E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "ECSOC-12"

Quicklinks

A special issue of Molecules (ISSN 1420-3049).

Deadline for manuscript submissions: closed (30 June 2009)

Special Issue Editor

Guest Editor
Dr. Julio A. Seijas Vázquez (Website)

Departamento de Química Orgánica, Universidad de Santiago de Compostela, Facultad de Ciencias-Campus de Lugo, Alfonso X el Sabio, 27002 Lugo, Spain
Phone: +34 982824062
Fax: +34 982 285 872
Interests: synthesis of compounds with biologic activity; synthesis of compounds with interest for agro-food field; solation, estructural determination and synthesis of natural products; microwave organic reactions enhancement

Published Papers (3 papers)

View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Open AccessArticle Synthesis, Antimycobacterial, Antifungal and Photosynthesis-Inhibiting Activity of Chlorinated N-phenylpyrazine-2-carboxamides
Molecules 2010, 15(12), 8567-8581; doi:10.3390/molecules15128567
Received: 15 November 2010 / Revised: 22 November 2010 / Accepted: 25 November 2010 / Published: 26 November 2010
Cited by 21 | PDF Full-text (277 KB)
Abstract
A series of sixteen pyrazinamide analogues with the -CONH- linker connecting the pyrazine and benzene rings was synthesized by the condensation of chlorides of substituted pyrazinecarboxylic acids with ring-substituted (chlorine) anilines. The prepared compounds were characterized and evaluated for their antimycobacterial and [...] Read more.
A series of sixteen pyrazinamide analogues with the -CONH- linker connecting the pyrazine and benzene rings was synthesized by the condensation of chlorides of substituted pyrazinecarboxylic acids with ring-substituted (chlorine) anilines. The prepared compounds were characterized and evaluated for their antimycobacterial and antifungal activity, and for their ability to inhibit photosynthetic electron transport (PET). 6-Chloro-N-(4-chlorophenyl)pyrazine-2-carboxamide manifested the highest activity against Mycobacterium tuberculosis strain H37Rv (65% inhibition at 6.25 μg/mL). The highest antifungal effect against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 6-chloro-5-tert-butyl-N-(3,4-dichlorophenyl)pyrazine-2-carboxamide (MIC = 62.5 μmol/L). 6-Chloro-5-tert-butyl-N-(4-chlorophenyl)pyrazine-2-carboxamide showed the highest PET inhibition in spinach chloroplasts (Spinacia oleracea L.) chloroplasts (IC50 = 43.0 μmol/L). For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds as well as their structure-activity relationships are discussed. Full article
(This article belongs to the Special Issue ECSOC-12)
Open AccessArticle Rhodanineacetic Acid Derivatives as Potential Drugs: Preparation, Hydrophobic Properties and Antifungal Activity of (5-Arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic Acids
Molecules 2009, 14(10), 4197-4212; doi:10.3390/molecules14104197
Received: 21 September 2009 / Revised: 9 October 2009 / Accepted: 19 October 2009 / Published: 20 October 2009
Cited by 18 | PDF Full-text (270 KB)
Abstract
Some [(5Z)-(5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)]acetic acids were prepared as potential antifungal compounds. The general synthetic approach to all synthesized compounds is presented. Lipophilicity of all the discussed rhodanine-3-acetic acid derivatives was analyzed using a reversed phase high performance liquid chromatography (RP-HPLC) method. The [...] Read more.
Some [(5Z)-(5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)]acetic acids were prepared as potential antifungal compounds. The general synthetic approach to all synthesized compounds is presented. Lipophilicity of all the discussed rhodanine-3-acetic acid derivatives was analyzed using a reversed phase high performance liquid chromatography (RP-HPLC) method. The procedure was performed under isocratic conditions with methanol as an organic modifier in the mobile phase using an end-capped non-polar C18 stationary RP column. The RP-HPLC retention parameter log k (the logarithm of the capacity factor k) is compared with log P values calculated in silico. All compounds were evaluated for antifungal effects against selected fungal species. Most compounds exhibited no interesting activity, and only {(5Z)-[4-oxo-5-(pyridin-2- ylmethylidene)-2-thioxo-1,3-thiazolidin-3-yl]}acetic acid strongly inhibited the growth of Candida tropicalis 156, Candida krusei E 28, Candida glabrata 20/I and Trichosporon asahii 1188. Full article
(This article belongs to the Special Issue ECSOC-12)
Open AccessArticle Examination of Imprinting Process with Molsidomine as a Template
Molecules 2009, 14(6), 2212-2225; doi:10.3390/molecules14062212
Received: 7 May 2009 / Revised: 4 June 2009 / Accepted: 11 June 2009 / Published: 17 June 2009
Cited by 7 | PDF Full-text (252 KB)
Abstract
Eight different functional monomers were used with ethylene glycol dimethacrylate as a cross-linker and molsidomine as a template to obtain molecularly imprinted polymers (MIPs). Non-covalent interactions between molsidomine and each functional monomer in DMSO prior to thermal bulk polymerization were utilized. On [...] Read more.
Eight different functional monomers were used with ethylene glycol dimethacrylate as a cross-linker and molsidomine as a template to obtain molecularly imprinted polymers (MIPs). Non-covalent interactions between molsidomine and each functional monomer in DMSO prior to thermal bulk polymerization were utilized. On the basis of calculated imprinting factors, MIP prepared with N,N’-diallyltartaramide was chosen for further investigations. Examination of interactions in the prepolymerization complex between molsidomine and N,N’-diallyltartaramide was performed using the Job method. The absorbance of isomolar solutions reaching a maximum for the molar ratio of template to monomer equal to 1:4. Scatchard analysis was used for estimation of the dissociation constants and the maximum amounts of binding sites. The polymer based on N,N’-diallyltartaramide has two classes of heterogeneous binding sites characterized by two values of Kd and two Bmax: Kd(1) = 1.17 mM-1 and Bmax(1) = 0.8 μmol/mg for the higher affinity binding sites, and Kd(2) = 200 μM-1 and Bmax(2) = 2.05 μmol/mg for the lower affinity binding sites. Furthermore, effects of pH and organic solvent on binding properties of MIP and NIP were investigated, together with release of molsidomine from both MIP and NIP. Full article
(This article belongs to the Special Issue ECSOC-12)

Journal Contact

MDPI AG
Molecules Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
molecules@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Molecules
Back to Top