Seventeen isoflavonoids from isoflavone, isoflavanone and isoflavan classes are selected from Dalbergia parviflora. The ChEMBL database is representative from these molecules, most of which result highly drug-like. Binary rules appear risky for the selection of compounds with high antioxidant capacity in complementary
[...] Read more.
Seventeen isoflavonoids from isoflavone, isoflavanone and isoflavan classes are selected from Dalbergia parviflora. The ChEMBL database is representative from these molecules, most of which result highly drug-like. Binary rules appear risky for the selection of compounds with high antioxidant capacity in complementary xanthine/xanthine oxidase, ORAC, and DPPH model assays. Isoflavonoid structure-activity analysis shows the most important properties (log P, log D, pKa, QED, PSA, NH + OH ≈ HBD, N + O ≈ HBA). Some descriptors (PSA, HBD) are detected as more important than others (size measure Mw, HBA). Linear and nonlinear models of antioxidant potency are obtained. Weak nonlinear relationships appear between log P, etc. and antioxidant activity. The different capacity trends for the three complementary assays are explained. Isoflavonoids potency depends on the chemical form that determines their solubility. Results from isoflavonoids analysis will be useful for activity prediction of new sets of flavones and to design drugs with antioxidant capacity, which will prove beneficial for health with implications for antiageing therapy. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Open AccessArticle Anti-Adhesive Activity of Cranberry Phenolic Compounds and Their Microbial-Derived Metabolites against Uropathogenic Escherichia coli in Bladder Epithelial Cell Cultures
Int. J. Mol. Sci. 2015, 16(6), 12119-12130; doi:10.3390/ijms160612119
Received: 29 April 2015 / Revised: 21 May 2015 / Accepted: 21 May 2015 / Published: 27 May 2015
Cited by 18 | PDF Full-text (974 KB) | HTML Full-text | XML Full-text
Abstract
Cranberry consumption has shown prophylactic effects against urinary tract infections (UTI), although the mechanisms involved are not completely understood. In this paper, cranberry phenolic compounds and their potential microbial-derived metabolites (such as simple phenols and benzoic, phenylacetic and phenylpropionic acids) were tested for
[...] Read more.
Cranberry consumption has shown prophylactic effects against urinary tract infections (UTI), although the mechanisms involved are not completely understood. In this paper, cranberry phenolic compounds and their potential microbial-derived metabolites (such as simple phenols and benzoic, phenylacetic and phenylpropionic acids) were tested for their capacity to inhibit the adherence of uropathogenic Escherichia coli (UPEC) ATCC®53503™ to T24 epithelial bladder cells. Catechol, benzoic acid, vanillic acid, phenylacetic acid and 3,4-dihydroxyphenylacetic acid showed anti-adhesive activity against UPEC in a concentration-dependent manner from 100–500 µM, whereas procyanidin A2, widely reported as an inhibitor of UPEC adherence on uroepithelium, was only statistically significant (p < 0.05) at 500 µM (51.3% inhibition). The results proved for the first time the anti-adhesive activity of some cranberry-derived phenolic metabolites against UPEC in vitro, suggesting that their presence in the urine could reduce bacterial colonization and progression of UTI. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Review

Jump to: Research

Open AccessReview The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders
Int. J. Mol. Sci. 2016, 17(2), 160; doi:10.3390/ijms17020160
Received: 27 November 2015 / Revised: 5 January 2016 / Accepted: 14 January 2016 / Published: 18 February 2016
Cited by 29 | PDF Full-text (6132 KB) | HTML Full-text | XML Full-text
Abstract
Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people
[...] Read more.
Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics 2015)
Figures

Back to Top