Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Int. J. Mol. Sci., Volume 18, Issue 5 (May 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story The figure shows the molecular basis and principles of TSPO-PET imaging. The 18 kDa Translocator [...] Read more.
View options order results:
result details:
Displaying articles 1-207
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation of Pseudomonas aeruginosa LpxC Inhibitors
Int. J. Mol. Sci. 2017, 18(5), 761; doi:10.3390/ijms18050761
Received: 11 February 2017 / Revised: 17 March 2017 / Accepted: 26 March 2017 / Published: 6 May 2017
PDF Full-text (6353 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
As an important target for the development of novel antibiotics, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) has been widely studied. Pyridone methylsulfone hydroxamate (PMH) compounds can effectively inhibit the catalytic activity of LpxC. In this work, the three-dimensional quantitative structure-activity
[...] Read more.
As an important target for the development of novel antibiotics, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) has been widely studied. Pyridone methylsulfone hydroxamate (PMH) compounds can effectively inhibit the catalytic activity of LpxC. In this work, the three-dimensional quantitative structure-activity relationships of PMH inhibitors were explored and models with good predictive ability were established using comparative molecular field analysis and comparative molecular similarity index analysis methods. The effect of PMH inhibitors’ electrostatic potential on the inhibitory ability of Pseudomonas aeruginosa LpxC (PaLpxC) is revealed at the molecular level via molecular electrostatic potential analyses. Then, two molecular dynamics simulations for the PaLpxC and PaLpxC-inhibitor systems were also performed respectively to investigate the key residues of PaLpxC hydrolase binding to water molecules. The results indicate that orderly alternative water molecules can form stable hydrogen bonds with M62, E77, T190, and H264 in the catalytic center, and tetracoordinate to zinc ion along with H78, H237, and D241. It was found that the conformational transition space of PaLpxC changes after association with PMH inhibitors through free energy landscape and cluster analyses. Finally, a possible inhibitory mechanism of PMH inhibitors was proposed, based on our molecular simulation. This paper will provide a theoretical basis for the molecular design of LpxC-targeting antibiotics. Full article
(This article belongs to the Section Molecular Recognition)
Figures

Figure 1

Open AccessArticle Renalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways
Int. J. Mol. Sci. 2017, 18(5), 855; doi:10.3390/ijms18050855
Received: 5 February 2017 / Revised: 30 March 2017 / Accepted: 4 April 2017 / Published: 27 April 2017
PDF Full-text (8660 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown.
[...] Read more.
Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown. In this study, we evaluated the therapeutic efficacy of renalase in rats with complete unilateral ureteral obstruction (UUO) and examined the inhibitory effects of renalase on transforming growth factor-β1 (TGF-β1)-induced epithelial–mesenchymal transition (EMT) in human proximal renal tubular epithelial (HK-2) cells. We found that in the UUO model, the expression of renalase was markedly downregulated and adenoviral-mediated expression of renalase significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin expression and suppressed expression of α-smooth muscle actin (α-SMA), fibronectin and collagen-I. In vitro, renalase inhibited TGF-β1-mediated upregulation of α-SMA and downregulation of E-cadherin. Increased levels of Phospho-extracellular regulated protein kinases (p-ERK1/2) in TGF-β1-stimulated cells were reversed by renalase cotreatment. When ERK1 was overexpressed, the inhibition of TGF-β1-induced EMT and fibrosis mediated by renalase was attenuated. Our study provides the first evidence that renalase can ameliorate renal interstitial fibrosis by suppression of tubular EMT through inhibition of the ERK pathway. These results suggest that renalase has potential renoprotective effects in renal interstitial fibrosis and may be an effective agent for slowing CKD progression. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Figure 1a

Open AccessArticle Natural Killer Cells Response to IL-2 Stimulation Is Distinct between Ascites with the Presence or Absence of Malignant Cells in Ovarian Cancer Patients
Int. J. Mol. Sci. 2017, 18(5), 856; doi:10.3390/ijms18050856
Received: 23 February 2017 / Revised: 10 April 2017 / Accepted: 13 April 2017 / Published: 17 May 2017
Cited by 2 | PDF Full-text (1886 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Peritoneal ascites are a distinguishable feature of patients with advanced epithelial ovarian cancer (EOC). The presence of different lymphocyte subsets has been reported in EOC-associated ascites, which also can or not contain malignant cells. The goal of this study was to analyze the
[...] Read more.
Peritoneal ascites are a distinguishable feature of patients with advanced epithelial ovarian cancer (EOC). The presence of different lymphocyte subsets has been reported in EOC-associated ascites, which also can or not contain malignant cells. The goal of this study was to analyze the functional characteristics of natural killer (NK) cells from EOC-associated ascites in terms of their expression of activating receptors and ascites’ contents of lymphocyte subtypes, cytokine profile and presence of EOC cells. NK cell function was evaluated by the expression of the degranulation marker CD107a in resting and interleukin (IL)-2 stimulated NK cells from ascites and blood. Degranulation of NK cells from EOC cell-free ascites was significantly (p < 0.05) higher than all the other groups, either in their resting state or after IL-2 stimulation, suggesting a previous local stimulation. In contrast, treatment with IL-2 had no effect on NK cells from ascites with EOC cells. The amount of regulatory T cells was significantly higher in ascites with EOC cells compared to EOC cell-free ascites. Ascites with EOC cells also had higher levels of tumor necrosis factor (TNF)-α, suggesting inflammation related to the malignancy. In conclusion, the functional performance of NK cells was distinct between EOC cell-free ascites and ascites with EOC cells. The impairment of NK cell response to IL-2 in ascites with EOC cells was consistent with an immunosuppressive tumor microenvironment. Full article
(This article belongs to the Special Issue Natural Killer (NK) Cells)
Figures

Figure 1

Open AccessArticle Selection, Characterization and Interaction Studies of a DNA Aptamer for the Detection of Bifidobacterium bifidum
Int. J. Mol. Sci. 2017, 18(5), 883; doi:10.3390/ijms18050883
Received: 7 March 2017 / Revised: 14 April 2017 / Accepted: 18 April 2017 / Published: 25 April 2017
Cited by 1 | PDF Full-text (4468 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A whole-bacterium-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure was adopted in this study for the selection of an ssDNA aptamer that binds to Bifidobacterium bifidum. After 12 rounds of selection targeted against B. bifidum, 30 sequences were obtained
[...] Read more.
A whole-bacterium-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure was adopted in this study for the selection of an ssDNA aptamer that binds to Bifidobacterium bifidum. After 12 rounds of selection targeted against B. bifidum, 30 sequences were obtained and divided into seven families according to primary sequence homology and similarity of secondary structure. Four FAM (fluorescein amidite) labeled aptamer sequences from different families were selected for further characterization by flow cytometric analysis. The results reveal that the aptamer sequence CCFM641-5 demonstrated high-affinity and specificity for B. bifidum compared with the other sequences tested, and the estimated Kd value was 10.69 ± 0.89 nM. Additionally, sequence truncation experiments of the aptamer CCFM641-5 led to the conclusion that the 5′-primer and 3′-primer binding sites were essential for aptamer-target binding. In addition, the possible component of the target B. bifidum, bound by the aptamer CCFM641-5, was identified as a membrane protein by treatment with proteinase. Furthermore, to prove the potential application of the aptamer CCFM641-5, a colorimetric bioassay of the sandwich-type structure was used to detect B. bifidum. The assay had a linear range of 104 to 107 cfu/mL (R2 = 0.9834). Therefore, the colorimetric bioassay appears to be a promising method for the detection of B. bifidum based on the aptamer CCFM641-5. Full article
(This article belongs to the Special Issue Aptamers)
Figures

Open AccessArticle Integrative RNA- and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus
Int. J. Mol. Sci. 2017, 18(5), 887; doi:10.3390/ijms18050887
Received: 9 February 2017 / Accepted: 18 April 2017 / Published: 8 May 2017
Cited by 1 | PDF Full-text (4325 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Oilseed rape (Brassica napus L.) is the second largest oilseed crop worldwide and one of the most important oil crops in China. As a component of plant architecture, branch angle plays an important role in yield performance, especially under high-density planting conditions.
[...] Read more.
Oilseed rape (Brassica napus L.) is the second largest oilseed crop worldwide and one of the most important oil crops in China. As a component of plant architecture, branch angle plays an important role in yield performance, especially under high-density planting conditions. However, the mechanisms underlying the regulation of branch angle are still largely not understood. Two oilseed rape lines with significantly different branch angles were used to conduct RNA- and miRNA-profiling at two developmental stages, identifying differential expression of a large number of genes involved in auxin- and brassinosteroid (BR)-related pathways. Many auxin response genes, including AUX1, IAA, GH3, and ARF, were enriched in the compact line. However, a number of genes involved in BR signaling transduction and biosynthesis were down-regulated. Differentially expressed miRNAs included those involved in auxin signaling transduction. Expression patterns of most target genes were fine-tuned by related miRNAs, such as miR156, miR172, and miR319. Some miRNAs were found to be differentially expressed at both developmental stages, including three miR827 members. Our results provide insight that auxin- and BR-signaling may play a pivotal role in branch angle regulation. Full article
(This article belongs to the Section Molecular Botany)
Figures

Figure 1

Open AccessArticle Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration
Int. J. Mol. Sci. 2017, 18(5), 899; doi:10.3390/ijms18050899
Received: 9 March 2017 / Revised: 17 April 2017 / Accepted: 20 April 2017 / Published: 25 April 2017
Cited by 2 | PDF Full-text (6972 KB) | HTML Full-text | XML Full-text
Abstract
This study was conducted to compare 3D-printed polycaprolactone (PCL) and polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) membranes with a conventional commercial collagen membrane in terms of their abilities to facilitate guided bone regeneration (GBR). Fabricated membranes were tested for dry and wet mechanical properties. Fibroblasts and
[...] Read more.
This study was conducted to compare 3D-printed polycaprolactone (PCL) and polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) membranes with a conventional commercial collagen membrane in terms of their abilities to facilitate guided bone regeneration (GBR). Fabricated membranes were tested for dry and wet mechanical properties. Fibroblasts and preosteoblasts were seeded into the membranes and rates and patterns of proliferation were analyzed using a kit-8 assay and by scanning electron microscopy. Osteogenic differentiation was verified by alizarin red S and alkaline phosphatase (ALP) staining. An in vivo experiment was performed using an alveolar bone defect beagle model, in which defects in three dogs were covered with different membranes. CT and histological analyses at eight weeks after surgery revealed that 3D-printed PCL/β-TCP membranes were more effective than 3D-printed PCL, and substantially better than conventional collagen membranes in terms of biocompatibility and bone regeneration and, thus, at facilitating GBR. Full article
(This article belongs to the Special Issue Three-dimensional (3D) Bioprinting of Tissues and Organs)
Figures

Figure 1

Open AccessArticle A Long-Term Treatment with Arachidonyl-2′-Chloroethylamide Combined with Valproate Increases Neurogenesis in a Mouse Pilocarpine Model of Epilepsy
Int. J. Mol. Sci. 2017, 18(5), 900; doi:10.3390/ijms18050900
Received: 19 February 2017 / Revised: 12 April 2017 / Accepted: 19 April 2017 / Published: 25 April 2017
Cited by 1 | PDF Full-text (3664 KB) | HTML Full-text | XML Full-text
Abstract
Rational polytherapy in the treatment of refractory epilepsy has been the main therapeutic modality for several years. In treatment with two or more antiepileptic drugs (AEDs), it is of particular importance that AEDs be selected based on their high anticonvulsant properties, minimal side
[...] Read more.
Rational polytherapy in the treatment of refractory epilepsy has been the main therapeutic modality for several years. In treatment with two or more antiepileptic drugs (AEDs), it is of particular importance that AEDs be selected based on their high anticonvulsant properties, minimal side effects, and impact on the formation of new neurons. The aim of the study was to conduct an in vivo evaluation of the relationship between treatments with synthetic cannabinoid arachidonyl-2′-chloroethylamide (ACEA) alone or in combination with valproic acid (VPA) and hippocampal neurogenesis in a mouse pilocarpine model of epilepsy. All studies were performed on adolescent male CB57/BL mice with using the following drugs: VPA (10 mg/kg), ACEA (10 mg/kg), phenylmethylsulfonyl fluoride (PMSF—a substance protecting ACEA against degradation by fatty acid hydrolase, 30 mg/kg), pilocarpine (PILO, a single dose of 290 mg/kg) and methylscopolamine (30 min before PILO to stop peripheral cholinergic effects of pilocarpine, 1 mg/kg). We evaluated the process of neurogenesis after a 10-day treatment with ACEA and VPA, alone and in combination. We observed a decrease of neurogenesis in the PILO control group as compared to the healthy control mice. Furthermore, ACEA + PMSF alone and in combination with VPA significantly increased neurogenesis compared to the PILO control group. In contrast, VPA 10-day treatment had no impact on the level of neurons in comparison to the PILO control group. The combination of ACEA, PMSF and VPA considerably stimulated the process of creating new cells, particularly neurons, while chronic administration of VPA itself had no influence on neurogenesis in the mouse pilocarpine model of epilepsy. The obtained results enabled an in vivo evaluation of neurogenesis after treatment with antiepileptic drugs in an experimental model of epilepsy. Full article
(This article belongs to the Special Issue Cannabinoid Signaling in Nervous System)
Figures

Open AccessArticle 188Re-Liposome Can Induce Mitochondrial Autophagy and Reverse Drug Resistance for Ovarian Cancer: From Bench Evidence to Preliminary Clinical Proof-of-Concept
Int. J. Mol. Sci. 2017, 18(5), 903; doi:10.3390/ijms18050903
Received: 6 March 2017 / Revised: 17 April 2017 / Accepted: 20 April 2017 / Published: 25 April 2017
PDF Full-text (4679 KB) | HTML Full-text | XML Full-text
Abstract
Despite standard treatment, about 70% of ovarian cancer will recur. Cancer stem cells (CSCs) have been implicated in the drug-resistance mechanism. Several drug resistance mechanisms have been proposed, and among these, autophagy plays a crucial role for the maintenance and tumorigenicity of CSCs.
[...] Read more.
Despite standard treatment, about 70% of ovarian cancer will recur. Cancer stem cells (CSCs) have been implicated in the drug-resistance mechanism. Several drug resistance mechanisms have been proposed, and among these, autophagy plays a crucial role for the maintenance and tumorigenicity of CSCs. Compared to their differentiated counterparts, CSCs have been demonstrated to display a significantly higher level of autophagy flux. Moreover, mitophagy, a specific type of autophagy that selectively degrades excessive or damaged mitochondria, is shown to contribute to cancer progression and recurrence in several types of tumors. Nanomedicine has been shown to tackle the CSCs problem by overcoming drug resistance. In this work, we developed a nanomedicine, 188Re-liposome, which was demonstrated to target autophagy and mitophagy in the tumor microenvironment. Of note, the inhibition of autophagy and mitophagy could lead to significant tumor inhibition in two xenograft animal models. Lastly, we presented two cases of recurrent ovarian cancer, both in drug resistance status that received a level I dose from a phase I clinical trial. Both cases developing drug resistance showed drug sensitivity to 188Re-liposome. These results suggest that inhibition of autophagy and mitophagy by a nanomedicine may be a novel strategy to overcome drug resistance in ovarian cancer. Full article
(This article belongs to the Special Issue Gynecologic Oncology: From Molecular Mechanisms to Targeted Therapies)
Figures

Open AccessArticle Real-World Experiences with the Combination Treatment of Ledipasvir plus Sofosbuvir for 12 Weeks in HCV Genotype 1-Infected Japanese Patients: Achievement of a Sustained Virological Response in Previous Users of Peginterferon plus Ribavirin with HCV NS3/4A Inhibitors
Int. J. Mol. Sci. 2017, 18(5), 906; doi:10.3390/ijms18050906
Received: 4 April 2017 / Revised: 19 April 2017 / Accepted: 21 April 2017 / Published: 25 April 2017
Cited by 2 | PDF Full-text (525 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this study was to characterize the treatment response and serious adverse events of ledipasvir plus sofosbuvir therapies in Japanese patients infected with hepatitis C virus (HCV) genotype 1 (GT1). This retrospective study analyzed 240 Japanese HCV GT1 patients treated for
[...] Read more.
The aim of this study was to characterize the treatment response and serious adverse events of ledipasvir plus sofosbuvir therapies in Japanese patients infected with hepatitis C virus (HCV) genotype 1 (GT1). This retrospective study analyzed 240 Japanese HCV GT1 patients treated for 12 weeks with 90 mg of ledipasvir plus 400 mg of sofosbuvir daily. Sustained virological response at 12 weeks post-treatment (SVR12) was achieved in 236 of 240 (98.3%) patients. Among treatment-naïve patients, SVR12 was achieved in 136 of 138 (98.6%) patients, and among treatment-experienced patients, SVR12 was achieved in 100 of 102 (98.0%) patients. In patients previously treated with peginterferon plus ribavirin with various HCV NS3/4A inhibitors, 100% SVR rates (25/25) were achieved. Two relapsers had HCV NS5A resistance-associated variants (RAVs), but no HCV NS5B-S282 was observed after they relapsed. We experienced two patients with cardiac events during treatment. In conclusion, combination of ledipasvir plus sofosbuvir for 12 weeks is a potential therapy for HCV GT1 patients. Caution is needed for HCV NS5A RAVs, which were selected by HCV NS5A inhibitors and cardiac adverse events. Full article
(This article belongs to the Special Issue Hepatitis Virus Infection and Research)
Figures

Figure 1a

Open AccessArticle miR-103 Promotes Proliferation and Metastasis by Targeting KLF4 in Gastric Cancer
Int. J. Mol. Sci. 2017, 18(5), 910; doi:10.3390/ijms18050910
Received: 7 April 2017 / Revised: 19 April 2017 / Accepted: 23 April 2017 / Published: 26 April 2017
Cited by 1 | PDF Full-text (2888 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs (miRNAs) play important roles in the cancer development and progression; overexpression of miR-103 has been identified in various tumors. However, its biological function and regulatory mechanism involved in modulation of human gastric cancer (GC) remain largely unknown. This study aimed to confirm
[...] Read more.
MicroRNAs (miRNAs) play important roles in the cancer development and progression; overexpression of miR-103 has been identified in various tumors. However, its biological function and regulatory mechanism involved in modulation of human gastric cancer (GC) remain largely unknown. This study aimed to confirm clinical significance of miR-103 and investigate its biological role and underlying mechanism in GC. Real-time quantitative PCR (qRT-PCR) revealed miR-103 was highly expressed in GC tissues and cell lines. miR-103 expression was correlated closely with tumor size, Lauren’s classification, and lymph node metastasis. Importantly, Kaplan-Meier analysis revealed that high expression of miR-103 was significantly associated with poor overall survival and disease-free survival of GC patients. Downregulation of miR-103 by transfecting with miR-103 inhibitor significantly suppressed cell proliferation, induced apoptosis, inhibited migration and invasion in vitro and in vivo. Furthermore, miRNA target databases and luciferase reporter assay confirmed that Krüppel-like Factor-4 (KLF4) was a direct target of miR-103 in GC, and there was a significant inverse correlation between miR-103 and KLF4 expression in GC tissues. Moreover, KLF4 downregulation could rescue miR-103’s oncogenic effect on GC cell proliferation, apoptosis, migration, and invasion. Therefore, these results suggested that miR-103 overexpression could contribute to tumor progression by suppressing KLF4, and it might serve as a promising candidate for the prognosis of GC patients. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Figure 1

Open AccessArticle Exploring the Behavioral and Metabolic Phenotype Generated by Re-Introduction of the Ghrelin Receptor in the Ventral Tegmental Area
Int. J. Mol. Sci. 2017, 18(5), 914; doi:10.3390/ijms18050914
Received: 22 February 2017 / Revised: 1 April 2017 / Accepted: 20 April 2017 / Published: 26 April 2017
PDF Full-text (3462 KB) | HTML Full-text | XML Full-text
Abstract
Ghrelin receptor (Ghr-R) signaling in neurons of the ventral tegmental area (VTA) can modulate dopaminergic function and the reward-related effects of both palatable foods and drugs of abuse. In this study, we re-introduced the Ghr-R in VTA neurons in Ghr-R knockout mice (Ghr-R
[...] Read more.
Ghrelin receptor (Ghr-R) signaling in neurons of the ventral tegmental area (VTA) can modulate dopaminergic function and the reward-related effects of both palatable foods and drugs of abuse. In this study, we re-introduced the Ghr-R in VTA neurons in Ghr-R knockout mice (Ghr-RVTA mice) to specifically study the importance of the constitutively active Ghr-R for VTA neuronal signaling. Our results showed that re-introduction of the Ghr-R in the VTA had no impact on body weight or food intake under basal conditions. However, during novel environment stress Ghr-RVTA mice showed increased food intake and energy expenditure compared to Ghr-R knockout mice, demonstrating the significance of Ghr-R signaling in the response to stress. Ghr-RVTA mice also showed increased cocaine-induced locomotor activity compared to Ghr-R knockout mice, highlighting the importance of ghrelin signaling for the reward-related effects of activation of VTA neurons. Overall, our data suggest that re-introduction of the Ghr-R in the mesolimbic reward system of Ghr-R knockout mice increases the level of activation induced by both cocaine and novelty stress. Full article
(This article belongs to the Special Issue Neurobiological Perspectives on Ghrelin)
Figures

Open AccessArticle Antiplatelet Activity of a Newly Synthesized Novel Ruthenium (II): A Potential Role for Akt/JNK Signaling
Int. J. Mol. Sci. 2017, 18(5), 916; doi:10.3390/ijms18050916
Received: 13 March 2017 / Revised: 4 April 2017 / Accepted: 18 April 2017 / Published: 27 April 2017
PDF Full-text (2350 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In oncotherapy, ruthenium complexes are considered as potential alternatives for platinum compounds, and have been proved as promising anticancer drugs with high efficacy and lesser side effects. Platelet activation plays a major role in cancer metastasis and progression. Hence, this study explored the
[...] Read more.
In oncotherapy, ruthenium complexes are considered as potential alternatives for platinum compounds, and have been proved as promising anticancer drugs with high efficacy and lesser side effects. Platelet activation plays a major role in cancer metastasis and progression. Hence, this study explored the effect of a newly synthesized ruthenium complex, [Ru(η6-cymene)(L)Cl]BF4(TQ5), where L = 4-phenyl-2-pyridin-2-yl-quinazoline), on human platelet activation. TQ5 (3–5 µM) inhibited concentration-dependent collagen-induced platelet aggregation in washed human platelets. However, this compound only inhibited platelet aggregation at a maximum concentration of 500 and 100 µM against thrombin and 9,11-dideoxy-11α, 9α-epoxymethanoprostaglandin (U46619)-induced stimulation, respectively. TQ5 inhibited collagen-induced ATP release and calcium mobilization ([Ca2+]i), without inducing cell cytotoxicity. In addition, neither SQ22536, an adenylate cyclase inhibitor, nor 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor, significantly reversed the TQ5-mediated inhibition of platelet aggregation. TQ5 inhibited the collagen-induced phosphorylation of protein kinase B (Akt) and c-Jun N-terminal kinase (JNK), but did not effectively inhibit extracellular signal-regulated kinase 1/2 (ERK1/2) and p38-mitogen-activated protein kinase (p38-MAPK) in human platelets. Additionally, TQ5 significantly prolonged the closure time in whole blood and increased the occlusion time of thrombotic platelet plug formation in mice. This study demonstrates, for the first time, that a newly synthesized ruthenium complex, TQ5, exhibits potent antiplatelet activity by hindering ATP release and [Ca2+]i, and by decreasing the activation of Akt/JNK signals. Together, these results suggest that TQ5 could be developed as a therapeutic agent that helps prevent or treat thromboembolic disorders, since it is found to be potently more effective than a well-established antithrombotic aspirin. Full article
(This article belongs to the Special Issue Recent Advances in Metal Based Drugs)
Figures

Figure 1

Open AccessArticle Sulfiredoxin May Promote Cervical Cancer Metastasis via Wnt/β-Catenin Signaling Pathway
Int. J. Mol. Sci. 2017, 18(5), 917; doi:10.3390/ijms18050917
Received: 19 March 2017 / Revised: 17 April 2017 / Accepted: 22 April 2017 / Published: 27 April 2017
Cited by 1 | PDF Full-text (6896 KB) | HTML Full-text | XML Full-text
Abstract
The abnormal elevation of sulfiredoxin (Srx/SRXN1)—an antioxidant enzyme whose main function is to protect against oxidative stress—has been shown to be closely correlated with the progression of several types of cancer, including human cervical cancer. However, the molecular mechanism by which Srx promotes
[...] Read more.
The abnormal elevation of sulfiredoxin (Srx/SRXN1)—an antioxidant enzyme whose main function is to protect against oxidative stress—has been shown to be closely correlated with the progression of several types of cancer, including human cervical cancer. However, the molecular mechanism by which Srx promotes tumor progression, especially cancer metastasis in cervical cancer, has not been elucidated. Here, we show that Srx expression gradually increases during the progression of human cervical cancer and its expression level is closely correlated with lymph node metastasis. Our study also reveals a significant positive correlation between the expression of Srx and β-catenin in cervical cancer tissues. Loss-of-function studies demonstrate that Srx knockdown using a lentiviral vector-mediated specific shRNA decreases the migration and invasion capacity in HeLa (human papilloma virus 18 type cervical cancer cell line) and SiHa SiHa (cervical squamous cancer cell line). Notably, the exact opposite effects were observed in gain-of-function experiments in C-33A cells. Mechanistically, downregulation or upregulation of Srx leads to an altered expression of proteins associated with the Wnt/β-catenin signaling pathway. Furthermore, blockage of the Wnt/β-catenin signaling pathway contributed to attenuated Srx expression and resulted in significant inhibition of cell migration and invasion in cervical cancer cell lines. Combined, Srx might be an oncoprotein in cervical cancer, playing critical roles in activating the Wnt/β-catenin signaling pathway; it may therefore be a therapeutic target for cervical cancer. Full article
(This article belongs to the Special Issue Chemical and Molecular Approach to Tumor Metastases)
Figures

Figure 1

Open AccessArticle Thymoquinone Defeats Diabetes-Induced Testicular Damage in Rats Targeting Antioxidant, Inflammatory and Aromatase Expression
Int. J. Mol. Sci. 2017, 18(5), 919; doi:10.3390/ijms18050919
Received: 9 March 2017 / Revised: 14 April 2017 / Accepted: 21 April 2017 / Published: 27 April 2017
Cited by 1 | PDF Full-text (7771 KB) | HTML Full-text | XML Full-text
Abstract
Antioxidants have valuable effects on the process of spermatogenesis, particularly with diabetes mellitus (DM). Therefore, the present study investigated the impact and the intracellular mechanisms by which thymoquinone (TQ) works against diabetes-induced testicular deteriorations in rats. Wistar male rats (n = 60)
[...] Read more.
Antioxidants have valuable effects on the process of spermatogenesis, particularly with diabetes mellitus (DM). Therefore, the present study investigated the impact and the intracellular mechanisms by which thymoquinone (TQ) works against diabetes-induced testicular deteriorations in rats. Wistar male rats (n = 60) were randomly allocated into four groups; Control, Diabetic (streptozotocin (STZ)-treated rats where diabetes was induced by intraperitoneal injection of STZ, 65 mg/kg), Diabetic + TQ (diabetic rats treated with TQ (50 mg/kg) orally once daily), and TQ (non-diabetic rats treated with TQ) for 12 weeks. Results revealed that TQ significantly improved the sperm parameters with a reduction in nitric oxide (NO) and malondialdehyde (MDA) levels in testicular tissue. Also, it increased testicular reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity. Interestingly, TQ induced downregulation of testicular inducible nitric oxide synthase (iNOS) and nuclear factor kappa-B (NF-κB) and significantly upregulated the aromatase protein expression levels in testicles in comparison with the diabetic rats. In conclusion, TQ treatment exerted a protective effect against reproductive dysfunction induced by diabetes not only through its powerful antioxidant and hypoglycemic effects but also through its downregulation of testicular iNOS and NF-κB along with upregulation of aromatase expression levels in diabetic rats. Full article
Figures

Figure 1

Open AccessArticle YKL-40-Induced Inhibition of miR-590-3p Promotes Interleukin-18 Expression and Angiogenesis of Endothelial Progenitor Cells
Int. J. Mol. Sci. 2017, 18(5), 920; doi:10.3390/ijms18050920
Received: 5 March 2017 / Revised: 19 April 2017 / Accepted: 21 April 2017 / Published: 27 April 2017
PDF Full-text (4666 KB) | HTML Full-text | XML Full-text
Abstract
YKL-40, also known as human cartilage glycoprotein-39 or chitinase-3-like-1, is a pro-inflammatory protein that is highly expressed in rheumatoid arthritis (RA) patients. Angiogenesis is a critical step in the pathogenesis of RA, promoting the infiltration of inflammatory cells into joints and providing oxygen
[...] Read more.
YKL-40, also known as human cartilage glycoprotein-39 or chitinase-3-like-1, is a pro-inflammatory protein that is highly expressed in rheumatoid arthritis (RA) patients. Angiogenesis is a critical step in the pathogenesis of RA, promoting the infiltration of inflammatory cells into joints and providing oxygen and nutrients to RA pannus. In this study, we examined the effects of YKL-40 in the production of the pro-inflammatory cytokine interleukin-18 (IL-18), and the stimulation of angiogenesis and accumulation of osteoblasts. We observed that YKL-40 induces IL-18 production in osteoblasts and thereby stimulates angiogenesis of endothelial progenitor cells (EPCs). We found that this process occurs through the suppression of miR-590-3p via the focal adhesion kinase (FAK)/PI3K/Akt signaling pathway. YKL-40 inhibition reduced angiogenesis in in vivo models of angiogenesis: the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models. We report that YKL-40 stimulates IL-18 expression in osteoblasts and facilitates EPC angiogenesis. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Figure 1

Open AccessArticle Chemical Composition and Biological Activities of Mono- and Heterofloral Bee Pollen of Different Geographical Origins
Int. J. Mol. Sci. 2017, 18(5), 921; doi:10.3390/ijms18050921
Received: 27 February 2017 / Revised: 10 April 2017 / Accepted: 24 April 2017 / Published: 27 April 2017
PDF Full-text (720 KB) | HTML Full-text | XML Full-text
Abstract
Recent research shows variations in pollen chemical constituents and, consequently, in their therapeutic properties. Mono and multifloral bee pollen extracts were investigated for antioxidant and enzyme inhibitory activity properties, phenolic compounds and fatty acid composition. Generally, Eucalyptus spp. and multifloral extracts exhibited potent
[...] Read more.
Recent research shows variations in pollen chemical constituents and, consequently, in their therapeutic properties. Mono and multifloral bee pollen extracts were investigated for antioxidant and enzyme inhibitory activity properties, phenolic compounds and fatty acid composition. Generally, Eucalyptus spp. and multifloral extracts exhibited potent inhibitory activity against α-amylase, acetylcholinesterase, tyrosinase, lipoxygenase, lipase and hyaluronidase. On the other hand, Miconia spp. demonstrated higher antihemolytic activity. Cocos nucifera and Miconia spp. extracts exhibited important antioxidant properties in the different assays (ABTS, DPPH, β-carotene/linoleic acid and reducing power). Moreover, these extracts had greater amounts of total phenols and flavonoids in comparison to others. The increase in antioxidant activity (decrease in EC50 values) was accompanied by an increase in the amount of total phenols in the extracts. The pollen extracts contained linoleic acid and α-linolenic acid as major fatty acids, followed by palmitic acid, and oleic acid. In this study, differences were observed in both chemical constituents and biological activities of the samples related to the geographical and botanical origin of bee pollen. Full article
(This article belongs to the Special Issue Nutraceuticals in Human Health and Disease)
Figures

Figure 1

Open AccessArticle Transcriptomic Analysis of Calcium Remodeling in Colorectal Cancer
Int. J. Mol. Sci. 2017, 18(5), 922; doi:10.3390/ijms18050922
Received: 8 March 2017 / Revised: 6 April 2017 / Accepted: 13 April 2017 / Published: 27 April 2017
PDF Full-text (4229 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Colorectal cancer (CRC) cells undergo the remodeling of intracellular Ca2+ homeostasis, which contributes to cancer hallmarks such as enhanced proliferation, invasion and survival. Ca2+ remodeling includes critical changes in store-operated Ca2+ entry (SOCE) and Ca2+ store content. Some changes
[...] Read more.
Colorectal cancer (CRC) cells undergo the remodeling of intracellular Ca2+ homeostasis, which contributes to cancer hallmarks such as enhanced proliferation, invasion and survival. Ca2+ remodeling includes critical changes in store-operated Ca2+ entry (SOCE) and Ca2+ store content. Some changes have been investigated at the molecular level. However, since nearly 100 genes are involved in intracellular Ca2+ transport, a comprehensive view of Ca2+ remodeling in CRC is lacking. We have used Next Generation Sequencing (NGS) to investigate differences in expression of 77 selected gene transcripts involved in intracellular Ca2+ transport in CRC. To this end, mRNA from normal human colonic NCM460 cells and human colon cancer HT29 cells was isolated and used as a template for transcriptomic sequencing and expression analysis using Ion Torrent technology. After data transformation and filtering, exploratory analysis revealed that both cell types were well segregated. In addition, differential gene expression using R and bioconductor packages show significant differences in expression of selected voltage-operated Ca2+ channels and store-operated Ca2+ entry players, transient receptor potential (TRP) channels, Ca2+ release channels, Ca2+ pumps, Na+/Ca2+ exchanger isoforms and genes involved in mitochondrial Ca2+ transport. These data provide the first comprehensive transcriptomic analysis of Ca2+ remodeling in CRC. Full article
Figures

Open AccessArticle Genome-Wide Analyses of MicroRNA Profiling in Interleukin-27 Treated Monocyte-Derived Human Dendritic Cells Using Deep Sequencing: A Pilot Study
Int. J. Mol. Sci. 2017, 18(5), 925; doi:10.3390/ijms18050925
Received: 25 January 2017 / Revised: 20 April 2017 / Accepted: 25 April 2017 / Published: 28 April 2017
PDF Full-text (1146 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
MicroRNAs (miRNAs) regulate gene expression and thereby influence cell fate and function. Recent studies suggest that an abundant class of miRNAs play important roles in immune cells, such as T cells, natural killer (NK) cells, B cells, and dendritic cells (DCs). Interleukin (IL)-27
[...] Read more.
MicroRNAs (miRNAs) regulate gene expression and thereby influence cell fate and function. Recent studies suggest that an abundant class of miRNAs play important roles in immune cells, such as T cells, natural killer (NK) cells, B cells, and dendritic cells (DCs). Interleukin (IL)-27 is a member of the IL-12 family of cytokines with broad anti-viral effects. It is a potent inhibitor of HIV-1 infection in CD4+ T cells and macrophages, as well as monocyte-derived immature dendritic cells (iDCs). This pilot study compared miRNA profiles between iDCs and IL-27-treated iDCs (27DCs) using deep sequencing methods and identified 46 known miRNAs that were significantly differentially expressed in 27DCs: 36 were upregulated and 10 downregulated by IL-27. Many of the potential target genes of these miRNAs are involved in IL-27 associated pathways, such as JAK/STAT, MAPKs, and PI3K and several were also previously reported to be involved in the regulation of human DC function. This study found that these miRNAs also potentially target several viral genomes and therefore may have antiviral effects. Four of these differential miRNAs (miR-99a-5p, miR-222-3p, miR-138-5p, and miR-125b-5p) were validated using quantitative reverse transcription PCR (RT-qPCR). Twenty-two novel miRNAs were discovered from deep sequencing and confirmed using RT-qPCR. This study furthers the understanding of the role of IL-27 in immunity and lays a foundation for future characterization of the role of specific miRNAs in DCs. Full article
(This article belongs to the Special Issue Transcriptome Profiling in Human Diseases)
Figures

Open AccessArticle Estrogen Modulates Specific Life and Death Signals Induced by LH and hCG in Human Primary Granulosa Cells In Vitro
Int. J. Mol. Sci. 2017, 18(5), 926; doi:10.3390/ijms18050926
Received: 28 February 2017 / Revised: 31 March 2017 / Accepted: 25 April 2017 / Published: 28 April 2017
Cited by 2 | PDF Full-text (2122 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) are glycoprotein hormones used for assisted reproduction acting on the same receptor (LHCGR) and mediating different intracellular signaling. We evaluated the pro- and anti-apoptotic effect of 100 pM LH or hCG, in the presence or
[...] Read more.
Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) are glycoprotein hormones used for assisted reproduction acting on the same receptor (LHCGR) and mediating different intracellular signaling. We evaluated the pro- and anti-apoptotic effect of 100 pM LH or hCG, in the presence or in the absence of 200 pg/mL 17β-estradiol, in long-term, serum-starved human primary granulosa cells (hGLC) and a transfected granulosa cell line overexpressing LHCGR (hGL5/LHCGR). To this purpose, phospho-extracellular-regulated kinase 1/2 (pERK1/2), protein kinase B (pAKT), cAMP-responsive element binding protein (pCREB) activation and procaspase 3 cleavage were evaluated over three days by Western blotting, along with the expression of target genes by real-time PCR and cell viability by colorimetric assay. We found that LH induced predominant pERK1/2 and pAKT activation STARD1, CCND2 and anti-apoptotic XIAP gene expression, while hCG mediated more potent CREB phosphorylation, expression of CYP19A1 and procaspase 3 cleavage than LH. Cell treatment by LH is accompanied by increased (serum-starved) cell viability, while hCG decreased the number of viable cells. The hCG-specific, pro-apoptotic effect was blocked by a physiological dose of 17β-estradiol, resulting in pAKT activation, lack of procaspase 3 cleavage and increased cell viability. These results confirm that relatively high levels of steroidogenic pathway activation are linked to pro-apoptotic signals in vitro, which may be counteracted by other factors, i.e., estrogens. Full article
(This article belongs to the Special Issue hCG—An Endocrine, Regulator of Gestation and Cancer)
Figures

Figure 1

Open AccessArticle Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses
Int. J. Mol. Sci. 2017, 18(5), 927; doi:10.3390/ijms18050927
Received: 14 March 2017 / Revised: 24 April 2017 / Accepted: 25 April 2017 / Published: 4 May 2017
Cited by 1 | PDF Full-text (12922 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes
[...] Read more.
Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs, including DnARF1, DnARF4, and DnARF6, were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1, DnARF4, and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale. To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment. Full article
(This article belongs to the Section Molecular Botany)
Figures

Figure 1

Open AccessArticle Molecular Ghrelin System in the Pancreatic Acinar Cells: The Role of the Polypeptide, Caerulein and Sensory Nerves
Int. J. Mol. Sci. 2017, 18(5), 929; doi:10.3390/ijms18050929
Received: 28 February 2017 / Revised: 9 April 2017 / Accepted: 19 April 2017 / Published: 2 May 2017
Cited by 2 | PDF Full-text (1941 KB) | HTML Full-text | XML Full-text
Abstract
Ghrelin (GHRL) is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Experimental studies showed that GHRL protects the stomach and pancreas against acute damage, but the effect of GHRL on pancreatic acinar cells was still undetermined. Aim: To investigate the effect
[...] Read more.
Ghrelin (GHRL) is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Experimental studies showed that GHRL protects the stomach and pancreas against acute damage, but the effect of GHRL on pancreatic acinar cells was still undetermined. Aim: To investigate the effect of GHRL and caerulein on the functional ghrelin system in pancreatic acinar cells taking into account the role of sensory nerves (SN). Methods: Experiments were carried out on isolated pancreatic acinar cells and AR42J cells. Before acinar cells isolation, GHRL was administered intraperitoneally at a dose of 50 µg/kg to rats with intact SN or with capsaicin deactivation of SN (CDSN). After isolation, pancreatic acinar cells were incubated in caerulein-free or caerulein containing solution. AR42J cells were incubated under basal conditions and stimulated with caerulein, GHRL or a combination of the above. Results: Incubation of isolated acinar cells with caerulein inhibited GHS-R and GHRL expression at the level of mRNA and protein in those cells. Either in rats with intact SN or with CDSN, administration of GHRL before isolation of acinar cells increased expression of GHRL and GHS-R in those cells and reversed the caerulein-induced reduction in expression of those parameters. Similar upregulation of GHS-R and GHRL was observed after administration of GHRL in AR42J cells. Conclusions: GHRL stimulates its own expression and expression of its receptor in isolated pancreatic acinar cells and AR42J cells on the positive feedback pathway. This mechanism seems to participate in the pancreatoprotective effect of GHRL in the course of acute pancreatitis. Full article
(This article belongs to the Special Issue Pancreatic Disorders)
Figures

Figure 1

Open AccessArticle Fasting Enhances the Contrast of Bone Metastatic Lesions in 18F-Fluciclovine-PET: Preclinical Study Using a Rat Model of Mixed Osteolytic/Osteoblastic Bone Metastases
Int. J. Mol. Sci. 2017, 18(5), 934; doi:10.3390/ijms18050934
Received: 27 March 2017 / Revised: 21 April 2017 / Accepted: 26 April 2017 / Published: 29 April 2017
Cited by 1 | PDF Full-text (19911 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
18F-fluciclovine (trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid) is an amino acid positron emission tomography (PET) tracer used for cancer staging (e.g., prostate and breast). Patients scheduled to undergo amino acid-PET are usually required to fast before PET tracer administration. However, there have
[...] Read more.
18F-fluciclovine (trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid) is an amino acid positron emission tomography (PET) tracer used for cancer staging (e.g., prostate and breast). Patients scheduled to undergo amino acid-PET are usually required to fast before PET tracer administration. However, there have been no reports addressing whether fasting improves fluciclovine-PET imaging. In this study, the authors investigated the influence of fasting on fluciclovine-PET using triple-tracer autoradiography with 14C-fluciclovine, [5,6-3H]-2-fluoro-2-deoxy-d-glucose (3H-FDG), and 99mTc-hydroxymethylene diphosphonate (99mTc-HMDP) in a rat breast cancer model of mixed osteolytic/osteoblastic bone metastases in which the animals fasted overnight. Lesion accumulation of each tracer was evaluated using the target-to-background (muscle) ratio. The mean ratios of 14C-fluciclovine in osteolytic lesions were 4.6 ± 0.8 and 2.8 ± 0.6, respectively, with and without fasting, while those for 3H-FDG were 6.9 ± 2.5 and 5.1 ± 2.0, respectively. In the peri-tumor bone formation regions (osteoblastic), where 99mTc-HMDP accumulated, the ratios of 14C-fluciclovine were 4.3 ± 1.4 and 2.4 ± 0.7, respectively, and those of 3H-FDG were 6.2 ± 3.8 and 3.3 ± 2.2, respectively, with and without fasting. These results suggest that fasting before 18F-fluciclovine-PET improves the contrast between osteolytic and osteoblastic bone metastatic lesions and background, as well as 18F-FDG-PET. Full article
(This article belongs to the Special Issue Diagnostic, Prognostic and Predictive Biomarkers in Prostate Cancer)
Figures

Open AccessArticle Nobiletin Inhibits Angiogenesis by Regulating Src/FAK/STAT3-Mediated Signaling through PXN in ER+ Breast Cancer Cells
Int. J. Mol. Sci. 2017, 18(5), 935; doi:10.3390/ijms18050935
Received: 9 March 2017 / Revised: 25 April 2017 / Accepted: 26 April 2017 / Published: 30 April 2017
Cited by 2 | PDF Full-text (23368 KB) | HTML Full-text | XML Full-text
Abstract
Tumor angiogenesis is one of the major hallmarks of tumor progression. Nobiletin is a natural flavonoid isolated from citrus peel that has anti-angiogenic activity. Steroid receptor coactivator (Src) is an intracellular tyrosine kinase so that focal adhesion kinase (FAK) binds to Src to
[...] Read more.
Tumor angiogenesis is one of the major hallmarks of tumor progression. Nobiletin is a natural flavonoid isolated from citrus peel that has anti-angiogenic activity. Steroid receptor coactivator (Src) is an intracellular tyrosine kinase so that focal adhesion kinase (FAK) binds to Src to play a role in tumor angiogenesis. Signal transducer and activator of transcription 3 (STAT3) is a marker for tumor angiogenesis which interacts with Src. Paxillin (PXN) acts as a downstream target for both FAK and STAT3. The main goal of this study was to assess inhibition of tumor angiogenesis by nobiletin in estrogen receptor positive (ER+) breast cancer cells via Src, FAK, and STAT3-mediated signaling through PXN. Treatment with nobiletin in MCF-7 and T47D breast cancer cells inhibited angiogenesis markers, based on western blotting and RT-PCR. Validation of in vitro angiogenesis in the human umbilical vein endothelial cells (HUVEC) endothelial cell line proved the anti-angiogenic activity of nobiletin. Electrophoretic mobility shift assay and the ChIP assay showed that nobiletin inhibits STAT3/DNA binding activity and STAT3 binding to a novel binding site of the PXN gene promoter. We also investigated the migration and invasive ability of nobiletin in ER+ cells. Nobiletin inhibited tumor angiogenesis by regulating Src, FAK, and STAT3 signaling through PXN in ER+ breast cancer cells. Full article
(This article belongs to the Special Issue Tumor Targeting Therapy and Selective Killing)
Figures

Figure 1

Open AccessArticle Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex
Int. J. Mol. Sci. 2017, 18(5), 936; doi:10.3390/ijms18050936
Received: 10 April 2017 / Revised: 20 April 2017 / Accepted: 23 April 2017 / Published: 29 April 2017
Cited by 1 | PDF Full-text (4074 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The integrator complex has been recently identified as a key regulator of RNA Polymerase II-mediated transcription, with many functions including the processing of small nuclear RNAs, the pause-release and elongation of polymerase during the transcription of protein coding genes, and the biogenesis of
[...] Read more.
The integrator complex has been recently identified as a key regulator of RNA Polymerase II-mediated transcription, with many functions including the processing of small nuclear RNAs, the pause-release and elongation of polymerase during the transcription of protein coding genes, and the biogenesis of enhancer derived transcripts. Moreover, some of its components also play a role in genome maintenance. Thus, it is reasonable to hypothesize that their functional impairment or altered expression can contribute to malignancies. Indeed, several studies have described the mutations or transcriptional alteration of some Integrator genes in different cancers. Here, to draw a comprehensive pan-cancer picture of the genomic and transcriptomic alterations for the members of the complex, we reanalyzed public data from The Cancer Genome Atlas. Somatic mutations affecting Integrator subunit genes and their transcriptional profiles have been investigated in about 11,000 patients and 31 tumor types. A general heterogeneity in the mutation frequencies was observed, mostly depending on tumor type. Despite the fact that we could not establish them as cancer drivers, INTS7 and INTS8 genes were highly mutated in specific cancers. A transcriptome analysis of paired (normal and tumor) samples revealed that the transcription of INTS7, INTS8, and INTS13 is significantly altered in several cancers. Experimental validation performed on primary tumors confirmed these findings. Full article
(This article belongs to the Special Issue Transcriptome Profiling in Human Diseases)
Figures

Open AccessArticle Applying Unconventional Secretion in Ustilago maydis for the Export of Functional Nanobodies
Int. J. Mol. Sci. 2017, 18(5), 937; doi:10.3390/ijms18050937
Received: 28 February 2017 / Revised: 21 April 2017 / Accepted: 24 April 2017 / Published: 29 April 2017
Cited by 3 | PDF Full-text (3538 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Exploiting secretory pathways for production of heterologous proteins is highly advantageous with respect to efficient downstream processing. In eukaryotic systems the vast majority of heterologous proteins for biotechnological application is exported via the canonical endoplasmic reticulum–Golgi pathway. In the endomembrane system target proteins
[...] Read more.
Exploiting secretory pathways for production of heterologous proteins is highly advantageous with respect to efficient downstream processing. In eukaryotic systems the vast majority of heterologous proteins for biotechnological application is exported via the canonical endoplasmic reticulum–Golgi pathway. In the endomembrane system target proteins are often glycosylated and may thus be modified with foreign glycan patterns. This can be destructive for their activity or cause immune reactions against therapeutic proteins. Hence, using unconventional secretion for protein expression is an attractive alternative. In the fungal model Ustilago maydis, chitinase Cts1 is secreted via an unconventional pathway connected to cell separation which can be used to co-export heterologous proteins. Here, we apply this mechanism for the production of nanobodies. First, we achieved expression and unconventional secretion of a functional nanobody directed against green fluorescent protein (Gfp). Second, we found that Cts1 binds to chitin and that this feature can be applied to generate a Gfp-trap. Thus, we demonstrated the dual use of Cts1 serving both as export vehicle and as purification tag. Finally, we established and optimized the production of a nanobody against botulinum toxin A and hence describe the first pharmaceutically relevant target exported by Cts1-mediated unconventional secretion. Full article
(This article belongs to the Special Issue Unconventional Proteins and Membranes Traffic)
Figures

Open AccessArticle Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders
Int. J. Mol. Sci. 2017, 18(5), 938; doi:10.3390/ijms18050938
Received: 19 October 2016 / Revised: 4 March 2017 / Accepted: 9 March 2017 / Published: 29 April 2017
Cited by 1 | PDF Full-text (533 KB) | HTML Full-text | XML Full-text
Abstract
In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted
[...] Read more.
In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders. Full article
Figures

Figure 1

Open AccessArticle Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Cells
Int. J. Mol. Sci. 2017, 18(5), 939; doi:10.3390/ijms18050939
Received: 1 March 2017 / Revised: 13 April 2017 / Accepted: 23 April 2017 / Published: 29 April 2017
PDF Full-text (1755 KB) | HTML Full-text | XML Full-text
Abstract
Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to
[...] Read more.
Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe3O4-nanoparticles (NPs) versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF) of 186 kHz using 32P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 μg/mL of Fe3O4-NPs. Significant dose–response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death. Full article
(This article belongs to the Special Issue Chemically-Induced DNA Damage, Mutagenesis, and Cancer)
Figures

Open AccessArticle Rutin-Enriched Extract from Coriandrum sativum L. Ameliorates Ionizing Radiation-Induced Hematopoietic Injury
Int. J. Mol. Sci. 2017, 18(5), 942; doi:10.3390/ijms18050942
Received: 16 December 2016 / Revised: 22 April 2017 / Accepted: 24 April 2017 / Published: 29 April 2017
Cited by 1 | PDF Full-text (18954 KB) | HTML Full-text | XML Full-text
Abstract
Hematopoietic injury is a major cause of mortality in radiation accidents and a primary side effect in patients undergoing radiotherapy. Ionizing radiation (IR)-induced myelosuppression is largely attributed to the injury of hematopoietic stem and progenitor cells (HSPCs). Coriander is a culinary herb with
[...] Read more.
Hematopoietic injury is a major cause of mortality in radiation accidents and a primary side effect in patients undergoing radiotherapy. Ionizing radiation (IR)-induced myelosuppression is largely attributed to the injury of hematopoietic stem and progenitor cells (HSPCs). Coriander is a culinary herb with multiple pharmacological effects and has been widely used in traditional medicine. In this study, flavonoids were identified as the main component of coriander extract with rutin being the leading compound (rutin-enriched coriander extract; RE-CE). We evaluated the radioprotective effect of RE-CE against IR-induced HSPCs injury. Results showed that RE-CE treatment markedly improved survival, ameliorated organ injuries and myelosuppression, elevated HSPCs frequency, and promoted differentiation and proliferation of HSPCs in irradiated mice. The protective role of RE-CE in hematopoietic injury is probably attributed to its anti-apoptotic and anti-DNA damage effect in irradiated HSPCs. Moreover, these changes were associated with reduced reactive oxygen species (ROS) and enhanced antioxidant enzymatic activities in irradiated HSPCs. Collectively, these findings demonstrate that RE-CE is able to ameliorate IR-induced hematopoietic injury partly by reducing IR-induced oxidative stress. Full article
Figures

Figure 1

Open AccessArticle Hypoxia Mediates Differential Response to Anti-EGFR Therapy in HNSCC Cells
Int. J. Mol. Sci. 2017, 18(5), 943; doi:10.3390/ijms18050943
Received: 22 February 2017 / Revised: 19 April 2017 / Accepted: 24 April 2017 / Published: 29 April 2017
PDF Full-text (1361 KB) | HTML Full-text | XML Full-text
Abstract
Despite advances in the head and neck squamous cell carcinoma (HNSCC) treatment modalities, drug resistance and cancer recurrence are often reported. Hypoxia signaling through hypoxia-inducible factor 1 (HIF-1) promotes angiogenesis and metastasis by inducing epithelial-mesenchymal-transition (EMT). The aim of this study was to
[...] Read more.
Despite advances in the head and neck squamous cell carcinoma (HNSCC) treatment modalities, drug resistance and cancer recurrence are often reported. Hypoxia signaling through hypoxia-inducible factor 1 (HIF-1) promotes angiogenesis and metastasis by inducing epithelial-mesenchymal-transition (EMT). The aim of this study was to evaluate the impact of hypoxia on response to therapy as well as EMT and expression of stem cell markers in HNSCC cells. Five HNSCC cell lines (UT-SCC-2, UT-SCC-14, LK0412, LK0827, and LK0923) were selected for this study. The treatment sensitivity for radiation, cisplatin, cetuximab, and dasatinib was assessed by crystal violet assay. Gene expression of EMT and cancer stem cell (CSC) markers as well as protein level of EGFR signaling molecules were analyzed by qPCR and western blotting, respectively. Unlike UT-SCC-14 and LK0827, the LK0412 cell line became significantly more sensitive to cetuximab in hypoxic conditions. This cetuximab sensitivity was efficiently reversed after suppression of HIF-1α with siRNA. Additionally, hypoxia-induced EMT and expression of stem cell markers in HNSCC cells was partially revoked by treatment with cetuximab or knockdown of HIF-1α. In summary, our study shows that hypoxia might have a positive influence on the anti-EGFR therapy effectiveness in HNSCC. However, due to heterogeneity of HNSCC lesions, targeting HIF-1α may not be sufficient to mediate such a response. Further studies identifying a trait of hypoxia-specific response to cetuximab in HNSCC are advisable. Full article
(This article belongs to the Special Issue Cancer Stem Cells)
Figures

Figure 1

Open AccessArticle CIK Cells and HDAC Inhibitors in Multiple Myeloma
Int. J. Mol. Sci. 2017, 18(5), 945; doi:10.3390/ijms18050945
Received: 8 February 2017 / Revised: 7 April 2017 / Accepted: 25 April 2017 / Published: 29 April 2017
PDF Full-text (1628 KB) | HTML Full-text | XML Full-text
Abstract
Multiple myeloma is the second most common hematological malignancy. Despite all the progress made in treating multiple myeloma, it still remains an incurable disease. Patients are left with a median survival of 4–5 years. The combined treatment of multiple myeloma with histone deacetylase
[...] Read more.
Multiple myeloma is the second most common hematological malignancy. Despite all the progress made in treating multiple myeloma, it still remains an incurable disease. Patients are left with a median survival of 4–5 years. The combined treatment of multiple myeloma with histone deacetylase inhibitors and cytokine-induced killer cells provides a promising targeted treatment option for patients. This study investigated the impact of a combined treatment compared to treatment with histone deacetylase inhibitors. The experiments revealed that a treatment with histone deacetylase (HDAC) inhibitors could reduce cell viability to 59% for KMS 18 cell line and 46% for the U-266 cell line. The combined treatment led to a decrease of cell viability to 33% for KMS 18 and 27% for the U-266 cell line, thus showing a significantly better efficacy than the single treatment. Full article
(This article belongs to the Special Issue Natural Killer T (NKT) Cells)
Figures

Figure 1a

Open AccessArticle Clinical Correlates and Prognostic Value of Plasma Galectin-3 Levels in Degenerative Aortic Stenosis: A Single-Center Prospective Study of Patients Referred for Invasive Treatment
Int. J. Mol. Sci. 2017, 18(5), 947; doi:10.3390/ijms18050947
Received: 31 January 2017 / Revised: 24 March 2017 / Accepted: 25 April 2017 / Published: 29 April 2017
Cited by 1 | PDF Full-text (745 KB) | HTML Full-text | XML Full-text
Abstract
Galectin-3 (Gal-3), a β-galactoside-binding lectin, has been implicated in myocardial fibrosis, development of left ventricular (LV) dysfunction and transition from compensated LV hypertrophy to overt heart failure (HF), being a novel prognostic marker in HF. Risk stratification is crucial for the choice of
[...] Read more.
Galectin-3 (Gal-3), a β-galactoside-binding lectin, has been implicated in myocardial fibrosis, development of left ventricular (LV) dysfunction and transition from compensated LV hypertrophy to overt heart failure (HF), being a novel prognostic marker in HF. Risk stratification is crucial for the choice of the optimal therapy in degenerative aortic stenosis (AS), affecting elderly subjects with coexistent diseases. Our aim was to assess correlates and prognostic value of circulating Gal-3 in real-world patients with degenerative AS referred for invasive treatment. Gal-3 levels were measured at admission in 80 consecutive patients with symptomatic degenerative AS (mean age: 79 ± 8 years; aortic valve area (AVA) index: 0.4 ± 0.1 cm2/m2). The therapeutic strategy was chosen following a dedicated multidisciplinary team-oriented approach, including surgical valve replacement (n = 11), transcatheter valve implantation (n = 19), balloon aortic valvuloplasty (BAV) (n = 25) and optimal medical therapy (n = 25). Besides routine echocardiographic indices, valvulo-arterial impedance (Zva), an index of global LV afterload, was computed. There were 22 deaths over a median follow-up of 523 days. Baseline Gal-3 correlated negatively with estimated glomerular filtration rate (eGFR) (r = −0.61, p < 0.001) and was unrelated to age, symptomatic status, AVA index, LV ejection fraction, LV mass index or Zva. For the study group as a whole, Gal-3 tended to predict mortality (Gal-3 >17.8 vs. Gal-3 <17.8 ng/mL; hazard ratio (HR): 2.03 (95% confidence interval, 0.88–4.69), p = 0.09), which was abolished upon adjustment for eGFR (HR: 1.70 (0.61–4.73), p = 0.3). However, in post-BAV patients multivariate-adjusted pre-procedural Gal-3 was associated with worse survival (HR: 7.41 (1.52–36.1), p = 0.01) regardless of eGFR. In conclusion, the inverse eGFR–Gal-3 relationship underlies a weak association between Gal-3 and adverse outcome in patients with degenerative AS referred for invasive therapy irrespective of type of treatment employed. In contrast, pre-procedural Gal-3 appears an independent mortality predictor in high-risk AS patients undergoing BAV. Full article
(This article belongs to the Special Issue Improvement of Cardiac Function in Heart Failure 2017)
Figures

Figure 1

Open AccessArticle Clinical Utility of the Adrenocorticotropin Stimulation Test with/without Dexamethasone Suppression for Definitive and Subtype Diagnosis of Primary Aldosteronism
Int. J. Mol. Sci. 2017, 18(5), 948; doi:10.3390/ijms18050948
Received: 23 January 2017 / Revised: 11 March 2017 / Accepted: 27 April 2017 / Published: 30 April 2017
PDF Full-text (499 KB) | HTML Full-text | XML Full-text
Abstract
The adrenocorticotropin (ACTH) stimulation test (AST) has been reported to be useful for diagnosing primary aldosteronism (PA), particularly for differentiating PA subtypes under 1-mg dexamethasone suppression (DS). The aim of our study was to clarify the effect of 1-mg DS on AST results.
[...] Read more.
The adrenocorticotropin (ACTH) stimulation test (AST) has been reported to be useful for diagnosing primary aldosteronism (PA), particularly for differentiating PA subtypes under 1-mg dexamethasone suppression (DS). The aim of our study was to clarify the effect of 1-mg DS on AST results. A retrospective cohort study was conducted using data for 48 patients (PA: 30/48). We estimated the difference in plasma aldosterone concentration (PAC) responsiveness to ACTH stimulation with single (AST alone) and combined (AST under 1-mg DS) tests within the same patient. We compared the diagnostic accuracy of these two tests for PA and the laterality of hyperaldosteronism. We found no differences in PAC responsiveness to ACTH stimulation between single and combined tests, and observed a significant positive linear relationship (30 min, R2 = 0.75, p-value < 0.01). Both tests showed the highest diagnostic accuracy for PA following 30 min of ACTH stimulation. The ability to detect the laterality of hyperaldosteronism was inconsistent and differed according to the two definitions: lateralization ratio and the absolute aldosterone levels in adrenal venous sampling. PAC responsiveness to ACTH stimulation was similar for AST with and without 1-mg DS. AST can be performed under both conditions with similar accuracy to detect PA. Full article
Figures

Figure 1a

Open AccessArticle Antiproliferative and Apoptotic Potential of Cyanidin-Based Anthocyanins on Melanoma Cells
Int. J. Mol. Sci. 2017, 18(5), 0949; doi:10.3390/ijms18050949
Received: 14 February 2017 / Revised: 12 April 2017 / Accepted: 24 April 2017 / Published: 30 April 2017
PDF Full-text (2839 KB) | HTML Full-text | XML Full-text
Abstract
Elderberries are known for their high anthocyanins content, which have been shown to possess anti-proliferative and anti-cancer effects. Anthocyanins enriched extract (AEE) was obtained from elderberries and was characterized by LC/DAD/ESI-MS analysis. Five cyanidin-based anthocyanins were identified, among which Cy-3-O-samb was
[...] Read more.
Elderberries are known for their high anthocyanins content, which have been shown to possess anti-proliferative and anti-cancer effects. Anthocyanins enriched extract (AEE) was obtained from elderberries and was characterized by LC/DAD/ESI-MS analysis. Five cyanidin-based anthocyanins were identified, among which Cy-3-O-samb was the major compound (51%). The total anthocyanins content of AEE was 495 mg Cy-3-O-samb/100 g FW. AEE inhibited proliferation of metastatic B16-F10 murine melanoma cells, in a concentration-dependent manner, with an IC50 of 264.3 μg/mL. LDH (lactate dehydrogenase), as a marker of membrane integrity, increased 74% in B16-F10 cells treated with 250 μg/mL AEE, compared to control. It was observed that apoptosis is the mechanism of melanoma cell death after AEE treatment, confirmed morphologically by acridine orange/ethidium bromide double staining and TUNEL analysis. These results indicate that elderberry-derived anthocyanins might be utilized in future applications as topical adjuvant in skin cancer therapy. Full article
(This article belongs to the Special Issue Anthocyanins)
Figures

Open AccessArticle Expression of Root Genes in Arabidopsis Seedlings Grown by Standard and Improved Growing Methods
Int. J. Mol. Sci. 2017, 18(5), 951; doi:10.3390/ijms18050951
Received: 31 March 2017 / Revised: 25 April 2017 / Accepted: 27 April 2017 / Published: 3 May 2017
PDF Full-text (3135 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Roots of Arabidopsis thaliana seedlings grown in the laboratory using the traditional plant-growing culture system (TPG) were covered to maintain them in darkness. This new method is based on a dark chamber and is named the improved plant-growing method (IPG). We measured the
[...] Read more.
Roots of Arabidopsis thaliana seedlings grown in the laboratory using the traditional plant-growing culture system (TPG) were covered to maintain them in darkness. This new method is based on a dark chamber and is named the improved plant-growing method (IPG). We measured the light conditions in dark chambers, and found that the highest light intensity was dramatically reduced deeper in the dark chamber. In the bottom and side parts of dark chambers, roots were almost completely shaded. Using the high-throughput RNA sequencing method on the whole RNA extraction from roots, we compared the global gene expression levels in roots of seedlings from these two conditions and identified 141 differently expressed genes (DEGs) between them. According to the KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment, the flavone and flavonol biosynthesis and flavonoid biosynthesis pathways were most affected among all annotated pathways. Surprisingly, no genes of known plant photoreceptors were identified as DEGs by this method. Considering that the light intensity was decreased in the IPG system, we collected four sections (1.5 cm for each) of Arabidopsis roots grown in TPG and IPG conditions, and the spatial-related differential gene expression levels of plant photoreceptors and polar auxin transporters, including CRY1, CRY2, PHYA, PHYB, PHOT1, PHOT2, and UVR8 were analyzed by qRT-PCR. Using these results, we generated a map of the spatial-related expression patterns of these genes under IPG and TPG conditions. The expression levels of light-related genes in roots is highly sensitive to illumination and it provides a background reference for selecting an improved culture method for laboratory-maintained Arabidopsis seedlings. Full article
(This article belongs to the Special Issue Selected Papers from the 6th National Plant Protein Research Congress)
Figures

Figure 1

Open AccessArticle Inhibitory Effects of Dimethyllirioresinol, Epimagnolin A, Eudesmin, Fargesin, and Magnolin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes
Int. J. Mol. Sci. 2017, 18(5), 952; doi:10.3390/ijms18050952
Received: 21 March 2017 / Revised: 25 April 2017 / Accepted: 27 April 2017 / Published: 1 May 2017
PDF Full-text (3886 KB) | HTML Full-text | XML Full-text
Abstract
Magnolin, epimagnolin A, dimethyllirioresinol, eudesmin, and fargesin are pharmacologically active tetrahydrofurofuranoid lignans found in Flos Magnoliae. The inhibitory potentials of dimethyllirioresinol, epimagnolin A, eudesmin, fargesin, and magnolin on eight major human cytochrome P450 (CYP) enzyme activities in human liver microsomes were evaluated using
[...] Read more.
Magnolin, epimagnolin A, dimethyllirioresinol, eudesmin, and fargesin are pharmacologically active tetrahydrofurofuranoid lignans found in Flos Magnoliae. The inhibitory potentials of dimethyllirioresinol, epimagnolin A, eudesmin, fargesin, and magnolin on eight major human cytochrome P450 (CYP) enzyme activities in human liver microsomes were evaluated using liquid chromatography–tandem mass spectrometry to determine the inhibition mechanisms and inhibition potency. Fargesin inhibited CYP2C9-catalyzed diclofenac 4’-hydroxylation with a Ki value of 16.3 μM, and it exhibited mechanism-based inhibition of CYP2C19-catalyzed [S]-mephenytoin 4’-hydroxylation (Ki, 3.7 μM; kinact, 0.102 min−1), CYP2C8-catalyzed amodiaquine N-deethylation (Ki, 10.7 μM; kinact, 0.082 min−1), and CYP3A4-catalyzed midazolam 1’-hydroxylation (Ki, 23.0 μM; kinact, 0.050 min−1) in human liver microsomes. Fargesin negligibly inhibited CYP1A2-catalyzed phenacetin O-deethylation, CYP2A6-catalyzed coumarin 7-hydroxylation, CYP2B6-catalyzed bupropion hydroxylation, and CYP2D6-catalyzed bufuralol 1’-hydroxylation at 100 μM in human liver microsomes. Dimethyllirioresinol weakly inhibited CYP2C19 and CYP2C8 with IC50 values of 55.1 and 85.0 μM, respectively, without inhibition of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 activities at 100 μM. Epimagnolin A, eudesmin, and magnolin showed no the reversible and time-dependent inhibition of eight major CYP activities at 100 μM in human liver microsomes. These in vitro results suggest that it is necessary to investigate the potentials of in vivo fargesin-drug interaction with CYP2C8, CYP2C9, CYP2C19, and CYP3A4 substrates. Full article
Figures

Figure 1

Open AccessArticle Chemical Profile and Antioxidant, Anti-Inflammatory, Antimutagenic and Antimicrobial Activities of Geopropolis from the Stingless Bee Melipona orbignyi
Int. J. Mol. Sci. 2017, 18(5), 953; doi:10.3390/ijms18050953
Received: 4 April 2017 / Accepted: 27 April 2017 / Published: 3 May 2017
Cited by 1 | PDF Full-text (2230 KB) | HTML Full-text | XML Full-text
Abstract
Geopropolis is a resin mixed with mud, produced only by stingless bees. Despite being popularly known for its medicinal properties, few scientific studies have proven its biological activities. In this context, the objective of this study was to determine the chemical composition and
[...] Read more.
Geopropolis is a resin mixed with mud, produced only by stingless bees. Despite being popularly known for its medicinal properties, few scientific studies have proven its biological activities. In this context, the objective of this study was to determine the chemical composition and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of the Melipona orbignyi geopropolis. The hydroalcoholic extract of geopropolis (HEGP) was prepared and its chemical composition determined by high performance liquid chromatography coupled to diode array detector and mass spectrometry (HPLC-DAD-MS). The antioxidant activity was determined by the capture of free radicals and inhibition of lipid peroxidation in human erythrocytes. The anti-inflammatory activity was evaluated by the inhibition of the hyaluronidase enzyme and the antimutagenic action was investigated in Saccharomyces cerevisiae colonies. The antimicrobial activities were determined against bacteria and yeasts, isolated from reference strains and hospital origin. The chemical composition of HEGP included flavonoids, derivatives of glycosylated phenolic acids and terpenoids. HEGP showed high antioxidant activity, it inhibited the activity of the inflammatory enzyme hyaluronidase and reduced the mutagenic effects in S. cerevisiae. In relation to the antimicrobial activity, it promoted the death of all microorganisms evaluated. In conclusion, this study reveals for the first time the chemical composition of the HEGP of M. orbignyi and demonstrates its pharmacological properties. Full article
(This article belongs to the Special Issue Nutraceuticals in Human Health and Disease)
Figures

Figure 1

Open AccessArticle Tubacin, an HDAC6 Selective Inhibitor, Reduces the Replication of the Japanese Encephalitis Virus via the Decrease of Viral RNA Synthesis
Int. J. Mol. Sci. 2017, 18(5), 954; doi:10.3390/ijms18050954
Received: 31 March 2017 / Revised: 26 April 2017 / Accepted: 28 April 2017 / Published: 1 May 2017
Cited by 2 | PDF Full-text (4398 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Japanese encephalitis virus (JEV), a neurotropic flavivirus, annually causes over 30,000 Japanese Encephalitis (JE) cases in East and Southeast Asia. Histone deacetylases (HDACs) modulate lysine acetylation of histones and non-histone proteins, regulating many processes including inflammation and antiviral immune response. This study investigated
[...] Read more.
Japanese encephalitis virus (JEV), a neurotropic flavivirus, annually causes over 30,000 Japanese Encephalitis (JE) cases in East and Southeast Asia. Histone deacetylases (HDACs) modulate lysine acetylation of histones and non-histone proteins, regulating many processes including inflammation and antiviral immune response. This study investigated antiviral activity of pan- and selective-HDAC inhibitors as host-targeting agents against JEV. Among HDAC inhibitors, selective HDAC6 inhibitors (tubastatin-A (TBSA) and tubacin) concentration-dependently inhibited JEV-induced cytopathic effect and apoptosis, as well as reduced virus yield in human cerebellar medulloblastoma cells. The 50% inhibitory concentration (IC50) values of virus yield was 0.26 μM for tubacin and 1.75 μM for TBSA, respectively. Tubacin (IC50 of 1.52 μM), but not TBSA, meaningfully blocked the production of intracellular infectious virus particles. In time-of-addition assays, the greatest potency of antiviral activity was observed in the mode of pre-treatment with tubacin (IC50 of 1.89 μM) compared to simultaneous (IC50 of 4.88 μM) and post-treatment (IC50 of 2.05 μM) modes. Interestingly, tubacin induced the hyperacetylation of a HDAC6 substrate Hsp90 and reduced the interaction of Hsp90 with JEV NS5 protein. Novobiocin, an Hsp90 inhibitor, diminished the NS5 protein amount and virus replication in JEV-infected cells. Meantime, tubacin suppressed the NS5 expression and antisense RNA genome synthesis in infected cells. Tubacin-induced Hsp90 hyperacetylation was suggested to influence the NS5 activity in JEV replication. Therefore, tubacin had a high potential of a host-targeting agent against JEV, exhibiting preventive and therapeutic activities against JEV infection. Full article
Figures

Figure 1

Open AccessArticle Induced Pluripotent Stem Cells Derived from a CLN5 Patient Manifest Phenotypic Characteristics of Neuronal Ceroid Lipofuscinoses
Int. J. Mol. Sci. 2017, 18(5), 955; doi:10.3390/ijms18050955
Received: 17 February 2017 / Revised: 12 April 2017 / Accepted: 26 April 2017 / Published: 1 May 2017
Cited by 2 | PDF Full-text (3804 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive progressive encephalopathies caused by mutations in at least 14 different genes. Despite extensive studies performed in different NCL animal models, the molecular mechanisms underlying neurodegeneration in NCLs remain poorly understood. To model NCL in human cells,
[...] Read more.
Neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive progressive encephalopathies caused by mutations in at least 14 different genes. Despite extensive studies performed in different NCL animal models, the molecular mechanisms underlying neurodegeneration in NCLs remain poorly understood. To model NCL in human cells, we generated induced pluripotent stem cells (iPSCs) by reprogramming skin fibroblasts from a patient with CLN5 (ceroid lipofuscinosis, neuronal, 5) disease, the late infantile variant form of NCL. These CLN5 patient-derived iPSCs (CLN5Y392X iPSCs) harbouring the most common CLN5 mutation, c.1175_1176delAT (p.Tyr392X), were further differentiated into neural lineage cells, the most affected cell type in NCLs. The CLN5Y392X iPSC-derived neural lineage cells showed accumulation of autofluorescent storage material and subunit C of the mitochondrial ATP synthase, both representing the hallmarks of many forms of NCLs, including CLN5 disease. In addition, we detected abnormalities in the intracellular organelles and aberrations in neuronal sphingolipid transportation, verifying the previous findings obtained from Cln5-deficient mouse macrophages. Therefore, patient-derived iPSCs provide a suitable model to study the mechanisms of NCL diseases. Full article
Figures

Figure 1

Open AccessArticle Protective Effect of Fragaria ananassa Crude Extract on Cadmium-Induced Lipid Peroxidation, Antioxidant Enzymes Suppression, and Apoptosis in Rat Testes
Int. J. Mol. Sci. 2017, 18(5), 957; doi:10.3390/ijms18050957
Received: 15 March 2017 / Revised: 12 April 2017 / Accepted: 20 April 2017 / Published: 5 May 2017
Cited by 2 | PDF Full-text (5420 KB) | HTML Full-text | XML Full-text
Abstract
Cadmium is a deleterious environmental pollutant that threats both animals and human health. Oxidative stress and elevated levels of reactive oxygen species (ROS) have recently been reported to be the main cause of cellular damage as a result of cadmium exposure. We investigate,
[...] Read more.
Cadmium is a deleterious environmental pollutant that threats both animals and human health. Oxidative stress and elevated levels of reactive oxygen species (ROS) have recently been reported to be the main cause of cellular damage as a result of cadmium exposure. We investigate, here, the protective effect of strawberry crude extracts on cadmium-induced oxidative damage of testes in rats. Four groups (n = 8) of 32 adult male Wistar rats weighing 160–180 g were used. The control group received 0.9% saline solution all over the experimental period (5 days). Group 2 was intraperitoneally injected with 6.5 mg/kg CdCl2. Group 3 was provided only with an oral administration of strawberry methanolic extract (SME) at a dose of 250 mg/kg. Group 4 was treated with SME before cadmium injection with the same mentioned doses. It was shown that cadmium exposure results in a significant decrease in both relative testicular weight and serum testosterone level. Analyzing the oxidative damaging effect of cadmium on the testicular tissue revealed the induction of oxidative stress markers represented in the elevated level of lipid peroxidation (LPO), nitric oxide (NO), and a decrease in the reduced glutathione (GSH) content. Considering cadmium toxicity, the level of the antioxidant enzyme activities including catalase (CAT), superoxide dismutase (SOD2), glutathione peroxidase (GPx1), and glutathione reductase (GR) were markedly decreased. Moreover, gene expression analysis indicated significant upregulation of the pro-apoptotic proteins, bcl-2-associated-X-protein (BAX), and tumor necrosis factor-α (TNFA) in response to cadmium intoxication, while significant downregulation of the anti-apoptotic, B-cell lymphoma 2 (BCL2) gene was detected. Immunohistochemistry of the testicular tissue possessed positive immunostaining for the increased level of TNF-α, but decreased number of proliferating cell nuclear antigen (PCNA) stained cells. Administration of SME debilitated the deleterious effect of cadmium via reduction of both LPO and NO levels followed by a significant enhancement in the gene expression level of CAT, SOD2, GPX1, GR, nuclear factor-erythroid 2-related factor 2 (NFE2L2), heme oxygenase-1 (HMOX1), Bcl-2, and PCNA. In addition, the SME treated group revealed a significant increase in the level of testosterone and GSH accompanied by a marked decrease in the gene expression level of Bax and TNF-α. In terms of the summarized results, the SME of Fragaria ananassa has a protective effect against cadmium-induced oxidative damage of testes. Full article
(This article belongs to the Special Issue Correlation between Nutrition, Oxidative Stress and Disease)
Figures

Open AccessArticle Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones
Int. J. Mol. Sci. 2017, 18(5), 958; doi:10.3390/ijms18050958
Received: 23 January 2017 / Revised: 3 April 2017 / Accepted: 21 April 2017 / Published: 2 May 2017
Cited by 2 | PDF Full-text (4616 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Rubber elongation factor (REF) and small rubber particle protein (SRPP) are two key factors for natural rubber biosynthesis. To further understand the roles of these proteins in rubber formation, six different genes for latex abundant REF or SRPP proteins, including REF138,175,258 and
[...] Read more.
Rubber elongation factor (REF) and small rubber particle protein (SRPP) are two key factors for natural rubber biosynthesis. To further understand the roles of these proteins in rubber formation, six different genes for latex abundant REF or SRPP proteins, including REF138,175,258 and SRPP117,204,243, were characterized from Hevea brasiliensis Reyan (RY) 7-33-97. Sequence analysis showed that REFs have a variable and long N-terminal, whereas SRPPs have a variable and long C-terminal beyond the REF domain, and REF258 has a β subunit of ATPase in its N-terminal. Through two-dimensional electrophoresis (2-DE), each REF/SRPP protein was separated into multiple protein spots on 2-DE gels, indicating they have multiple protein species. The abundance of REF/SRPP proteins was compared between ethylene and control treatments or among rubber tree clones with different levels of latex productivity by analyzing 2-DE gels. The total abundance of each REF/SRPP protein decreased or changed a little upon ethylene stimulation, whereas the abundance of multiple protein species of the same REF/SRPP changed diversely. Among the three rubber tree clones, the abundance of the protein species also differed significantly. Especially, two protein species of REF175 or REF258 were ethylene-responsive only in the high latex productivity clone RY 8-79 instead of in RY 7-33-97 and PR 107. Some individual protein species were positively related to ethylene stimulation and latex productivity. These results suggested that the specific protein species could be more important than others for rubber production and post-translational modifications might play important roles in rubber biosynthesis. Full article
(This article belongs to the Special Issue Selected Papers from the 6th National Plant Protein Research Congress)
Figures

Open AccessArticle Subcutaneous and Visceral Adipose Tissue Secretions from Extremely Obese Men and Women both Acutely Suppress Muscle Insulin Signaling
Int. J. Mol. Sci. 2017, 18(5), 959; doi:10.3390/ijms18050959
Received: 17 February 2017 / Revised: 14 April 2017 / Accepted: 21 April 2017 / Published: 2 May 2017
PDF Full-text (689 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Adipose tissue plays a key role in the development of type-2 diabetes via the secretion of adipokines. The current study investigated if secretion media derived from intact visceral (VAT) and subcutaneous (SAT) adipose tissues from extremely obese men and women differently suppressed insulin
[...] Read more.
Adipose tissue plays a key role in the development of type-2 diabetes via the secretion of adipokines. The current study investigated if secretion media derived from intact visceral (VAT) and subcutaneous (SAT) adipose tissues from extremely obese men and women differently suppressed insulin signaling in human skeletal myotubes derived from a healthy, non-diabetic male and female donor, respectively. Adipose tissue samples were collected from men and women during laparoscopic bariatric surgery. In general, secretion media collected from both SAT and VAT depots caused impaired insulin signaling in myotubes, independent of sex. In females, this was true regardless of the protein kinase B (Akt) phosphorylation site (Akt Thr308 and Akt Ser473) assessed (p < 0.01). In males, both SAT and VAT secretion media reduced Akt Thr308 activation in insulin-stimulated myotubes compared to controls (p < 0.001); however, only the VAT secretion media impaired Akt Ser473 phosphorylation. Independent of sex, 13 out of 18 detected cytokines, chemokines, and growth factors were more abundant in VAT versus SAT secretion media (p < 0.01). Both SAT and VAT secretion media from obese men and women acutely suppress insulin signaling in myotubes, despite different secretion profiles. We propose that this crosstalk model will help to extend our understanding of the interplay between adipose and muscle, as well as the pathogenesis of type-2 diabetes. Full article
(This article belongs to the Special Issue Adipokines)
Figures

Open AccessArticle Long-Term Follow-Up of Resistance-Associated Substitutions in Hepatitis C Virus in Patients in Which Direct Acting Antiviral-Based Therapy Failed
Int. J. Mol. Sci. 2017, 18(5), 962; doi:10.3390/ijms18050962
Received: 22 March 2017 / Revised: 26 April 2017 / Accepted: 26 April 2017 / Published: 3 May 2017
PDF Full-text (1054 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We evaluated the transition of dominant resistance-associated substitutions (RASs) in hepatitis C virus during long-term follow-up after the failure of DAAs (direct acting antivirals)-based therapy. RASs in non-structure (NS)3/4A, NS5A, NS5B, and deletions in NS5A from 20 patients who failed simeprevir/pegylated-interferon/ribavirin (SMV/PEG-IFN/RBV) and
[...] Read more.
We evaluated the transition of dominant resistance-associated substitutions (RASs) in hepatitis C virus during long-term follow-up after the failure of DAAs (direct acting antivirals)-based therapy. RASs in non-structure (NS)3/4A, NS5A, NS5B, and deletions in NS5A from 20 patients who failed simeprevir/pegylated-interferon/ribavirin (SMV/PEG-IFN/RBV) and 25 patients who failed daclatasvir/asunaprevir (DCV/ASV) treatment were examined by direct sequencing. With respect to SMV/PEG-IFN/RBV treatment, RAS was detected at D168 in NS3/4A but not detected in NS5A and NS5B at treatment failure in 16 of 20 patients. During the median follow-up period of 64 weeks, the RAS at D168 became less dominant in 9 of 16 patients. Among 25 DCV/ASV failures, RASs at D168, L31, and Y93 were found in 57.1%, 72.2%, and 76.9%, respectively. NS5A deletions were detected in 3 of 10 patients treated previously with SMV/PEG-IFN/RBV. The number of RASs in the breakthrough patients exceeded that in relapsers (mean 3.9 vs. 2.7, p < 0.05). RAS at D168 in NS3/4A became less dominant in 6 of 15 patients within 80 weeks. Y93H emerged at the time of relapse, then decreased gradually by 99% at 130 weeks post-treatment. Emerged RASs were associated with the clinical course of treatment and could not be detected during longer follow-up. Full article
(This article belongs to the Special Issue Hepatitis Virus Infection and Research)
Figures

Figure 1a

Open AccessCommunication Mycoviruses in the Plant Pathogen Ustilaginoidea virens Are Not Correlated with the Genetic Backgrounds of Its Hosts
Int. J. Mol. Sci. 2017, 18(5), 963; doi:10.3390/ijms18050963
Received: 23 February 2017 / Revised: 21 April 2017 / Accepted: 26 April 2017 / Published: 3 May 2017
PDF Full-text (4981 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Ustilaginoidea virens, the causal agent of rice false smut, is one of the most devastating grain diseases that causes loss of yield in most rice-growing areas worldwide. In this study, we performed a dsRNA screen to isolate mycoviruses from 35 U. virens
[...] Read more.
Ustilaginoidea virens, the causal agent of rice false smut, is one of the most devastating grain diseases that causes loss of yield in most rice-growing areas worldwide. In this study, we performed a dsRNA screen to isolate mycoviruses from 35 U. virens strains. The results revealed that 34 of the tested isolates were infected by various dsRNA elements, displaying highly viral diversity and mixed infections. We characterized a 5.3 kbp dsRNA from a typical isolate containing dsRNA segments with sizes ranging from 0.5 to 5.3 kbp. Sequence analysis of its genomic properties indicated that it is a novel victorivirus, named Ustilaginoidea virens RNA virus 5 (UvRV5), that belongs to the family Totiviridae. RT-PCR detection was performed and indicated that not all the dsRNA bands that were 5.3 kbp in size contained UvRV5. Moreover, the genetic relatedness of all the U. virens strains was estimated according to phylogenetic analysis of the partial intergenic spacer region (IGS) sequences. However, concordance was not found between the dsRNA profiles and the IGS-based genetic relatedness of their host fungi. Full article
(This article belongs to the Section Molecular Botany)
Figures

Figure 1

Open AccessArticle Nimodipine but Not Nifedipine Promotes Expression of Fatty Acid 2-Hydroxylase in a Surgical Stress Model Based on Neuro2a Cells
Int. J. Mol. Sci. 2017, 18(5), 964; doi:10.3390/ijms18050964
Received: 28 March 2017 / Revised: 20 April 2017 / Accepted: 26 April 2017 / Published: 3 May 2017
PDF Full-text (2305 KB) | HTML Full-text | XML Full-text
Abstract
Nimodipine is well characterized for the management of aneurysmal subarachnoid hemorrhage and has been shown to promote a better outcome and less delayed ischemic neurological deficits. Animal and clinical trials show neuroprotective efficacy following nerve injuries. We showed a neuroprotective effect on Neuro2a
[...] Read more.
Nimodipine is well characterized for the management of aneurysmal subarachnoid hemorrhage and has been shown to promote a better outcome and less delayed ischemic neurological deficits. Animal and clinical trials show neuroprotective efficacy following nerve injuries. We showed a neuroprotective effect on Neuro2a cells. Subsequent microarray analysis revealed—among others—fatty acid 2-hydroxylase (FA2H) upregulated by nimodipine in vitro, which is a component of myelin synthesis. Differentiated Neuro2a cells were analyzed for nimodipine-mediated survival considering stress treatment in comparison to nifedipine-treatment. Cell survival was determined by measurement of LDH activity in the culture medium. Nimodipine decreased surgery-like stress-induced cell death of differentiated Neuro2a cells. Neuro2a cell culture was analyzed for changes in FA2H expression induced by nimodipine or nifedipine in surgery-like stress conditions. We analyzed expression levels of FA2H mRNA and protein by qPCR using fa2h specific primers or a FA2H-specific antibody in nimodipine or nifedipine non- and pre-treated Neuro2a cell culture, respectively. Nimodipine but not nifedipine increases FA2H protein levels and also significantly increases mRNA levels of FA2H in both undifferentiated and differentiated Neuro2a cells. Our findings indicate that higher expression of FA2H induced by nimodipine may cause higher survival of Neuro2a cells stressed with surgery-like stressors. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2017)
Figures

Figure 1

Open AccessArticle Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress
Int. J. Mol. Sci. 2017, 18(5), 966; doi:10.3390/ijms18050966
Received: 1 March 2017 / Revised: 27 April 2017 / Accepted: 28 April 2017 / Published: 3 May 2017
Cited by 2 | PDF Full-text (4258 KB) | HTML Full-text | XML Full-text
Abstract
A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is
[...] Read more.
A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. Full article
(This article belongs to the Special Issue Tumor Targeting Therapy and Selective Killing)
Figures

Open AccessArticle Studies on Trans-Resveratrol/Carboxymethylated (1,3/1,6)-β-d-Glucan Association for Aerosol Pharmaceutical Applications
Int. J. Mol. Sci. 2017, 18(5), 967; doi:10.3390/ijms18050967
Received: 21 March 2017 / Revised: 20 April 2017 / Accepted: 30 April 2017 / Published: 3 May 2017
PDF Full-text (1917 KB) | HTML Full-text | XML Full-text
Abstract
A resveratrol/carboxymethylated glucan (CM-glucan) combination is known to inhibit rhinovirus replication and expression of inflammatory mediators in nasal epithelia. The aim of this study was to develop an aerosol formulation containing an association of the two molecules which could reach the lower respiratory
[...] Read more.
A resveratrol/carboxymethylated glucan (CM-glucan) combination is known to inhibit rhinovirus replication and expression of inflammatory mediators in nasal epithelia. The aim of this study was to develop an aerosol formulation containing an association of the two molecules which could reach the lower respiratory tract. Mass median aerodynamic diameter (MMAD) of a resveratrol/CM-glucan combination was lower than that shown by resveratrol or CM-glucan alone (2.83 versus 3.28 and 2.96 µm, respectively). The resveratrol/CM-glucan association results in the finest and most monodispersed particles in comparison to the two single components. The association also evidenced lower values for all particle size distribution parameters, suggesting that the pharmacological synergy observed in previous studies may be accompanied by a pharmaceutical one. Moreover, we showed that the CM-glucan matrix did not exert an inhibitory effect on resveratrol nebulization, demonstrating the good suitability of these two molecules in association for simultaneous aerosol volatilization. Full article
(This article belongs to the Special Issue Glucan: New Perspectives on Biochemistry and Application)
Figures

Figure 1

Open AccessArticle Atg7 Regulates Brain Angiogenesis via NF-κB-Dependent IL-6 Production
Int. J. Mol. Sci. 2017, 18(5), 968; doi:10.3390/ijms18050968
Received: 24 March 2017 / Revised: 25 April 2017 / Accepted: 28 April 2017 / Published: 3 May 2017
PDF Full-text (2494 KB) | HTML Full-text | XML Full-text
Abstract
The formation of brain vasculature is an essential step during central nervous system development. The molecular mechanism underlying brain angiogenesis remains incompletely understood. The role of Atg7, an autophagy-related protein, in brain angiogenesis was investigated in this study. We found that the microvessel
[...] Read more.
The formation of brain vasculature is an essential step during central nervous system development. The molecular mechanism underlying brain angiogenesis remains incompletely understood. The role of Atg7, an autophagy-related protein, in brain angiogenesis was investigated in this study. We found that the microvessel density in mice brains with endothelial-specific knockout of Atg7 (Atg7 EKO) was significantly decreased compared to wild-type control. Consistently, in vitro angiogenesis assays showed that Atg7 knockdown impaired angiogenesis in brain microvascular endothelial cells. Further results indicated that knockdown of Atg7 reduced interleukin-6 (IL-6) expression in brain microvascular endothelial cells, which is mediated by NF-κB-dependent transcriptional control. Interestingly, exogenous IL-6 restored the impaired angiogenesis and reduced cell motility caused by Atg7 knockdown. These results demonstrated that Atg7 has proangiogenic activity in brain angiogenesis which is mediated by IL-6 production in a NF-κB-dependent manner. Full article
(This article belongs to the Special Issue Vascular Biology and Therapeutics)
Figures

Open AccessArticle Study of Hydroquinone Mediated Cytotoxicity and Hypopigmentation Effects from UVB-Irradiated Arbutin and DeoxyArbutin
Int. J. Mol. Sci. 2017, 18(5), 969; doi:10.3390/ijms18050969
Received: 29 January 2017 / Revised: 25 April 2017 / Accepted: 29 April 2017 / Published: 3 May 2017
PDF Full-text (3790 KB) | HTML Full-text | XML Full-text
Abstract
Arbutin (Arb) and deoxyArbutin (dA) are both effective hypopigmentation agents. However, they are glucoside derivatives of hydroquinone (HQ), which may be decayed into HQ under higher energy environments. Therefore, safety and toxicity are very important issues when considering the usage of these compounds.
[...] Read more.
Arbutin (Arb) and deoxyArbutin (dA) are both effective hypopigmentation agents. However, they are glucoside derivatives of hydroquinone (HQ), which may be decayed into HQ under higher energy environments. Therefore, safety and toxicity are very important issues when considering the usage of these compounds. However, no study has verified the properties of Ultra-Violet B (UVB)-irradiated Arb and dA. In this work, we investigated the cytotoxicity and hypopigmentation effects of UVB-irradiated Arb and dA in Detroit 551 human fibroblast cells and B16-F10 mouse melanoma cells. The results showed that UVB-irradiated Arb and dA have strong cytotoxicity for the fibroblast cells, especially for dA, the caspase-3 is also activated by the treatment of UVB-irradiated dA in Detroit 551 cells. The results correlated with the produced HQ. In addition, UVB-irradiated Arb and dA suppressed the production of melanin in melanoma cells; this is due to the release of HQ that compensates for the UVB triggered Arb and dA decomposition. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Figures

Open AccessArticle Effects of Hydroxylated Polybrominated Diphenyl Ethers in Developing Zebrafish Are Indicative of Disruption of Oxidative Phosphorylation
Int. J. Mol. Sci. 2017, 18(5), 970; doi:10.3390/ijms18050970
Received: 28 February 2017 / Revised: 10 April 2017 / Accepted: 21 April 2017 / Published: 3 May 2017
Cited by 1 | PDF Full-text (1619 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been detected in humans and wildlife. Using in vitro models, we recently showed that OH-PBDEs disrupt oxidative phosphorylation (OXPHOS), an essential process in energy metabolism. The goal of the current study was to determine the in vivo
[...] Read more.
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been detected in humans and wildlife. Using in vitro models, we recently showed that OH-PBDEs disrupt oxidative phosphorylation (OXPHOS), an essential process in energy metabolism. The goal of the current study was to determine the in vivo effects of OH-PBDE reported in marine wildlife. To this end, we exposed zebrafish larvae to 17 OH-PBDEs from fertilisation to 6 days of age, and determined developmental toxicity as well as OXPHOS disruption potential with a newly developed assay of oxygen consumption in living embryos. We show here that all OH-PBDEs tested, both individually and as mixtures, resulted in a concentration-dependant delay in development in zebrafish embryos. The most potent substances were 6-OH-BDE47 and 6′-OH-BDE49 (No-Effect-Concentration: 0.1 and 0.05 µM). The first 24 h of development were the most sensitive, resulting in significant and irreversible developmental delay. All substances increased oxygen consumption, an effect indicative of OXPHOS disruption. Our results suggest that the induced developmental delay may be caused by disruption of OXPHOS. Though further studies are needed, our findings suggest that the environmental concentrations of some OH-PBDEs found in Baltic Sea wildlife in the Baltic Sea may be of toxicological concern. Full article
(This article belongs to the Special Issue Zebrafish: A Model for Toxicological Research)
Figures

Open AccessArticle Zampanolide, a Microtubule-Stabilizing Agent, Is Active in Resistant Cancer Cells and Inhibits Cell Migration
Int. J. Mol. Sci. 2017, 18(5), 971; doi:10.3390/ijms18050971
Received: 1 April 2017 / Revised: 28 April 2017 / Accepted: 28 April 2017 / Published: 3 May 2017
Cited by 1 | PDF Full-text (2261 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Zampanolide, first discovered in a sponge extract in 1996 and later identified as a microtubule-stabilizing agent in 2009, is a covalent binding secondary metabolite with potent, low nanomolar activity in mammalian cells. Zampanolide was not susceptible to single amino acid mutations at the
[...] Read more.
Zampanolide, first discovered in a sponge extract in 1996 and later identified as a microtubule-stabilizing agent in 2009, is a covalent binding secondary metabolite with potent, low nanomolar activity in mammalian cells. Zampanolide was not susceptible to single amino acid mutations at the taxoid site of β-tubulin in human ovarian cancer 1A9 cells, despite evidence that it selectively binds to the taxoid site. As expected, it did not synergize with other taxoid site microtubule-stabilizing agents (paclitaxel, ixabepilone, discodermolide), but surprisingly also did not synergize in 1A9 cells with laulimalide/peloruside binding site agents either. Efforts to generate a zampanolide-resistant cell line were unsuccessful. Using a standard wound scratch assay in cell culture, it was an effective inhibitor of migration of human umbilical vein endothelial cells (HUVEC) and fibroblast cells (D551). These properties of covalent binding, the ability to inhibit cell growth in paclitaxel and epothilone resistant cells, and the ability to inhibit cell migration suggest that it would be of interest to investigate zampanolide in preclinical animal models to determine if it is effective in vivo at preventing tumor growth and metastasis. Full article
(This article belongs to the Special Issue Microtubule-Targeting Agents)
Figures

Open AccessArticle Galectin-3 in Peripheral Artery Disease. Relationships with Markers of Oxidative Stress and Inflammation
Int. J. Mol. Sci. 2017, 18(5), 973; doi:10.3390/ijms18050973
Received: 24 February 2017 / Revised: 6 April 2017 / Accepted: 29 April 2017 / Published: 4 May 2017
PDF Full-text (8992 KB) | HTML Full-text | XML Full-text
Abstract
Galectin-3 is a modulator of oxidative stress, inflammation, and fibrogenesis involved in the pathogenesis of vascular diseases. The present study sought to characterize, in patients with peripheral artery disease (PAD), the localization of galectin-3 in arterial tissue, and to analyze the relationships between
[...] Read more.
Galectin-3 is a modulator of oxidative stress, inflammation, and fibrogenesis involved in the pathogenesis of vascular diseases. The present study sought to characterize, in patients with peripheral artery disease (PAD), the localization of galectin-3 in arterial tissue, and to analyze the relationships between the circulating levels of galectin-3 and oxidative stress and inflammation. It also sought to compare the diagnostic accuracy of galectin-3 with that of other biochemical markers of this disease. We analyzed femoral or popliteal arteries from 50 PAD patients, and four control arteries. Plasma from 86 patients was compared with that from 72 control subjects. We observed differences in the expression of galectin-3 in normal arteries, and arteries from patients with PAD, with a displacement of the expression from the adventitia to the media, and the intima. In addition, plasma galectin-3 concentration was increased in PAD patients, and correlated with serologic markers of oxidative stress (F2-isoprostanes), and inflammation [chemokine (C−C motif) ligand 2, C-reactive protein, β-2-microglobulin]. We conclude that the determination of galectin-3 has good diagnostic accuracy in the assessment of PAD and compares well with other analytical parameters currently in use. Full article
(This article belongs to the Special Issue Oxidative Stress in Vascular Diseases)
Figures

Figure 1

Open AccessArticle Decrease of miR-195 Promotes Chondrocytes Proliferation and Maintenance of Chondrogenic Phenotype via Targeting FGF-18 Pathway
Int. J. Mol. Sci. 2017, 18(5), 975; doi:10.3390/ijms18050975
Received: 21 March 2017 / Revised: 21 April 2017 / Accepted: 24 April 2017 / Published: 4 May 2017
PDF Full-text (13564 KB) | HTML Full-text | XML Full-text
Abstract
Slow growth and rapid loss of chondrogenic phenotypes are the major problems affecting chronic cartilage lesions. The role of microRNA-195 (miR-195) and its detailed working mechanism in the fore-mentioned process remains unknown. Fibroblastic growth factor 18 (FGF-18) plays a key role in cartilage
[...] Read more.
Slow growth and rapid loss of chondrogenic phenotypes are the major problems affecting chronic cartilage lesions. The role of microRNA-195 (miR-195) and its detailed working mechanism in the fore-mentioned process remains unknown. Fibroblastic growth factor 18 (FGF-18) plays a key role in cartilage homeostasis; whether miR-195 could regulate FGF-18 and its downstream signal pathway in chondrocyte proliferation and maintenance of chondrogenic phenotypes still remains unclear. The present research shows elevated miR-195 but depressed FGF-18 expressed in joint fluid specimens of 20 patients with chronic cartilage lesions and in CH1M and CH3M chondrocytes when compared with that in joint fluid specimens without cartilage lesions and in CH1W and CH2W chondrocytes, respectively. The following loss of function test revealed that downregulation of miR-195 by transfection of miR-195 inhibitors promoted chondrocyte proliferation and expression of a type II collagen α I chain (Col2a1)/aggrecan. Through the online informatics analysis we theoretically predicted that miR-195 could bind to a FGF-18 3′ untranslated region (3′UTR), also, we verified that a miR-195 could regulate the FGF-18 and its downstream pathway. The constructed dual luciferase assay further confirmed that FGF-18 was a direct target of miR-195. The executed anti-sense experiment displayed that miR-195 could regulate chondrocyte proliferation and Col2a1/aggrecan expression via the FGF-18 pathway. Finally, through an in vivo anterior cruciate ligament transection (ACLT) model, downregulation of miR-195 presented a significantly protective effect on chronic cartilage lesions. Evaluating all of the outcomes of the current research revealed that a decrease of miR-195 protected chronic cartilage lesions by promoting chondrocyte proliferation and maintenance of chondrogenic phenotypes via the targeting of the FGF-18 pathway and that the miR-195/FGF-18 axis could be a potential target in the treatment of cartilage lesions. Full article
(This article belongs to the Special Issue Advances in Bone and Cartilage Research)
Figures

Open AccessArticle Protease Expression Levels in Prostate Cancer Tissue Can Explain Prostate Cancer-Associated Seminal Biomarkers—An Explorative Concept Study
Int. J. Mol. Sci. 2017, 18(5), 976; doi:10.3390/ijms18050976
Received: 24 March 2017 / Revised: 20 April 2017 / Accepted: 29 April 2017 / Published: 4 May 2017
Cited by 1 | PDF Full-text (9062 KB) | HTML Full-text | XML Full-text
Abstract
Previously, we described prostate cancer (PCa) detection (83% sensitivity; 67% specificity) in seminal plasma by CE-MS/MS. Moreover, advanced disease was distinguished from organ-confined tumors with 80% sensitivity and 82% specificity. The discovered biomarkers were naturally occurring fragments of larger seminal proteins, predominantly semenogelin
[...] Read more.
Previously, we described prostate cancer (PCa) detection (83% sensitivity; 67% specificity) in seminal plasma by CE-MS/MS. Moreover, advanced disease was distinguished from organ-confined tumors with 80% sensitivity and 82% specificity. The discovered biomarkers were naturally occurring fragments of larger seminal proteins, predominantly semenogelin 1 and 2, representing endpoints of the ejaculate liquefaction. Here we identified proteases putatively involved in PCa specific protein cleavage, and examined gene expression and tissue protein levels, jointly with cell localization in normal prostate (nP), benign prostate hyperplasia (BPH), seminal vesicles and PCa using qPCR, Western blotting and confocal laser scanning microscopy. We found differential gene expression of chymase (CMA1), matrix metalloproteinases (MMP3, MMP7), and upregulation of MMP14 and tissue inhibitors (TIMP1 and TIMP2) in BPH. In contrast tissue protein levels of MMP14 were downregulated in PCa. MMP3/TIMP1 and MMP7/TIMP1 ratios were decreased in BPH. In seminal vesicles, we found low-level expression of most proteases and, interestingly, we also detected TIMP1 and low levels of TIMP2. We conclude that MMP3 and MMP7 activity is different in PCa compared to BPH due to fine regulation by their inhibitor TIMP1. Our findings support the concept of seminal plasma biomarkers as non-invasive tool for PCa detection and risk stratification. Full article
(This article belongs to the Special Issue Diagnostic, Prognostic and Predictive Biomarkers in Prostate Cancer)
Figures

Open AccessArticle miR-365 Ameliorates Dexamethasone-Induced Suppression of Osteogenesis in MC3T3-E1 Cells by Targeting HDAC4
Int. J. Mol. Sci. 2017, 18(5), 977; doi:10.3390/ijms18050977
Received: 4 April 2017 / Revised: 27 April 2017 / Accepted: 28 April 2017 / Published: 4 May 2017
PDF Full-text (3565 KB) | HTML Full-text | XML Full-text
Abstract
Glucocorticoid administration is the leading cause of secondary osteoporosis. In this study, we tested the hypotheses that histone deacetylase 4 (HDAC4) is associated with glucocorticoid-induced bone loss and that HDAC4 dependent bone loss can be ameliorated by miRNA-365. Our previous studies showed that
[...] Read more.
Glucocorticoid administration is the leading cause of secondary osteoporosis. In this study, we tested the hypotheses that histone deacetylase 4 (HDAC4) is associated with glucocorticoid-induced bone loss and that HDAC4 dependent bone loss can be ameliorated by miRNA-365. Our previous studies showed that miR-365 mediates mechanical stimulation of chondrocyte proliferation and differentiation by targeting HDAC4. However, it is not clear whether miR-365 has an effect on glucocorticoid-induced osteoporosis. We have shown that, in MC3T3-E1 osteoblasts, dexamethasone (DEX) treatment decreased the expression of miR-365, which is accompanied by the decrease of cell viability in a dose-dependent manner. Transfection of miR-365 ameliorated DEX-induced inhibition of MC3T3-E1 cell viability and alkaline phosphatase activity, and attenuated the suppressive effect of DEX on runt-related transcription factor 2 (Runx2), osteopontin (OPN), and collagen 1a1 (Col1a1) osteogenic gene expression. In addition, miR-365 decreased the expression of HDAC4 mRNA and protein by direct targeting the 3′-untranslated regions (3′-UTR) of HDAC4 mRNA in osteoblasts. MiR-365 increased Runx2 expression and such stimulatory effect could be reversed by HDAC4 over-expression in osteoblasts. Collectively, our findings indicate that miR-365 ameliorates DEX-induced suppression of cell viability and osteogenesis by regulating the expression of HDAC4 in osteoblasts, suggesting miR-365 might be a novel therapeutic agent for treatment of glucocorticoid-induced osteoporosis. Full article
(This article belongs to the collection Regulation by Non-Coding RNAs)
Figures

Open AccessArticle Goblet Cells Contribute to Ocular Surface Immune Tolerance—Implications for Dry Eye Disease
Int. J. Mol. Sci. 2017, 18(5), 978; doi:10.3390/ijms18050978
Received: 8 April 2017 / Revised: 27 April 2017 / Accepted: 2 May 2017 / Published: 5 May 2017
Cited by 1 | PDF Full-text (4292 KB) | HTML Full-text | XML Full-text
Abstract
Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through goblet
[...] Read more.
Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through goblet cell associated passages (GAPs) in wild type C57BL/6 (WT), while ovalbumin (OVA) was retained in the epithelium of SAM pointed domain containing ETS transcription factor (Spdef) knockout mice (Spdef/) that lack GCs and are a novel model of dry eye. Stimulated GC degranulation increased antigen binding to GC mucins. Induction of tolerance to topically applied OVA measured by cutaneous delayed type hypersensitivity (DTH) was observed in WT, but not Spdef/. OTII CD4+ T cells primed by dendritic cells (DCs) from the conjunctival draining lymph nodes of Spdef/ had greater IFN-γ production and lower Foxp3 positivity than those primed by WT DCs. These findings indicate that conjunctival GCs contribute to ocular surface immune tolerance by modulating antigen distribution and antigen specific immune response. GC loss may contribute to the abrogation of ocular surface immune tolerance that is observed in dry eye. Full article
(This article belongs to the Special Issue Dry Eye and Ocular Surface Disorders)
Figures

Figure 1

Open AccessArticle Melatonin and Vitamin D Interfere with the Adipogenic Fate of Adipose-Derived Stem Cells
Int. J. Mol. Sci. 2017, 18(5), 981; doi:10.3390/ijms18050981
Received: 7 April 2017 / Revised: 28 April 2017 / Accepted: 2 May 2017 / Published: 5 May 2017
Cited by 1 | PDF Full-text (19159 KB) | HTML Full-text | XML Full-text
Abstract
Adipose-derived stem cells (ADSCs) represent one of the cellular populations resident in adipose tissue. They can be recruited under certain stimuli and committed to become preadipocytes, and then mature adipocytes. Controlling stem cell differentiation towards the adipogenic phenotype could have a great impact
[...] Read more.
Adipose-derived stem cells (ADSCs) represent one of the cellular populations resident in adipose tissue. They can be recruited under certain stimuli and committed to become preadipocytes, and then mature adipocytes. Controlling stem cell differentiation towards the adipogenic phenotype could have a great impact on future drug development aimed at counteracting fat depots. Stem cell commitment can be influenced by different molecules, such as melatonin, which we have previously shown to be an osteogenic inducer. Here, we aimed at evaluating the effects elicited by melatonin, even in the presence of vitamin D, on ADSC adipogenesis assessed in a specific medium. The transcription of specific adipogenesis orchestrating genes, such as aP2, peroxisome proliferator-activated receptor γ (PPAR-γ), and that of adipocyte-specific genes, including lipoprotein lipase (LPL) and acyl-CoA thioesterase 2 (ACOT2), was significantly inhibited in cells that had been treated in the presence of melatonin and vitamin D, alone or in combination. Protein content and lipid accumulation confirmed a reduction in adipogenesis in ADSCs that had been grown in adipogenic conditions, but in the presence of melatonin and/or vitamin D. Our findings indicate the role of melatonin and vitamin D in deciding stem cell fate, and disclose novel therapeutic approaches against fat depots. Full article
(This article belongs to the Special Issue Melatonin and Its Analogues: Experimental and Clinical Aspects)
Figures

Figure 1

Open AccessArticle Redox Regulation of the Tumor Suppressor PTEN by Hydrogen Peroxide and Tert-Butyl Hydroperoxide
Int. J. Mol. Sci. 2017, 18(5), 982; doi:10.3390/ijms18050982
Received: 2 March 2017 / Revised: 21 April 2017 / Accepted: 25 April 2017 / Published: 10 May 2017
PDF Full-text (3393 KB) | HTML Full-text | XML Full-text
Abstract
Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) are
[...] Read more.
Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx) system. Here, the role of tert-butyl hydroperoxide (t-BHP) in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t-BHP led to oxidation of recombinant PTEN. In contrast to H2O2, PTEN oxidation by t-BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t-BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t-BHP in the promotion of tumorigenesis. Full article
(This article belongs to the Special Issue Alterations to Signalling Pathways in Cancer Cells)
Figures

Open AccessArticle Effects of Gelatin Hydrogel Containing Anti-Transforming Growth Factor-β Antibody in a Canine Filtration Surgery Model
Int. J. Mol. Sci. 2017, 18(5), 985; doi:10.3390/ijms18050985
Received: 3 April 2017 / Revised: 27 April 2017 / Accepted: 2 May 2017 / Published: 5 May 2017
Cited by 1 | PDF Full-text (6927 KB) | HTML Full-text | XML Full-text
Abstract
In this present study, we investigated the effect of a controlled release of anti-transforming growth factor β (TGF-β) antibody on intraocular pressure (IOP), bleb formation, and conjunctival scarring in a canine glaucoma filtration surgery model using gelatin hydrogel (GH). Glaucoma surgery models were
[...] Read more.
In this present study, we investigated the effect of a controlled release of anti-transforming growth factor β (TGF-β) antibody on intraocular pressure (IOP), bleb formation, and conjunctival scarring in a canine glaucoma filtration surgery model using gelatin hydrogel (GH). Glaucoma surgery models were made in 14 eyes of 14 beagles and divided into the following two groups: (1) subconjunctival implantation of anti-TGF-β antibody-loaded GH (GH-TGF-β group, n = 7), and (2) subconjunctival implantation of GH alone (GH group, n = 7). IOP and bleb features were then assessed in each eye at 2- and 4-weeks postoperative, followed by histological evaluation. We found that IOP was significantly reduced at 4-weeks postoperative in the two groups (p < 0.05) and that IOP in the GH-TGF-β-group eyes was significantly lower than that in the GH-group eyes (p = 0.006). In addition, the bleb score at 4-weeks postoperative was significantly higher in the GH-TGF-β group than in the GH group (p < 0.05), and the densities of fibroblasts, proliferative-cell nuclear antigen (PCNA)-positive cells, mast cells, and TGF-β-positive cells were significantly lower in the GH-TGF-β group than in the GH group. The findings of this study suggest that, compared with the GH-group eyes, implantation of anti-TGF-β antibody-loaded GH maintains IOP reduction and bleb formation by suppressing conjunctival scarring due to the proliferation of fibroblasts for a longer time period via a sustained release of anti-TGF-β antibody from GH. Full article
(This article belongs to the Special Issue Recent Advances in Scar Biology)
Figures

Open AccessArticle Oral Treatment with the Ghrelin Receptor Agonist HM01 Attenuates Cachexia in Mice Bearing Colon-26 (C26) Tumors
Int. J. Mol. Sci. 2017, 18(5), 986; doi:10.3390/ijms18050986
Received: 28 February 2017 / Revised: 3 April 2017 / Accepted: 29 April 2017 / Published: 5 May 2017
PDF Full-text (2297 KB) | HTML Full-text | XML Full-text
Abstract
The gastrointestinal hormone ghrelin reduces energy expenditure and stimulates food intake. Ghrelin analogs are a possible treatment against cancer anorexia-cachexia syndrome (CACS). This study aimed to investigate whether oral treatment with the non-peptidergic ghrelin receptor agonist HM01 counteracts CACS in colon-26 (C26) tumor-bearing
[...] Read more.
The gastrointestinal hormone ghrelin reduces energy expenditure and stimulates food intake. Ghrelin analogs are a possible treatment against cancer anorexia-cachexia syndrome (CACS). This study aimed to investigate whether oral treatment with the non-peptidergic ghrelin receptor agonist HM01 counteracts CACS in colon-26 (C26) tumor-bearing mice. The C26 tumor model is characterized by pronounced body weight (BW) loss and muscle wasting in the absence of severe anorexia. We analyzed the time course of BW loss, body composition, muscle mass, bone mineral density, and the cytokines interleukin-6 (IL-6) and macrophage-inhibitory cytokine-1 (MIC-1). Moreover, we measured the expression of the muscle degradation markers muscle RING-finger-protein-1 (MuRF-1) and muscle atrophy F-box (MAFbx). After tumor inoculation, MIC-1 levels increased earlier than IL-6 and both cytokines were elevated before MuRF-1/MAFbx expression increased. Oral HM01 treatment increased BW, fat mass, and neuronal hypothalamic activity in healthy mice. In tumor-bearing mice, HM01 increased food intake, BW, fat mass, muscle mass, and bone mineral density while it decreased energy expenditure. These effects appeared to be independent of IL-6, MIC-1, MuRF-1 or MAFbx, which were not affected by HM01. Therefore, HM01 counteracts cachectic body weight loss under inflammatory conditions and is a promising compound for the treatment of cancer cachexia in the absence of severe anorexia. Full article
(This article belongs to the Special Issue Neurobiological Perspectives on Ghrelin)
Figures

Figure 1

Open AccessArticle AF1q Mediates Tumor Progression in Colorectal Cancer by Regulating AKT Signaling
Int. J. Mol. Sci. 2017, 18(5), 987; doi:10.3390/ijms18050987
Received: 26 February 2017 / Revised: 13 April 2017 / Accepted: 2 May 2017 / Published: 5 May 2017
PDF Full-text (6414 KB) | HTML Full-text | XML Full-text
Abstract
The up-regulation of ALL1-fused gene from chromosome 1q (AF1q) is commonly seen in aggressive hematologic malignancies as well as in several solid tumor tissues. However, its expression and intrinsic function in human colorectal cancer (CRC) remains largely undefined. To explore the role
[...] Read more.
The up-regulation of ALL1-fused gene from chromosome 1q (AF1q) is commonly seen in aggressive hematologic malignancies as well as in several solid tumor tissues. However, its expression and intrinsic function in human colorectal cancer (CRC) remains largely undefined. To explore the role of AF1q in human CRC progression, AF1q expression was analyzed in human CRC tissue samples and CRC cell lines. Clinical specimens revealed that AF1q was up-regulated in human CRC tissues, and that this up-regulation was associated with tumor metastasis and late tumor, lymph node, metastasis (TNM) stage. AF1q knockdown by shRNA inhibited tumor cell proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro, as well as tumorigenesis and liver metastasis in vivo, whereas these effects were reversed following AF1q overexpression. These AF1q-mediated effects were modulated by the protein kinase B (AKT) signaling pathway, and inhibition of AKT signaling attenuated AF1q-induced tumor promotion. Thus, AF1q contributes to CRC tumorigenesis and progression through the activation of the AKT signaling pathway. AF1q might therefore serve as a promising new target in the treatment of CRC. Full article
Figures

Figure 1

Open AccessArticle Melatonin Promotes the In Vitro Development of Microinjected Pronuclear Mouse Embryos via Its Anti-Oxidative and Anti-Apoptotic Effects
Int. J. Mol. Sci. 2017, 18(5), 988; doi:10.3390/ijms18050988
Received: 31 March 2017 / Revised: 27 April 2017 / Accepted: 2 May 2017 / Published: 5 May 2017
PDF Full-text (4463 KB) | HTML Full-text | XML Full-text
Abstract
CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) combined with pronuclear microinjection has become the most effective method for producing transgenic animals. However, the relatively low embryo developmental rate limits its application. In the current study, it was observed that 10−7 M melatonin
[...] Read more.
CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) combined with pronuclear microinjection has become the most effective method for producing transgenic animals. However, the relatively low embryo developmental rate limits its application. In the current study, it was observed that 10−7 M melatonin is considered an optimum concentration and significantly promoted the in vitro development of murine microinjected pronuclear embryos, as indicated by the increased blastocyst rate, hatching blastocyst rate and blastocyst cell number. When these blastocysts were implanted into recipient mice, the pregnancy rate and birth rate were significantly higher than those of the microinjected control, respectively. Mechanistic studies revealed that melatonin treatment reduced reactive oxygen species (ROS) production and cellular apoptosis during in vitro embryo development and improved the quality of the blastocysts. The implantation of quality-improved blastocysts led to elevated pregnancy and birth rates. In conclusion, the results revealed that the anti-oxidative and anti-apoptotic activities of melatonin improved the quality of microinjected pronuclear embryos and subsequently increased both the efficiency of embryo implantation and the birth rate of the pups. Therefore, the melatonin supplementation may provide a novel alternative method for generating large numbers of transgenic mice and this method can probably be used in human-assisted reproduction and genome editing. Full article
(This article belongs to the Special Issue Melatonin and Its Analogues: Experimental and Clinical Aspects)
Figures

Open AccessArticle Drug-Loadable Calcium Alginate Hydrogel System for Use in Oral Bone Tissue Repair
Int. J. Mol. Sci. 2017, 18(5), 989; doi:10.3390/ijms18050989
Received: 14 April 2017 / Revised: 1 May 2017 / Accepted: 2 May 2017 / Published: 6 May 2017
PDF Full-text (12458 KB) | HTML Full-text | XML Full-text
Abstract
This study developed a drug-loadable hydrogel system with high plasticity and favorable biological properties to enhance oral bone tissue regeneration. Hydrogels of different calcium alginate concentrations were prepared. Their swelling ratio, degradation time, and bovine serum albumin (BSA) release rate were measured. Human
[...] Read more.
This study developed a drug-loadable hydrogel system with high plasticity and favorable biological properties to enhance oral bone tissue regeneration. Hydrogels of different calcium alginate concentrations were prepared. Their swelling ratio, degradation time, and bovine serum albumin (BSA) release rate were measured. Human periodontal ligament cells (hPDLCs) and bone marrow stromal cells (BMSCs) were cultured with both calcium alginate hydrogels and polylactic acid (PLA), and then we examined the proliferation of cells. Inflammatory-related factor gene expressions of hPDLCs and osteogenesis-related gene expressions of BMSCs were observed. Materials were implanted into the subcutaneous tissue of rabbits to determine the biosecurity properties of the materials. The materials were also implanted in mandibular bone defects and then scanned using micro-CT. The calcium alginate hydrogels caused less inflammation than the PLA. The number of mineralized nodules and the expression of osteoblast-related genes were significantly higher in the hydrogel group compared with the control group. When the materials were implanted in subcutaneous tissue, materials showed favorable biocompatibility. The calcium alginate hydrogels had superior osteoinductive bone ability to the PLA. The drug-loadable calcium alginate hydrogel system is a potential bone defect reparation material for clinical dental application. Full article
(This article belongs to the Section Biomaterial Sciences)
Figures

Figure 1

Open AccessArticle Folic Acid Supplementation Delays Atherosclerotic Lesion Development by Modulating MCP1 and VEGF DNA Methylation Levels In Vivo and In Vitro
Int. J. Mol. Sci. 2017, 18(5), 990; doi:10.3390/ijms18050990
Received: 19 March 2017 / Revised: 25 April 2017 / Accepted: 2 May 2017 / Published: 5 May 2017
Cited by 1 | PDF Full-text (4184 KB) | HTML Full-text | XML Full-text
Abstract
The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic
[...] Read more.
The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic acid may act via an epigenetic gene silencing mechanism to ameliorate atherosclerosis. Here, we investigated the atheroprotective effects of folic acid and the resultant methylation status in high-fat diet-fed ApoE knockout mice and in oxidized low-density lipoprotein-treated human umbilical vein endothelial cells. We analyzed atherosclerotic lesion histology, folate concentration, homocysteine concentration, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and DNA methyltransferase activity, as well as monocyte chemotactic protein-1 (MCP1) and vascular endothelial growth factor (VEGF) expression and promoter methylation. Folic acid reduced atherosclerotic lesion size in ApoE knockout mice. The underlying folic acid protective mechanism appears to operate through regulating the normal homocysteine state, upregulating the SAM: SAH ratio, elevating DNA methyltransferase activity and expression, altering MCP1 and VEGF promoter methylation, and inhibiting MCP1 and VEGF expression. We conclude that folic acid supplementation effectively prevented atherosclerosis by modifying DNA methylation through the methionine cycle, improving DNA methyltransferase activity and expression, and thus changing the expression of atherosclerosis-related genes. Full article
(This article belongs to the Special Issue Correlation between Nutrition, Oxidative Stress and Disease)
Figures

Open AccessArticle High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis
Int. J. Mol. Sci. 2017, 18(5), 991; doi:10.3390/ijms18050991
Received: 27 March 2017 / Revised: 22 April 2017 / Accepted: 2 May 2017 / Published: 5 May 2017
PDF Full-text (3994 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin
[...] Read more.
N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis, through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes. Full article
(This article belongs to the Special Issue Melatonin and Its Analogues: Experimental and Clinical Aspects)
Figures

Figure 1

Open AccessArticle Biomarker and Histopathology Evaluation of Patients with Recurrent Glioblastoma Treated with Galunisertib, Lomustine, or the Combination of Galunisertib and Lomustine
Int. J. Mol. Sci. 2017, 18(5), 995; doi:10.3390/ijms18050995
Received: 14 March 2017 / Revised: 17 April 2017 / Accepted: 25 April 2017 / Published: 6 May 2017
PDF Full-text (2098 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Galunisertib, a Transforming growth factor-βRI (TGF-βRI) kinase inhibitor, blocks TGF-β-mediated tumor growth in glioblastoma. In a three-arm study of galunisertib (300 mg/day) monotherapy (intermittent dosing; each cycle =14 days on/14 days off), lomustine monotherapy, and galunisertib plus lomustine therapy, baseline tumor tissue was
[...] Read more.
Galunisertib, a Transforming growth factor-βRI (TGF-βRI) kinase inhibitor, blocks TGF-β-mediated tumor growth in glioblastoma. In a three-arm study of galunisertib (300 mg/day) monotherapy (intermittent dosing; each cycle =14 days on/14 days off), lomustine monotherapy, and galunisertib plus lomustine therapy, baseline tumor tissue was evaluated to identify markers associated with tumor stage (e.g., histopathology, Ki67, glial fibrillary acidic protein) and TGF-β-related signaling (e.g., pSMAD2). Other pharmacodynamic assessments included chemokine, cytokine, and T cell subsets alterations. 158 patients were randomized to galunisertib plus lomustine (n = 79), galunisertib (n = 39) and placebo+lomustine (n = 40). In 127 of these patients, tissue was adequate for central pathology review and biomarker work. Isocitrate dehydrogenase (IDH1) negative glioblastoma patients with baseline pSMAD2+ in cytoplasm had median overall survival (OS) 9.5 months vs. 6.9 months for patients with no tumor pSMAD2 expression (p = 0.4574). Eight patients were IDH1 R132H+ and had a median OS of 10.4 months compared to 6.9 months for patients with negative IDH1 R132H (p = 0.5452). IDH1 status was associated with numerically higher plasma macrophage-derived chemokine (MDC/CCL22), higher whole blood FOXP3, and reduced tumor CD3+ T cell counts. Compared to the baseline, treatment with galunisertib monotherapy preserved CD4+ T cell counts, eosinophils, lymphocytes, and the CD4/CD8 ratio. The T-regulatory cell compartment was associated with better OS with MDC/CCL22 as a prominent prognostic marker. Full article
(This article belongs to the Special Issue TGF-beta Family in Fibrosis and Cancer)
Figures

Figure 1

Open AccessArticle First Mitochondrial Genome from Nemouridae (Plecoptera) Reveals Novel Features of the Elongated Control Region and Phylogenetic Implications
Int. J. Mol. Sci. 2017, 18(5), 996; doi:10.3390/ijms18050996
Received: 20 April 2017 / Revised: 3 May 2017 / Accepted: 4 May 2017 / Published: 5 May 2017
PDF Full-text (5959 KB) | HTML Full-text | XML Full-text
Abstract
The complete mitochondrial genome (mitogenome) of Nemoura nankinensis (Plecoptera: Nemouridae) was sequenced as the first reported mitogenome from the family Nemouridae. The N. nankinensis mitogenome was the longest (16,602 bp) among reported plecopteran mitogenomes, and it contains 37 genes including 13 protein-coding genes
[...] Read more.
The complete mitochondrial genome (mitogenome) of Nemoura nankinensis (Plecoptera: Nemouridae) was sequenced as the first reported mitogenome from the family Nemouridae. The N. nankinensis mitogenome was the longest (16,602 bp) among reported plecopteran mitogenomes, and it contains 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes and two ribosomal RNA (rRNA) genes. Most PCGs used standard ATN as start codons, and TAN as termination codons. All tRNA genes of N. nankinensis could fold into the cloverleaf secondary structures except for trnSer (AGN), whose dihydrouridine (DHU) arm was reduced to a small loop. There was also a large non-coding region (control region, CR) in the N. nankinensis mitogenome. The 1751 bp CR was the longest and had the highest A+T content (81.8%) among stoneflies. A large tandem repeat region, five potential stem-loop (SL) structures, four tRNA-like structures and four conserved sequence blocks (CSBs) were detected in the elongated CR. The presence of these tRNA-like structures in the CR has never been reported in other plecopteran mitogenomes. These novel features of the elongated CR in N. nankinensis may have functions associated with the process of replication and transcription. Finally, phylogenetic reconstruction suggested that Nemouridae was the sister-group of Capniidae. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Figure 1

Open AccessArticle Antimicrobial, Optical and Mechanical Properties of Chitosan–Starch Films with Natural Extracts
Int. J. Mol. Sci. 2017, 18(5), 997; doi:10.3390/ijms18050997
Received: 3 April 2017 / Revised: 24 April 2017 / Accepted: 26 April 2017 / Published: 5 May 2017
Cited by 1 | PDF Full-text (773 KB) | HTML Full-text | XML Full-text
Abstract
Natural extracts possess several kinds of antioxidants (anthocyanins, betalains, thymol, carvacrol, and resveratrol) that have also demonstrated antimicrobial properties. In order to study these properties, extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and resveratrol (from grapes) were obtained. Growth inhibition tests of
[...] Read more.
Natural extracts possess several kinds of antioxidants (anthocyanins, betalains, thymol, carvacrol, and resveratrol) that have also demonstrated antimicrobial properties. In order to study these properties, extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and resveratrol (from grapes) were obtained. Growth inhibition tests of mesophilic aerobes, coliforms, and fungi were conducted in films prepared from the extracts in accordance with Mexican Official Norms (NOM). Optical properties such as transparency and opacity, mechanical properties, and pH were also analyzed in these materials. The films with beetroot, cranberry, and blueberry extracts demonstrated the best antimicrobial activity against various bacteria and fungi in comparison with unmodified chitosan–starch film. This study shows that the addition of antioxidants improved the antimicrobial performance of these films. It was also found that antimicrobial properties are inherent to the films. These polymers combined with the extracts effectively inhibit or reduce microorganism growth from human and environmental contact; therefore, previous sterilization could be unnecessary in comparison with traditional plastics. The presence of extracts decreased transmittance percentages at 280 and 400 nm, as well as the transparency values, while increasing their opacity values, providing better UV–VIS light barrier properties. Despite diminished glass transition temperatures (Tg), the values obtained are still adequate for food packaging applications. Full article
(This article belongs to the Special Issue Antimicrobial Polymers 2016)
Figures

Open AccessArticle Incomplete Segregation of MSH6 Frameshift Variants with Phenotype of Lynch Syndrome
Int. J. Mol. Sci. 2017, 18(5), 999; doi:10.3390/ijms18050999
Received: 3 March 2017 / Revised: 21 April 2017 / Accepted: 2 May 2017 / Published: 6 May 2017
PDF Full-text (1133 KB) | HTML Full-text | XML Full-text
Abstract
Abstract: Lynch syndrome (LS), the most frequent form of hereditary colorectal cancer, involves mutations in mismatch repair genes. The aim of this study was to identify mutations in MSH6 from 97 subjects negative for mutations in MLH1 and MSH2. By direct
[...] Read more.
Abstract: Lynch syndrome (LS), the most frequent form of hereditary colorectal cancer, involves mutations in mismatch repair genes. The aim of this study was to identify mutations in MSH6 from 97 subjects negative for mutations in MLH1 and MSH2. By direct sequencing, we identified 27 MSH6 variants, of which, nine were novel. To verify the pathogenicity of these novel variants, we performed in silico and segregation analyses. Three novel variants were predicted by in silico analysis as damaging mutations and segregated with the disease phenotype; while a novel frameshift deletion variant that was predicted to yield a premature stop codon did not segregate with the LS phenotype in three of four cases in the family. Interestingly, another frame-shift variant identified in this study, already described in the literature, also did not segregate with the LS phenotype in one of two affected subjects in the family. In all affected subjects of both families, no mutation was detected in other MMR genes. Therefore, it is expected that within these families, other genetic factors contribute to the disease either alone or in combination with MSH6 variants. We conclude that caution should be exercised in counseling for MSH6-associated LS family members. Full article
Figures

Figure 1

Open AccessArticle Interleukin 17A Promotes Lymphocytes Adhesion and Induces CCL2 and CXCL1 Release from Brain Endothelial Cells
Int. J. Mol. Sci. 2017, 18(5), 1000; doi:10.3390/ijms18051000
Received: 21 February 2017 / Revised: 31 March 2017 / Accepted: 1 May 2017 / Published: 8 May 2017
PDF Full-text (1875 KB) | HTML Full-text | XML Full-text
Abstract
The nature of the interaction between Th17 cells and the blood–brain barrier (BBB) is critical for the development of autoimmune inflammation in the central nervous system (CNS). Tumor necrosis factor alpha (TNF-α) or interleukin 17 (IL-17) stimulation is known to enhance the adherence
[...] Read more.
The nature of the interaction between Th17 cells and the blood–brain barrier (BBB) is critical for the development of autoimmune inflammation in the central nervous system (CNS). Tumor necrosis factor alpha (TNF-α) or interleukin 17 (IL-17) stimulation is known to enhance the adherence of Th17 cells to the brain endothelium. The brain endothelial cells (bEnd.3) express Vascular cell adhesion molecule 1 (VCAM-1), the receptor responsible for inflammatory cell adhesion, which binds very late antigen 4 (VLA-4) on migrating effector lymphocytes at the early stage of brain inflammation. The present study examines the effect of the pro-inflammatory cytokines TNF-α and IL-17 on the adherence of Th17 cells to bEnd.3. The bEnd.3 cells were found to increase production of CCL2 and CXCL1 after stimulation by pro-inflammatory cytokines, while CCL2, CCL5, CCL20 and IL17 induced Th17 cell migration through a bEnd.3 monolayer. This observation may suggest potential therapeutic targets for the prevention of autoimmune neuroinflammation development in the CNS. Full article
(This article belongs to the Special Issue Cell-cell Interactions in Blood Vessels)
Figures

Open AccessArticle Molecular Pathways Involved in the Amelioration of Myocardial Injury in Diabetic Rats by Kaempferol
Int. J. Mol. Sci. 2017, 18(5), 1001; doi:10.3390/ijms18051001
Received: 20 March 2017 / Revised: 24 April 2017 / Accepted: 2 May 2017 / Published: 15 May 2017
Cited by 4 | PDF Full-text (1261 KB) | HTML Full-text | XML Full-text
Abstract
There is growing evidence that chronic hyperglycemia leads to the formation of advanced glycation end products (AGEs) which exerts its effect via interaction with the receptor for advanced glycation end products (RAGE). AGE-RAGE activation results in oxidative stress and inflammation. It is well
[...] Read more.
There is growing evidence that chronic hyperglycemia leads to the formation of advanced glycation end products (AGEs) which exerts its effect via interaction with the receptor for advanced glycation end products (RAGE). AGE-RAGE activation results in oxidative stress and inflammation. It is well known that this mechanism is involved in the pathogenesis of cardiovascular disease in diabetes. Kaempferol, a dietary flavonoid, is known to possess antioxidant, anti-apoptotic, and anti-inflammatory activities. However, little is known about the effect of kaempferol on myocardial ischemia-reperfusion (IR) injury in diabetic rats. Diabetes was induced in male albino Wistar rats using streptozotocin (70 mg/kg; i.p.), and rats with glucose level >250 mg/dL were considered as diabetic. Diabetic rats were treated with vehicle (2 mL/kg; i.p.) and kaempferol (20 mg/kg; i.p.) daily for a period of 28 days and on the 28th day, ischemia was produced by one-stage ligation of the left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed and the heart tissue was processed for biochemical, morphological, and molecular studies. Kaempferol pretreatment significantly reduced hyperglycemia, maintained hemodynamic function, suppressed AGE-RAGE axis activation, normalized oxidative stress, and preserved morphological alterations. In addition, there was decreased level of inflammatory markers (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and NF-κB), inhibition of active c-Jun N-terminal kinase (JNK) and p38 proteins, and activation of Extracellular signal regulated kinase 1/2 (ERK1/2) a prosurvival kinase. Furthermore, it also attenuated apoptosis by reducing the expression of pro-apoptotic proteins (Bax and Caspase-3), Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells, and increasing the level of anti-apoptotic protein (Bcl-2). In conclusion, kaempferol attenuated myocardial ischemia-reperfusion injury in diabetic rats by reducing AGE-RAGE/ mitogen activated protein kinase (MAPK) induced oxidative stress and inflammation. Full article
(This article belongs to the Special Issue Correlation between Nutrition, Oxidative Stress and Disease)
Figures

Open AccessCommunication An Additive Effect of Promoting Thermogenic Gene Expression in Mice Adipose-Derived Stromal Vascular Cells by Combination of Rosiglitazone and CL316,243
Int. J. Mol. Sci. 2017, 18(5), 1002; doi:10.3390/ijms18051002
Received: 29 March 2017 / Revised: 2 May 2017 / Accepted: 3 May 2017 / Published: 8 May 2017
Cited by 1 | PDF Full-text (10636 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
It is well-documented that CL316,243 (a β3 agonist) or rosiglitazone (a PPARγ agonist) can induce white adipocyte populations to brown-like adipocytes, thus increasing energy consumption and combating obesity. However, whether there is a combined effect remains unknown. In the present study, stromal vascular
[...] Read more.
It is well-documented that CL316,243 (a β3 agonist) or rosiglitazone (a PPARγ agonist) can induce white adipocyte populations to brown-like adipocytes, thus increasing energy consumption and combating obesity. However, whether there is a combined effect remains unknown. In the present study, stromal vascular cells of inguinal white adipose tissue (iWAT-SVCs for short) from mice were cultured and induced into browning by CL316,243, rosiglitazone, or both. Results showed that a combination of CL316,243 and rosiglitazone significantly upregulated the expression of the core thermogenic gene Ucp1 as well as genes related with mitochondrial function (Cidea, Cox5b, Cox7a1, Cox8b, and Cycs), compared with the treatment of CL316,243 or rosiglitazone alone. Moreover, co-treatment with rosiglitazone could reverse the downregulation of Adiponectin resulting from CL316,243 stimuli alone. Taken together, a combination of rosiglitazone and CL316,243 can produce an additive effect of promoting thermogenic gene expression and an improvement of insulin sensitivity in mouse iWAT-SVCs. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Open AccessArticle Cultivar-Specific Changes in Primary and Secondary Metabolites in Pak Choi (Brassica Rapa, Chinensis Group) by Methyl Jasmonate
Int. J. Mol. Sci. 2017, 18(5), 1004; doi:10.3390/ijms18051004
Received: 14 March 2017 / Revised: 1 May 2017 / Accepted: 2 May 2017 / Published: 7 May 2017
Cited by 2 | PDF Full-text (1553 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Glucosinolates, their hydrolysis products and primary metabolites were analyzed in five pak choi cultivars to determine the effect of methyl jasmonate (MeJA) on metabolite flux from primary metabolites to glucosinolates and their hydrolysis products. Among detected glucosinolates (total 14 glucosinolates; 9 aliphatic, 4
[...] Read more.
Glucosinolates, their hydrolysis products and primary metabolites were analyzed in five pak choi cultivars to determine the effect of methyl jasmonate (MeJA) on metabolite flux from primary metabolites to glucosinolates and their hydrolysis products. Among detected glucosinolates (total 14 glucosinolates; 9 aliphatic, 4 indole and 1 aromatic glucosinolates), indole glucosinolate concentrations (153–229%) and their hydrolysis products increased with MeJA treatment. Changes in the total isothiocyanates by MeJA were associated with epithiospecifier protein activity estimated as nitrile formation. Goitrin, a goitrogenic compound, significantly decreased by MeJA treatment in all cultivars. Changes in glucosinolates, especially aliphatic, significantly differed among cultivars. Primary metabolites including amino acids, organic acids and sugars also changed with MeJA treatment in a cultivar-specific manner. A decreased sugar level suggests that they might be a carbon source for secondary metabolite biosynthesis in MeJA-treated pak choi. The result of the present study suggests that MeJA can be an effective agent to elevate indole glucosinolates and their hydrolysis products and to reduce a goitrogenic compound in pak choi. The total glucosinolate concentration was the highest in “Chinese cabbage” in the control group (32.5 µmol/g DW), but indole glucosinolates increased the greatest in “Asian” when treated with MeJA. Full article
(This article belongs to the Special Issue Biological Activity of Natural Secondary Metabolite Products)
Figures

Open AccessArticle Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure
Int. J. Mol. Sci. 2017, 18(5), 1005; doi:10.3390/ijms18051005
Received: 16 February 2017 / Revised: 25 April 2017 / Accepted: 2 May 2017 / Published: 7 May 2017
Cited by 1 | PDF Full-text (4670 KB) | HTML Full-text | XML Full-text
Abstract
Immunostaining and fluorescence in situ hybridization (FISH) are well established methods for specific labelling of chromatin in the cell nucleus. COMBO-FISH (combinatorial oligonucleotide fluorescence in situ hybridization) is a FISH method using computer designed oligonucleotide probes specifically co-localizing at given target sites. In
[...] Read more.
Immunostaining and fluorescence in situ hybridization (FISH) are well established methods for specific labelling of chromatin in the cell nucleus. COMBO-FISH (combinatorial oligonucleotide fluorescence in situ hybridization) is a FISH method using computer designed oligonucleotide probes specifically co-localizing at given target sites. In combination with super resolution microscopy which achieves spatial resolution far beyond the Abbe Limit, it allows new insights into the nano-scaled structure and organization of the chromatin of the nucleus. To avoid nano-structural changes of the chromatin, the COMBO-FISH labelling protocol was optimized omitting heat treatment for denaturation of the target. As an example, this protocol was applied to ALU elements—dispersed short stretches of DNA which appear in different kinds in large numbers in primate genomes. These ALU elements seem to be involved in gene regulation, genomic diversity, disease induction, DNA repair, etc. By computer search, we developed a unique COMBO-FISH probe which specifically binds to ALU consensus elements and combined this DNA–DNA labelling procedure with heterochromatin immunostainings in formaldehyde-fixed cell specimens. By localization microscopy, the chromatin network-like arrangements of ALU oligonucleotide repeats and heterochromatin antibody labelling sites were simultaneously visualized and quantified. This novel approach which simultaneously combines COMBO-FISH and immunostaining was applied to chromatin analysis on the nanoscale after low-linear-energy-transfer (LET) radiation exposure at different doses. Dose-correlated curves were obtained from the amount of ALU representing signals, and the chromatin re-arrangements during DNA repair after irradiation were quantitatively studied on the nano-scale. Beyond applications in radiation research, the labelling strategy of immunostaining and COMBO-FISH with localization microscopy will also offer new potentials for analyses of subcellular elements in combination with other specific chromatin targets. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Open AccessArticle Inflammation Downregulates UCP1 Expression in Brown Adipocytes Potentially via SIRT1 and DBC1 Interaction
Int. J. Mol. Sci. 2017, 18(5), 1006; doi:10.3390/ijms18051006
Received: 11 April 2017 / Revised: 26 April 2017 / Accepted: 2 May 2017 / Published: 8 May 2017
Cited by 1 | PDF Full-text (2526 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Brown adipose tissue thermogenesis at the cost of energy is not only important for the development of obesity, but also possesses great promise in anti-obesity treatment. Uncoupling protein 1 (UCP1) expression has been reported to be under control of the intracellular deacetylase SIRT1.
[...] Read more.
Brown adipose tissue thermogenesis at the cost of energy is not only important for the development of obesity, but also possesses great promise in anti-obesity treatment. Uncoupling protein 1 (UCP1) expression has been reported to be under control of the intracellular deacetylase SIRT1. Here, we investigated the effect and mechanism of inflammation and sirtuin-1 (SIRT1) activation on the induction of thermogenic genes in immortalized brown adipocytes incubated with LPS or IL1β and mice with elevated inflammatory tone. In vitro stimulation of brown adipocytes with dibutyryl cyclic adenosine monophosthate (dbcAMP) reduced the expression of deleted in breast cancer-1 (Dbc1) (SIRT1 inhibitor) and increased the Ucp1 expression. Silencing of SIRT1 attenuated dbcAMP induction of Ucp1. In contrast, IL1β increased the expression of Dbc1 and greatly reduced the induction of Ucp1. Similarly, in vivo studies revealed decreased expression of Ucp1 in brown adipose tissue (BAT) in mice chronically infused with LPS. Resveratrol, a known SIRT1 activator, partly rescued the Ucp1 downregulation by inflammation in both the cell cultures and mice. Here, we describe how the expression of Ucp1 in BAT is controlled via SIRT1 and is reduced under inflammation and can be rescued by SIRT1 activation by resveratrol. We suggest the reduced UCP1 expression under inflammation is mediated by the increased expression of DBC1, which inhibits SIRT1 activity. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Open AccessArticle Chloramidine/Bisindolylmaleimide-I-Mediated Inhibition of Exosome and Microvesicle Release and Enhanced Efficacy of Cancer Chemotherapy
Int. J. Mol. Sci. 2017, 18(5), 1007; doi:10.3390/ijms18051007
Received: 22 February 2017 / Revised: 28 April 2017 / Accepted: 3 May 2017 / Published: 9 May 2017
Cited by 2 | PDF Full-text (1382 KB) | HTML Full-text | XML Full-text
Abstract
Microvesicle (MV) release from tumour cells influences drug retention, contributing to cancer drug resistance. Strategically regulating MV release may increase drug retention within cancer cells and allow for lower doses of chemotherapeutic drugs. The contribution of exosomes to drug retention still remains unknown.
[...] Read more.
Microvesicle (MV) release from tumour cells influences drug retention, contributing to cancer drug resistance. Strategically regulating MV release may increase drug retention within cancer cells and allow for lower doses of chemotherapeutic drugs. The contribution of exosomes to drug retention still remains unknown. Potential exosome and MV (EMV) biogenesis inhibitors, tested on human prostate cancer (PC3) cells for their capacity to inhibit EMV release, were also tested on PC3 and MCF-7 (breast cancer) cells for improving chemotherapy. Agents inhibiting EMV release most significantly, whilst maintaining cell viability, were chloramidine (Cl-amidine; 50 µM) and bisindolylmaleimide-I (10 µM). Apoptosis mediated by the chemotherapy drug 5-fluorouracil (5-FU) was significantly enhanced in PC3 cells in the presence of both these EMV inhibitors, resulting in a 62% (Cl-amidine + 5-FU) and 59% (bisindolylmaleimide-I + 5-FU) decrease in numbers of viable PC3 cells compared to 5-FU alone after 24 h. For MCF-7 cells, there were similar increased reductions of viable cells compared to 5-FU treatment alone ranging from 67% (Cl-amidine + 5-FU) to 58% (bisindolylmaleimide-I + 5-FU). Using combinatory treatment, the two EMV inhibitors further reduced the number of viable cancer cells tested. Neither inhibitor affected cell viability. Combining selected EMV inhibitors may pose as a novel strategy to enhance the efficacy of chemotherapeutic drug-mediated apoptosis. Full article
Figures

Open AccessArticle Carotid Artery Stenting and Blood–Brain Barrier Permeability in Subjects with Chronic Carotid Artery Stenosis
Int. J. Mol. Sci. 2017, 18(5), 1008; doi:10.3390/ijms18051008
Received: 13 March 2017 / Revised: 23 April 2017 / Accepted: 3 May 2017 / Published: 8 May 2017
PDF Full-text (1334 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Failure of the blood-brain barrier (BBB) is a critical event in the development and progression of diseases such as acute ischemic stroke, chronic ischemia or small vessels disease that affect the central nervous system. It is not known whether BBB breakdown in subjects
[...] Read more.
Failure of the blood-brain barrier (BBB) is a critical event in the development and progression of diseases such as acute ischemic stroke, chronic ischemia or small vessels disease that affect the central nervous system. It is not known whether BBB breakdown in subjects with chronic carotid artery stenosis can be restrained with postoperative recovery of cerebral perfusion. The aim of the study was to assess the short-term effect of internal carotid artery stenting on basic perfusion parameters and permeability surface area-product (PS) in such a population. Forty subjects (23 males) with stenosis of >70% within a single internal carotid artery and neurological symptoms who underwent a carotid artery stenting procedure were investigated. Differences in the following computed tomography perfusion (CTP) parameters were compared before and after surgery: global cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP) and PS. PS acquired by CTP is used to measure the permeability of the BBB to contrast material. In all baseline cases, the CBF and CBV values were low, while MTT and TTP were high on both the ipsi- and contralateral sides compared to reference values. PS was approximately twice the normal value. CBF was higher (+6.14%), while MTT was lower (−9.34%) on the contralateral than on the ipsilateral side. All perfusion parameters improved after stenting on both the ipsilateral (CBF +22.66%; CBV +18.98%; MTT −16.09%, TTP −7.62%) and contralateral (CBF +22.27%, CBV +19.72%, MTT −14.65%, TTP −7.46%) sides. PS decreased by almost half: ipsilateral −48.11%, contralateral −45.19%. The decline in BBB permeability was symmetrical on the ipsi- and contralateral sides to the stenosis. Augmented BBB permeability can be controlled by surgical intervention in humans. Full article
(This article belongs to the Special Issue Cerebral Blood Flow and Metabolism)
Figures

Figure 1

Open AccessArticle Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome
Int. J. Mol. Sci. 2017, 18(5), 1009; doi:10.3390/ijms18051009
Received: 12 April 2017 / Revised: 30 April 2017 / Accepted: 4 May 2017 / Published: 8 May 2017
Cited by 1 | PDF Full-text (4765 KB) | HTML Full-text | XML Full-text
Abstract
Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants
[...] Read more.
Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains. Full article
(This article belongs to the Special Issue Fluorescent Proteins)
Figures

Open AccessArticle Inhibiting HDAC1 Enhances the Anti-Cancer Effects of Statins through Downregulation of GGTase-Iβ Expression
Int. J. Mol. Sci. 2017, 18(5), 1010; doi:10.3390/ijms18051010
Received: 26 March 2017 / Revised: 23 April 2017 / Accepted: 1 May 2017 / Published: 8 May 2017
PDF Full-text (9309 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hydroxy-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, namely statins, are potential anti-tumor agents. Previously, we showed that a pan-histone deacetylase (HDAC) inhibitor enhances the anti-tumor effects of the HMG-CoA inhibitor. However, the underlying mechanisms were not fully understood. Cancer cell lines (CAL-27 and SACC-83) were
[...] Read more.
Hydroxy-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, namely statins, are potential anti-tumor agents. Previously, we showed that a pan-histone deacetylase (HDAC) inhibitor enhances the anti-tumor effects of the HMG-CoA inhibitor. However, the underlying mechanisms were not fully understood. Cancer cell lines (CAL-27 and SACC-83) were exposed to pan-HDAC inhibitor, or HDAC1 inhibitor, or geranylgeranyl transferase type I (GGTase-I) inhibitor alone or in combination with statin. Cell viability, apoptosis, migration, and invasion were assessed by Cell Count Kit-8, 4′,6-diamidino-2-phenylindole staining, and transwell assay, respectively. A xenograft model was used for assessing tumor growth in vivo. Western blot and real-time PCR were used to assess the expression of genes. We observed that inhibiting HDAC1 could enhance the anti-tumor effects of statins both in vitro and in vivo. Inhibiting HDAC1 blocked the statin-induced upregulation of geranylgeranyl transferase type Iβ subunit (GGTase-Iβ), resulting in an enhancement of the anti-cancer effects of statin. Overexpression of GGTase-Iβ or constitutively active RhoA abolished the enhancement by inhibiting HDAC1 on anti-tumor effects of statins. The HDAC1 inhibitor failed to enhance cytotoxicity in non-tumor primary cells treated with statin. Inhibiting HDAC1 enhanced the anti-cancer effects of statins through downregulation of GGTase-Iβ expression, and thus further inactivation of RhoA. A combination of statin with HDAC1 or GGTase-I inhibitor would be a new strategy for cancer chemotherapy. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Open AccessArticle Atractylenolide-I Protects Human SH-SY5Y Cells from 1-Methyl-4-Phenylpyridinium-Induced Apoptotic Cell Death
Int. J. Mol. Sci. 2017, 18(5), 1012; doi:10.3390/ijms18051012
Received: 24 January 2017 / Revised: 21 April 2017 / Accepted: 3 May 2017 / Published: 8 May 2017
PDF Full-text (2746 KB) | HTML Full-text | XML Full-text
Abstract
Oxidative stress and apoptosis are the major mechanisms that induce dopaminergic cell death. Our study investigates the protective effects of atractylenolide-I (ATR-I) on 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity in human dopaminergic SH-SY5Y cells, as well as its underlying mechanism. Our experimental data indicates
[...] Read more.
Oxidative stress and apoptosis are the major mechanisms that induce dopaminergic cell death. Our study investigates the protective effects of atractylenolide-I (ATR-I) on 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity in human dopaminergic SH-SY5Y cells, as well as its underlying mechanism. Our experimental data indicates that ATR-I significantly inhibits the loss of cell viability induced by MPP+ in SH-SY5Y cells. To further unravel the mechanism, we examined the effect of ATR-I on MPP+-induced apoptotic cell death characterized by an increase in the Bax/Bcl-2 mRNA ratio, the release of cytochrome-c, and the activation of caspase-3 leading to elevated levels of cleaved poly(ADP-ribose) polymerase (PARP) resulting in SH-SY5Y cell death. Our results demonstrated that ATR-I decreases the level of pro-apoptotic proteins induced by MPP+ and also restored Bax/Bcl-2 mRNA levels, which are critical for inducing apoptosis. In addition, ATR-I demonstrated a significant increase in the protein expression of heme-oxygenase in MPP+-treated SH-SY5Y cells. These results suggest that the pharmacological effect of ATR-I may be, at least in part, caused by the reduction in pro-apoptotic signals and also by induction of anti-oxidant protein. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Figures

Figure 1

Open AccessArticle Imipramine Protects against Bone Loss by Inhibition of Osteoblast-Derived Microvesicles
Int. J. Mol. Sci. 2017, 18(5), 1013; doi:10.3390/ijms18051013
Received: 8 March 2017 / Revised: 2 April 2017 / Accepted: 3 May 2017 / Published: 8 May 2017
PDF Full-text (7335 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The maintenance of bone homeostasis is largely dependent upon cellular communication between osteoclasts and osteoblasts. Microvesicles (MVs) represent a novel mechanism for osteoblasts and osteoclasts communication, as has been demonstrated in our previous study. Sphingomyelinases catalyze the hydrolysis of sphingomyelin, which leads to
[...] Read more.
The maintenance of bone homeostasis is largely dependent upon cellular communication between osteoclasts and osteoblasts. Microvesicles (MVs) represent a novel mechanism for osteoblasts and osteoclasts communication, as has been demonstrated in our previous study. Sphingomyelinases catalyze the hydrolysis of sphingomyelin, which leads to increased membrane fluidity and facilitates MV generation. This effect can be inhibited by imipramine, an inhibitor of acid sphingomyelinase (ASM), which is also known as a member of tricyclic antidepressants (TCAs). A recent study has reported that in vitro treatment of imipramine blocked MVs release from glial cells. However, whether imipramine has this effect on osteoblast-derived MVs and whether it is involved in MV generation in vivo is unclear. Here, our investigations found that imipramine slightly reduced the expression of osteoblast differentiation of related genes, but did not impact parathyroid hormone (PTH) regulation for these genes and also did not affect receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast formation; however, imipramine treatment blocked MVs released from osteoblasts and inhibited MV-induced osteoclast formation. In vivo, mice administrated with imipramine were protected from ovariectomy-induced bone loss as evaluated by various bone structural parameters and serum levels of biochemical markers. Our results suggest that inhibiting the production of MVs containing RANKL in vivo is very important for preventing bone loss. Full article
Figures

Open AccessArticle The Dose–Response Association between Nitrogen Dioxide Exposure and Serum Interleukin-6 Concentrations
Int. J. Mol. Sci. 2017, 18(5), 1015; doi:10.3390/ijms18051015
Received: 31 March 2017 / Revised: 26 April 2017 / Accepted: 28 April 2017 / Published: 8 May 2017
Cited by 1 | PDF Full-text (800 KB) | HTML Full-text | XML Full-text
Abstract
Systemic inflammation is an integral part of chronic obstructive pulmonary disease (COPD), and air pollution is associated with cardiorespiratory mortality, yet the interrelationships are not fully defined. We examined associations between nitrogen dioxide (NO2) exposure (as a marker of traffic-related air
[...] Read more.
Systemic inflammation is an integral part of chronic obstructive pulmonary disease (COPD), and air pollution is associated with cardiorespiratory mortality, yet the interrelationships are not fully defined. We examined associations between nitrogen dioxide (NO2) exposure (as a marker of traffic-related air pollution) and pro-inflammatory cytokines, and investigated effect modification and mediation by post-bronchodilator airflow obstruction (post-BD-AO) and cardiovascular risk. Data from middle-aged participants in the Tasmanian Longitudinal Health Study (TAHS, n = 1389) were analyzed by multivariable logistic regression, using serum interleukin (IL)-6, IL-8 and tumor necrosis factor-α (TNF-α) as the outcome. Mean annual NO2 exposure was estimated at residential addresses using a validated satellite-based land-use regression model. Post-BD-AO was defined by post-BD forced expiratory ratio (FEV1/FVC) < lower limit of normal, and cardiovascular risk by a history of either cerebrovascular or ischaemic heart disease. We found a positive association with increasing serum IL-6 concentration (geometric mean 1.20 (95% CI: 1.1 to 1.3, p = 0.001) per quartile increase in NO2). This was predominantly a direct relationship, with little evidence for either effect modification or mediation via post-BD-AO, or for the small subgroup who reported cardiovascular events. However, there was some evidence consistent with serum IL-6 being on the causal pathway between NO2 and cardiovascular risk. These findings raise the possibility that the interplay between air pollution and systemic inflammation may differ between post-BD airflow obstruction and cardiovascular diseases. Full article
(This article belongs to the Special Issue Inhaled Pollutants Modulate Respiratory and Systemic Diseases)
Figures

Open AccessArticle Impaired Platelet Aggregation and Rebalanced Hemostasis in Patients with Chronic Hepatitis C Virus Infection
Int. J. Mol. Sci. 2017, 18(5), 1016; doi:10.3390/ijms18051016
Received: 3 March 2017 / Revised: 3 May 2017 / Accepted: 4 May 2017 / Published: 8 May 2017
Cited by 1 | PDF Full-text (773 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Increased risk of both cardiovascular disease (CVD) and bleeding has been found in patients with chronic hepatitis C (CHC) infection, and a re-balanced hemostasis has been proposed. The aim of this study was to investigate functional whole blood coagulation and platelet function in
[...] Read more.
Increased risk of both cardiovascular disease (CVD) and bleeding has been found in patients with chronic hepatitis C (CHC) infection, and a re-balanced hemostasis has been proposed. The aim of this study was to investigate functional whole blood coagulation and platelet function in CHC infection. The prospective study included 82 patients with CHC infection (39 with advanced liver fibrosis and 43 with no or mild liver fibrosis) and 39 healthy controls. A total of 33 patients were treated for CHC infection and achieved sustained virological response (SVR). Baseline and post-treatment blood samples were collected. Hemostasis was assessed by both standard coagulation tests and functional whole blood hemostatic assays (thromboelastograhy (TEG), and platelet aggregation (Multiplate). Patients with CHC and advanced fibrosis had impaired platelet aggregation both compared to patients with no or mild fibrosis and to healthy controls. Patients with CHC and advanced fibrosis also had lower antithrombin, platelet count, and coagulation factors II-VII-X compared to healthy controls. In contrast, TEG did not differ between groups. In treated patients achieving SVR, post-treatment platelet count was higher than pre-treatment counts (p = 0.033) and ADPtest, ASPItest, and RISTOhightest all increased post treatment (all p < 0.05). All Multiplate tests values, however, remained below those in the healthy controls. CHC-infected patients displayed evidence of rebalanced hemostasis with only partly hemostatic normalization in patients achieving SVR. The implications of rebalanced hemostasis and especially the impact on risk of CVD and bleeding warrants further studies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Figure 1

Open AccessArticle Characterization of Copy Number Variation’s Potential Role in Marek’s Disease
Int. J. Mol. Sci. 2017, 18(5), 1020; doi:10.3390/ijms18051020
Received: 27 March 2017 / Revised: 22 April 2017 / Accepted: 4 May 2017 / Published: 9 May 2017
PDF Full-text (3930 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Marek’s Disease (MD) is a highly contagious pathogenic and oncogenic disease primarily affecting chickens. Chicken Lines 63 and 72, as well as their recombinant congenic strains (RCS) with varied susceptibility to MD, are ideal models to study the complex mechanisms of genetic resistance
[...] Read more.
Marek’s Disease (MD) is a highly contagious pathogenic and oncogenic disease primarily affecting chickens. Chicken Lines 63 and 72, as well as their recombinant congenic strains (RCS) with varied susceptibility to MD, are ideal models to study the complex mechanisms of genetic resistance to MD. In this study, we investigated copy number variation (CNV) in these inbred chicken lines using the Affymetrix Axiom HD 600 K SNP genotyping array. We detected 393 CNV segments across all ten chicken lines, of which 12 CNVs were specifically identified in Line 72. We then assessed genetic structure based on CNV and observed markedly different patterns. Finally, we validated two deletion events in Line 72 and correlated them with genes expression using qPCR and RNA-seq, respectively. Our combined results indicated that these two CNV deletions were likely to contribute to MD susceptibility. Full article
(This article belongs to the Special Issue Exploring the Genotype–Phenotype Map to Explain Complex Traits)
Figures

Open AccessArticle Plasticizing Effects of Polyamines in Protein-Based Films
Int. J. Mol. Sci. 2017, 18(5), 1026; doi:10.3390/ijms18051026
Received: 7 April 2017 / Revised: 5 May 2017 / Accepted: 6 May 2017 / Published: 10 May 2017
Cited by 2 | PDF Full-text (3079 KB) | HTML Full-text | XML Full-text
Abstract
Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer
[...] Read more.
Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer glycerol. Our results showed that both polyamines decreased the negative zeta potential of all samples under pH 8.0 as a consequence of their ionic interaction with proteins. At the same time, they enhanced the dimension of nanoparticles under pH 8.0 as a result of macromolecular aggregations. By using native protein solutions, handleable films were obtained only from samples containing either a minimum of 33 mM glycerol or 4 mM spermidine, or both compounds together at lower glycerol concentrations. However, 2 mM spermidine was sufficient to obtain handleable film by using heat-treated samples without glycerol. Conversely, brittle materials were obtained by spermine alone, thus indicating that only spermidine was able to act as an ionic plasticizer. Lastly, both polyamines, mainly spermine, were found able to act as “glycerol-like” plasticizers at concentrations higher than 5 mM under experimental conditions at which their amino groups are undissociated. Our findings open new perspectives in obtaining protein-based films by using aliphatic polycations as components. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Figures

Open AccessArticle The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats
Int. J. Mol. Sci. 2017, 18(5), 1027; doi:10.3390/ijms18051027
Received: 30 March 2017 / Revised: 30 April 2017 / Accepted: 5 May 2017 / Published: 10 May 2017
Cited by 2 | PDF Full-text (3081 KB) | HTML Full-text | XML Full-text
Abstract
This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats;
[...] Read more.
This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function. Full article
(This article belongs to the Special Issue Chemically-Induced DNA Damage, Mutagenesis, and Cancer)
Figures

Figure 1a

Open AccessArticle PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein–Protein Interactions from Protein Sequences
Int. J. Mol. Sci. 2017, 18(5), 1029; doi:10.3390/ijms18051029
Received: 24 March 2017 / Revised: 24 April 2017 / Accepted: 29 April 2017 / Published: 11 May 2017
Cited by 4 | PDF Full-text (736 KB) | HTML Full-text | XML Full-text
Abstract
Protein–protein interactions (PPIs) are essential for most living organisms’ process. Thus, detecting PPIs is extremely important to understand the molecular mechanisms of biological systems. Although many PPIs data have been generated by high-throughput technologies for a variety of organisms, the whole interatom is
[...] Read more.
Protein–protein interactions (PPIs) are essential for most living organisms’ process. Thus, detecting PPIs is extremely important to understand the molecular mechanisms of biological systems. Although many PPIs data have been generated by high-throughput technologies for a variety of organisms, the whole interatom is still far from complete. In addition, the high-throughput technologies for detecting PPIs has some unavoidable defects, including time consumption, high cost, and high error rate. In recent years, with the development of machine learning, computational methods have been broadly used to predict PPIs, and can achieve good prediction rate. In this paper, we present here PCVMZM, a computational method based on a Probabilistic Classification Vector Machines (PCVM) model and Zernike moments (ZM) descriptor for predicting the PPIs from protein amino acids sequences. Specifically, a Zernike moments (ZM) descriptor is used to extract protein evolutionary information from Position-Specific Scoring Matrix (PSSM) generated by Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then, PCVM classifier is used to infer the interactions among protein. When performed on PPIs datasets of Yeast and H. Pylori, the proposed method can achieve the average prediction accuracy of 94.48% and 91.25%, respectively. In order to further evaluate the performance of the proposed method, the state-of-the-art support vector machines (SVM) classifier is used and compares with the PCVM model. Experimental results on the Yeast dataset show that the performance of PCVM classifier is better than that of SVM classifier. The experimental results indicate that our proposed method is robust, powerful and feasible, which can be used as a helpful tool for proteomics research. Full article
(This article belongs to the Special Issue Special Protein Molecules Computational Identification)
Figures

Open AccessArticle The Potential of Triterpenoids from Loquat Leaves (Eriobotrya japonica) for Prevention and Treatment of Skin Disorder
Int. J. Mol. Sci. 2017, 18(5), 1030; doi:10.3390/ijms18051030
Received: 25 February 2017 / Revised: 5 May 2017 / Accepted: 6 May 2017 / Published: 11 May 2017
PDF Full-text (1605 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The leaves of loquat (Eriobotrya japonica) possess high medicinal value and have been used as traditional medicines. However, there are no evidence-based studies on the skin-care effects of E. japonica leaves. To explore new biological activities of E. japonica leaves against
[...] Read more.
The leaves of loquat (Eriobotrya japonica) possess high medicinal value and have been used as traditional medicines. However, there are no evidence-based studies on the skin-care effects of E. japonica leaves. To explore new biological activities of E. japonica leaves against skin disorder and to gain a better understanding of the chemical components associated with bioactivities, we evaluated 18 triterpenoids from E. japonica leaves on anti-melanogenesis, anti-acne, anti-allergy and anti-aging activities. Our results revealed that eight compounds showed anti-melanogenesis activity, of which ursolic acid (1) and maslinic acid (7) were the most potent with the similar selective index to that of arbutin. Structure–activity relationship and possible mechanism of active compounds were proposed. Twelve compounds exhibited anti-acne effect; ursolic acid (1), maslinic acid (7), corosolic acid (8) and euscaphic acid (12) showed highest activities against P. acnes. Four compounds displayed anti-allergy and anti-inflammatory activity; 3-epicorosolic acid (9) and euscaphic acid (12) showed marked activity against β-hexosaminidase release. Finally, ursolic acid (1), pomolic acid (10), colosolic acid (8) and its methylated derivative (6) exhibited the highest anti-aging activity by stimulating collagen and hyaluronic acid (HA) production. Our findings provide valuable evidence that E. japonica leaves have potential applications as ingredients of function foods or cosmetics for health benefits and a number of triterpenoids may play an important role in these bioactivities. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Figures