E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "ECSOC-19"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Organic Synthesis".

Deadline for manuscript submissions: closed (30 May 2016)

Special Issue Editor

Guest Editor
Dr. Julio A. Seijas Vázquez

Departamento de Química Orgánica, Universidad de Santiago de Compostela, Facultad de Ciencias-Campus de Lugo, Alfonso X el Sabio, 27002 Lugo, Spain
Website | E-Mail
Phone: +34 982824062
Fax: +34 982 285 872
Interests: synthesis of compounds with biologic activity; synthesis of compounds with interest for agro-food field; solation, estructural determination and synthesis of natural products; microwave organic reactions enhancement

Special Issue Information

Dear Colleagues,

For more information on The 19th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-19), please go to: http://sciforum.net/conf/ecsoc-19

Published Papers (5 papers)

View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:

Research

Open AccessArticle New Stable Cu(I) Catalyst Supported on Weakly Acidic Polyacrylate Resin for Green C-N Coupling: Synthesis of N-(Pyridin-4-yl)benzene Amines and N,N-Bis(pyridine-4-yl)benzene Amines
Molecules 2017, 22(1), 2; doi:10.3390/molecules22010002
Received: 19 October 2016 / Revised: 30 November 2016 / Accepted: 5 December 2016 / Published: 22 December 2016
PDF Full-text (8639 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions
[...] Read more.
A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated. Full article
(This article belongs to the Special Issue ECSOC-19)
Figures

Open AccessArticle Ultrasound Mediated One-Pot, Three Component Synthesis, Docking and ADME Prediction of Novel 5-Amino-2-(4-chlorophenyl)-7-Substituted Phenyl-8,8a-dihydro-7H-(1,3,4)thiadiazolo(3,2-α)pyrimidine-6-carbonitrile Derivatives as Anticancer Agents
Molecules 2016, 21(8), 894; doi:10.3390/molecules21080894
Received: 28 May 2016 / Revised: 4 July 2016 / Accepted: 5 July 2016 / Published: 29 July 2016
Cited by 2 | PDF Full-text (2440 KB) | HTML Full-text | XML Full-text
Abstract
Herein, we report an environmentally friendly, rapid, and convenient one-pot ultrasound-promoted synthesis of 5-amino-2-(4-chlorophenyl)-7-substituted phenyl-8,8a-dihydro-7H-(1,3,4)thiadiazolo(3,2-α)pyrimidine-6-carbonitrile derivatives. The in-vitro anticancer activities of these compounds were evaluated against four human tumor cell lines. Among all the synthesized derivatives, compound 4i, which has
[...] Read more.
Herein, we report an environmentally friendly, rapid, and convenient one-pot ultrasound-promoted synthesis of 5-amino-2-(4-chlorophenyl)-7-substituted phenyl-8,8a-dihydro-7H-(1,3,4)thiadiazolo(3,2-α)pyrimidine-6-carbonitrile derivatives. The in-vitro anticancer activities of these compounds were evaluated against four human tumor cell lines. Among all the synthesized derivatives, compound 4i, which has substituent 3-hydroxy-4-methoxyphenyl is found to have the highest GI50 value of 32.7 μM, 55.3 μM, 34.3 μM, 28.9 μM for MCF-7, K562, HeLa and PC-3 cancer cell lines respectively. A docking study of the newly synthesized compounds were performed, and the results showed good binding mode in the active site of thymidylate synthase enzyme. ADME properties of synthesized compounds were also studied and showed good drug like properties. Full article
(This article belongs to the Special Issue ECSOC-19)
Figures

Open AccessArticle Synthesis and Characterization of Novel Cu(II), Pd(II) and Pt(II) Complexes with 8-Ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-13-one-thiosemicarbazone: Antimicrobial and in Vitro Antiproliferative Activity
Molecules 2016, 21(5), 674; doi:10.3390/molecules21050674
Received: 21 March 2016 / Revised: 30 April 2016 / Accepted: 16 May 2016 / Published: 21 May 2016
Cited by 4 | PDF Full-text (1471 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
New Cu(II), Pd(II) and Pt(II) complexes, (Cu(L)(H2O)2(OAc)) (1), (Cu(HL)(H2O)2(SO4)) (2), (Cu(L)(H2O)2(NO3)) (3), (Cu(L)(H2O)2(ClO4)) (4
[...] Read more.
New Cu(II), Pd(II) and Pt(II) complexes, (Cu(L)(H2O)2(OAc)) (1), (Cu(HL)(H2O)2(SO4)) (2), (Cu(L)(H2O)2(NO3)) (3), (Cu(L)(H2O)2(ClO4)) (4), (Cu(L)2(H2O)2) (5), (Pd(L)(OAc))H2O (6), and (Pt(L)2) (7) were synthesized from 8-ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-13-one thiosemicarbazone (HL). The ligand and its metal complexes were characterized by IR, 1H-NMR, 13C-NMR, UV-Vis, FAB, EPR, mass spectroscopy, elemental and thermal analysis, magnetic susceptibility measurements and molar electric conductivity. The free ligand and the metal complexes have been tested for their antimicrobial activity against E. coli, S. enteritidis, S. aureus, E. faecalis, C. albicans and cytotoxicity against the NCI-H1573 lung adenocarcinoma, SKBR-3 human breast, MCF-7 human breast, A375 human melanoma and HL-60 human promyelocytic leukemia cell lines. Copper complex 2 exhibited the best antiproliferative activities against MCF-7 human breast cancer cells. A significant inhibition of malignant HL-60 cell growth was observed for copper complex 2, palladium complex 6 and platinum complex 7, with IC50 values of 1.6 µM, 6.5 µM and 6.4 µM, respectively. Full article
(This article belongs to the Special Issue ECSOC-19)
Figures

Open AccessArticle Ultrasound- and Molecular Sieves-Assisted Synthesis, Molecular Docking and Antifungal Evaluation of 5-(4-(Benzyloxy)-substituted phenyl)-3-((phenylamino)methyl)-1,3,4-oxadiazole-2(3H)-thiones
Molecules 2016, 21(5), 484; doi:10.3390/molecules21050484
Received: 10 March 2016 / Revised: 30 March 2016 / Accepted: 1 April 2016 / Published: 10 May 2016
Cited by 3 | PDF Full-text (1404 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A novel series of 5-(4-(benzyloxy)substituted phenyl)-3-((phenyl amino)methyl)-1,3,4-oxadiazole-2(3H)-thione Mannich bases 6a–o were synthesized in good yield from the key compound 5-(4-(benzyloxy)phenyl)-1,3,4-oxadiazole-2(3H)-thione by aminomethylation with paraformaldehyde and substituted amines using molecular sieves and sonication as green chemistry tools. The antifungal activity
[...] Read more.
A novel series of 5-(4-(benzyloxy)substituted phenyl)-3-((phenyl amino)methyl)-1,3,4-oxadiazole-2(3H)-thione Mannich bases 6a–o were synthesized in good yield from the key compound 5-(4-(benzyloxy)phenyl)-1,3,4-oxadiazole-2(3H)-thione by aminomethylation with paraformaldehyde and substituted amines using molecular sieves and sonication as green chemistry tools. The antifungal activity of the new products was evaluated against seven human pathogenic fungal strains, namely, Candida albicans ATCC 24433, Candida albicans ATCC 10231, Candida glabrata NCYC 388, Cryptococcus neoformans ATCC 34664, Cryptococcus neoformans PRL 518, Aspergillus fumigatus NCIM 902 and Aspergillus niger ATCC 10578. The synthesized compounds 6d, 6f, 6g, 6h and 6j exhibited promising antifungal activity against the tested fungal pathogens. In molecular docking studies, derivatives 6c, 6f and 6i showed good binding at the active site of C. albicans cytochrome P450 enzyme lanosterol 14 α-demethylase. The in vitro antifungal activity results and docking studies indicated that the synthesized compounds have potential antifungal activity and can be further optimized as privileged scaffolds to design and develop potent antifungal drugs. Full article
(This article belongs to the Special Issue ECSOC-19)
Open AccessArticle Synthesis and Selective Cytotoxic Activities on Rhabdomyosarcoma and Noncancerous Cells of Some Heterocyclic Chalcones
Molecules 2016, 21(3), 329; doi:10.3390/molecules21030329
Received: 20 January 2016 / Revised: 1 March 2016 / Accepted: 3 March 2016 / Published: 9 March 2016
Cited by 1 | PDF Full-text (1069 KB) | HTML Full-text | XML Full-text
Abstract
Chemically diverse heterocyclic chalcones were prepared and evaluated for cytotoxicity, aiming to push forward potency and selectivity. They were tested against rhabdomyosarcoma (RMS) and noncancerous cell line (LLC-PK1). The influence of heteroaryl patterns on rings A and B was studied. Heterocycle functionalities on
[...] Read more.
Chemically diverse heterocyclic chalcones were prepared and evaluated for cytotoxicity, aiming to push forward potency and selectivity. They were tested against rhabdomyosarcoma (RMS) and noncancerous cell line (LLC-PK1). The influence of heteroaryl patterns on rings A and B was studied. Heterocycle functionalities on both rings, such as phenothiazine, thiophene, furan and pyridine were evaluated. Notably, the introduction of three methoxy groups at positions 3, 4, 5 on ring B appears to be critical for cytotoxicity. The best compound, with potent and selective cytotoxicity (IC50 = 12.51 μM in comparison with the value 10.84 μM of paclitaxel), contains a phenothiazine moiety on ring A and a thiophene heterocycle on ring B. Most of the potential compounds only show weak cytoxicity on the noncancerous cell line LLC-PK1. Full article
(This article belongs to the Special Issue ECSOC-19)
Figures

Back to Top