E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "ECSOC-20"

A special issue of Molecules (ISSN 1420-3049).

Deadline for manuscript submissions: closed (30 June 2017)

Special Issue Editor

Guest Editor
Dr. Julio A. Seijas Vázquez

Departamento de Química Orgánica, Universidad de Santiago de Compostela, Facultad de Ciencias-Campus de Lugo, Alfonso X el Sabio, 27002 Lugo, Spain
Website | E-Mail
Phone: +34 982824062
Fax: +34 982 285 872
Interests: synthesis of compounds with biologic activity; synthesis of compounds with interest for agro-food field; solation, estructural determination and synthesis of natural products; microwave organic reactions enhancement

Special Issue Information

Dear Colleagues,

Electronic conferences on synthetic organic chemistry (ECSOC) are a series of conferences maintained through the internet since 1997, an original initiative by MDPI, and later consolidated with the contribution of the University of Santiago de Compostela (Spain). Nowadays it constitutes the first and oldest electronic conference in the world. It maintains its character of free participation, with contributions considered as preliminary reports on edge achievements, and registration as a distinctive standard of the world wide web open access character.

It covers different sections of organic synthesis:

  1. General Organic Synthesis
  2. Bioorganic, Medicinal and Natural Products Chemistry
  3. Microwave Assisted Synthesis
  4. Polymer and Supramolecular Chemistry
  5. Computational Chemistry
  6. Ionic Liquids

For more information on The 20th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-20), please go to: http://sciforum.net/conference/ecsoc-20

Dr. Julio A. Seijas Vázquez
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

 

Published Papers (7 papers)

View options order results:
result details:
Displaying articles 1-7
Export citation of selected articles as:

Research

Open AccessArticle Ionic Liquid-Catalyzed Green Protocol for Multi-Component Synthesis of Dihydropyrano[2,3-c]pyrazoles as Potential Anticancer Scaffolds
Molecules 2017, 22(10), 1628; doi:10.3390/molecules22101628
Received: 1 August 2017 / Revised: 22 September 2017 / Accepted: 24 September 2017 / Published: 28 September 2017
PDF Full-text (1070 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of 6-amino-4-substituted-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles 5aj were synthesized via one-pot, four-component condensation reactions of aryl aldehydes 1aj, propanedinitrile (2), hydrazine hydrate (3) and ethyl acetoacetate (4) under solvent-free conditions. We report
[...] Read more.
A series of 6-amino-4-substituted-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles 5aj were synthesized via one-pot, four-component condensation reactions of aryl aldehydes 1aj, propanedinitrile (2), hydrazine hydrate (3) and ethyl acetoacetate (4) under solvent-free conditions. We report herein the use of the Brønsted acid ionic liquid (BAIL) triethylammonium hydrogen sulphate [Et3NH][HSO4] as catalyst for this multi-component synthesis. Compared with the available reaction methodology, this new method has consistent advantages, including excellent yields, a short reaction time, mild reaction conditions and catalyst reusability. Selected synthesized derivatives were evaluated for in vitro anticancer activity against four human cancer cell lines viz. melanoma cancer cell line (SK-MEL-2), breast cancer cell line(MDA-MB-231), leukemia cancer cell line (K-562) and cervical cancer cell line (HeLa). Compounds 5b, 5d, 5g, 5h and 5j exhibited promising anticancer activity against all selected human cancer cell lines, except HeLa. Molecular docking studies also confirmed 5b and 5d as good lead molecules. An in silico ADMET study of the synthesized anticancer agents indicated good oral drug-like behavior and non-toxic nature. Full article
(This article belongs to the Special Issue ECSOC-20)
Figures

Open AccessArticle Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenyl)carbamoyl]- and 1-[(2-Nitrophenyl)carbamoyl]naphthalen-2-yl Alkylcarbamates
Molecules 2017, 22(7), 1199; doi:10.3390/molecules22071199
Received: 16 June 2017 / Revised: 11 July 2017 / Accepted: 14 July 2017 / Published: 17 July 2017
Cited by 2 | PDF Full-text (1109 KB) | HTML Full-text | XML Full-text
Abstract
Eight 1-[(2-chlorophenyl)carbamoyl]naphthalen-2-yl alkylcarbamates and eight 1-[(2-nitrophenyl)carbamoyl]naphthalen-2-yl alkylcarbamates were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity of the compounds was relatively low; the corresponding IC50 values ranged
[...] Read more.
Eight 1-[(2-chlorophenyl)carbamoyl]naphthalen-2-yl alkylcarbamates and eight 1-[(2-nitrophenyl)carbamoyl]naphthalen-2-yl alkylcarbamates were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity of the compounds was relatively low; the corresponding IC50 values ranged from 0.05 to 0.664 mmol/L; and the highest activity within the series of compounds was observed for 1-[(2-chlorophenyl)-carbamoyl]naphthalen-2-yl propylcarbamate. It has been proven that the compounds are PET-inhibitors in photosystem II. Despite rather low PET-inhibiting activities, primary structure-activity trends can be discussed. Full article
(This article belongs to the Special Issue ECSOC-20)
Figures

Figure 1

Open AccessFeature PaperArticle Facile Synthesis of Novel Coumarin Derivatives, Antimicrobial Analysis, Enzyme Assay, Docking Study, ADMET Prediction and Toxicity Study
Molecules 2017, 22(7), 1172; doi:10.3390/molecules22071172
Received: 29 June 2017 / Accepted: 9 July 2017 / Published: 13 July 2017
Cited by 1 | PDF Full-text (1866 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The work reports the synthesis under solvent-free condition using the ionic liquid [Et3NH][HSO4] as a catalyst of fifteen novel 3-((dicyclohexylamino)(substituted phenyl/heteryl)-methyl)-4-hydroxy-2H-chromen-2-onederivatives 4ao as potential antimicrobial agents. The structures of the synthesized compounds were confirmed by
[...] Read more.
The work reports the synthesis under solvent-free condition using the ionic liquid [Et3NH][HSO4] as a catalyst of fifteen novel 3-((dicyclohexylamino)(substituted phenyl/heteryl)-methyl)-4-hydroxy-2H-chromen-2-onederivatives 4ao as potential antimicrobial agents. The structures of the synthesized compounds were confirmed by IR, 1H-NMR, 13C-NMR, mass spectral studies and elemental analyses. All the synthesized compounds were evaluated for their in vitro antifungal and antibacterial activity. The compound 4k bearing 4-hydroxy-3-ethoxy group on the phenyl ring was found to be the most active antifungal agent. The compound 4e bearing a 2,4-difluoro group on the phenyl ring was found to be the most active antibacterial agent. The mode of action of the most promising antifungal compound 4k was established by an ergosterol extraction and quantitation assay. From the assay it was found that 4k acts by inhibition of ergosterol biosynthesis in C. albicans. Molecular docking studies revealed a highly spontaneous binding ability of the tested compounds to the active site of lanosterol 14α-demethylase, which suggests that the tested compounds inhibit the synthesis of this enzyme. The synthesized compounds were analyzed for in silico ADMET properties to establish oral drug like behavior and showed satisfactory results. To establish the antimicrobial selectivity and safety, the most active compounds 4e and 4k were further tested for cytotoxicity against human cancer cell line HeLa and were found to be non-cytotoxic in nature. An in vivo acute oral toxicity study was also performed for the most active compounds 4e and 4k and results indicated that the compounds are non-toxic. Full article
(This article belongs to the Special Issue ECSOC-20)
Figures

Open AccessArticle Effects on Rotational Dynamics of Azo and Hydrazodicarboxamide-Based Rotaxanes
Molecules 2017, 22(7), 1078; doi:10.3390/molecules22071078
Received: 1 June 2017 / Revised: 26 June 2017 / Accepted: 26 June 2017 / Published: 28 June 2017
PDF Full-text (2042 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The synthesis of novel hydrogen-bonded [2]rotaxanes having two pyridine rings in the macrocycle and azo- and hydrazodicarboxamide-based templates decorated with four cyclohexyl groups is described. The different affinity of the binding sites for the benzylic amide macrocycle and the formation of programmed non-covalent
[...] Read more.
The synthesis of novel hydrogen-bonded [2]rotaxanes having two pyridine rings in the macrocycle and azo- and hydrazodicarboxamide-based templates decorated with four cyclohexyl groups is described. The different affinity of the binding sites for the benzylic amide macrocycle and the formation of programmed non-covalent interactions between the interlocked components have an important effect on the dynamic behavior of these compounds. Having this in mind, the chemical interconversion between the azo and hydrazo forms of the [2]rotaxane was investigated to provide a chemically-driven interlocked system enable to switch its circumrotation rate as a function of the oxidation level of the binding site. Different structural modifications were carried out to further functionalize the nitrogen of the pyridine rings, including oxidation, alkylation or protonation reactions, affording interlocked azo-derivatives whose rotation dynamics were also analyzed. Full article
(This article belongs to the Special Issue ECSOC-20)
Figures

Open AccessArticle Microwave-Assisted Facile Synthesis, Anticancer Evaluation and Docking Study of N-((5-(Substituted methylene amino)-1,3,4-thiadiazol-2-yl)methyl) Benzamide Derivatives
Molecules 2017, 22(6), 995; doi:10.3390/molecules22060995
Received: 18 May 2017 / Revised: 8 June 2017 / Accepted: 12 June 2017 / Published: 15 June 2017
Cited by 3 | PDF Full-text (1273 KB) | HTML Full-text | XML Full-text
Abstract
In the present work, 12 novel Schiff’s bases containing a thiadiazole scaffold and benzamide groups coupled through appropriate pharmacophore were synthesized. These moieties are associated with important biological properties. A facile, solvent-free synthesis of a series of novel 7(al
[...] Read more.
In the present work, 12 novel Schiff’s bases containing a thiadiazole scaffold and benzamide groups coupled through appropriate pharmacophore were synthesized. These moieties are associated with important biological properties. A facile, solvent-free synthesis of a series of novel 7(al) N-((5-(substituted methylene amino)-1,3,4-thiadiazol-2-yl)methyl) benzamide was carried out under microwave irradiation. Structures of the synthesized compounds were confirmed by IR, NMR, mass spectral study and elemental analysis. All the synthesized hybrids were evaluated for their in vitro anticancer activity against a panel of four human cancer cell lines, viz. SK-MEL-2 (melanoma), HL-60 (leukemia), HeLa (cervical cancer), MCF-7 (breast cancer) and normal breast epithelial cell (MCF-10A) using 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. Most of the synthesized compounds exhibited promising anticancer activity, showed comparable GI50 values comparable to that of the standard drug Adriamycin. The compounds 7k, 7l, 7b, and 7a were found to be the most promising anticancer agents in this study. A molecular docking study was performed to predict the probable mechanism of action and computational study of the synthesized compounds 7(al) was performed to predict absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, by using QikProp v3.5 (Schrödinger LLC). The results showed the good oral drug-like behavior of the synthesized compounds 7(al). Full article
(This article belongs to the Special Issue ECSOC-20)
Figures

Open AccessArticle Microwave-Assisted Synthesis of Imidazo[4,5-f][1,10]phenanthroline Derivatives as Apoptosis Inducers in Chemotherapy by Stabilizing Bcl-2 G-quadruplex DNA
Molecules 2017, 22(5), 829; doi:10.3390/molecules22050829
Received: 23 March 2017 / Revised: 11 May 2017 / Accepted: 14 May 2017 / Published: 20 May 2017
PDF Full-text (2350 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Herein, a series of imidazo[4,5-f][1,10] phenanthroline derivatives RPIP (PIP = imidazo [4,5-f][1,10] phenanthroline, R = NO2, 1; CF3, 2; Cl, 3; OH, 4) have been synthesized in yields of 82.3–94.7% at
[...] Read more.
Herein, a series of imidazo[4,5-f][1,10] phenanthroline derivatives RPIP (PIP = imidazo [4,5-f][1,10] phenanthroline, R = NO2, 1; CF3, 2; Cl, 3; OH, 4) have been synthesized in yields of 82.3–94.7% at 100 °C under the irradiation of microwave. MTT assay has been utilized to evaluate the inhibitory activity (IC50) of these compounds against the growth of various tumor cells, and the results revealed that these compounds, especially 1, exhibited excellent inhibitory activity against the growth of A549 cells with IC50 of 15.03 μM. Moreover, it’s also confirmed that 1 can penetrate into the membrane of tumor cells and distribute in mitochondria when observed under microscopy, resulting apoptosis of tumor cells. The further studies showed that 1 can bind to bcl-2 G-quadruplex DNA, which demonstrated by the increase of melting point of bcl-2 G4 DNA in the presence of 1, as well as electronic titration and emission spectra. In a word, this kind of compound may develop as a potential apoptosis inducer in cancer chemotherapy via binding and stabilizing to the bcl-2 G-quadruplex DNA. Full article
(This article belongs to the Special Issue ECSOC-20)
Figures

Open AccessArticle Evaluation of Tanshinone IIA Developmental Toxicity in Zebrafish Embryos
Molecules 2017, 22(4), 660; doi:10.3390/molecules22040660
Received: 25 February 2017 / Revised: 9 April 2017 / Accepted: 15 April 2017 / Published: 21 April 2017
PDF Full-text (4159 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Tanshinone IIA (Tan-IIA) is derived from the dried roots of Salvia miltiorrhiza Bunge, a traditional Chinese medicine. Although Salvia miltiorrhiza has been applied for many years, the toxicity of the mono-constituent of Salvia miltiorrhiza, tanshinone IIA, is still understudied. This study evaluated
[...] Read more.
Tanshinone IIA (Tan-IIA) is derived from the dried roots of Salvia miltiorrhiza Bunge, a traditional Chinese medicine. Although Salvia miltiorrhiza has been applied for many years, the toxicity of the mono-constituent of Salvia miltiorrhiza, tanshinone IIA, is still understudied. This study evaluated the cardiotoxicity and developmental malformations of Tan-IIA by using zebrafish normal embryos and dechorionated embryos. After treatment with Tan-IIA in different concentrations for four-day periods, obvious pericardial edema, spinal curvature, and even missing tails were observed in zebrafish embryos. The LC50 values in the dechorionated embryo group at 72 h post-fertilization (hpf) and 96 hpf were 18.5 μM and 12.8 μM, respectively, and the teratogenicity was manifested at a concentration of about 1 µM. The main endpoints of teratogenicity were scoliosis, malformation of tail, and pericardium edema. Our findings displayed the potential cardiotoxicity and severe impact on the abnormal development of Tan-IIA in zebrafish embryo at high concentrations, which may help avoid the risk of its clinical application. Full article
(This article belongs to the Special Issue ECSOC-20)
Figures

Figure 1

Back to Top