Next Issue
Previous Issue

Table of Contents

Nanomaterials, Volume 8, Issue 4 (April 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) C-reactive protein (CRP) is an important biomarker of infection and inflammation. Highly sensitive, [...] Read more.
View options order results:
result details:
Displaying articles 1-90
Export citation of selected articles as:
Open AccessArticle Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts
Nanomaterials 2018, 8(4), 269; https://doi.org/10.3390/nano8040269
Received: 26 March 2018 / Revised: 14 April 2018 / Accepted: 19 April 2018 / Published: 23 April 2018
Cited by 1 | PDF Full-text (5458 KB) | HTML Full-text | XML Full-text
Abstract
In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2
[...] Read more.
In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2 photocatalysts (Au3M3/TiO2), where M is bismuth (Bi), platinum (Pt) or palladium (Pd) at 3 wt. %. The Aux/TiO2 photocatalysts exhibited a stronger visible light absorption than the parent TiO2 due to the localized surface plasmon resonance effect. Increasing the Au content from 1 wt. % to 7 wt. % led to increased visible light absorption due to the increasing presence of defective structures that were capable of enhancing the photocatalytic activity of the as-prepared catalyst. The addition of Pt and Pd coupled with the Au3/TiO2 to form Au3M3/TiO2 improved the photocatalytic activity of the Au3/TiO2 photocatalyst by maximizing their light-absorption property. The Au3/TiO2, Au3Pt3/TiO2 and Au3Pd3/TiO2 photocatalysts promoted the formation of glyceraldehyde from glycerol as the principle product, while Au3Bi3/TiO2 facilitated glycolaldehyde formation as the major product. Among all the prepared photocatalysts, Au3Pd3/TiO2 exhibited the highest photocatalytic activity with a 98.75% glycerol conversion at 24 h of reaction time. Full article
(This article belongs to the Special Issue Nanostructure Metal Alloys for the Transformation of Biomass)
Figures

Graphical abstract

Open AccessReview ZnO Nanostructures for Drug Delivery and Theranostic Applications
Nanomaterials 2018, 8(4), 268; https://doi.org/10.3390/nano8040268
Received: 13 March 2018 / Revised: 17 April 2018 / Accepted: 18 April 2018 / Published: 23 April 2018
Cited by 2 | PDF Full-text (7100 KB) | HTML Full-text | XML Full-text
Abstract
In the last two decades, zinc oxide (ZnO) semiconductor Quantum dots (QDs) have been shown to have fantastic luminescent properties, which together with their low-cost, low-toxicity and biocompatibility have turned these nanomaterials into one of the main candidates for bio-imaging. The discovery of
[...] Read more.
In the last two decades, zinc oxide (ZnO) semiconductor Quantum dots (QDs) have been shown to have fantastic luminescent properties, which together with their low-cost, low-toxicity and biocompatibility have turned these nanomaterials into one of the main candidates for bio-imaging. The discovery of other desirable traits such as their ability to produce destructive reactive oxygen species (ROS), high catalytic efficiency, strong adsorption capability and high isoelectric point, also make them promising nanomaterials for therapeutic and diagnostic functions. Herein, we review the recent progress on the use of ZnO based nanoplatforms in drug delivery and theranostic in several diseases such as bacterial infection and cancer. Full article
Figures

Graphical abstract

Open AccessArticle Non-Canonical Activation of the Epidermal Growth Factor Receptor by Carbon Nanoparticles
Nanomaterials 2018, 8(4), 267; https://doi.org/10.3390/nano8040267
Received: 25 February 2018 / Revised: 13 April 2018 / Accepted: 16 April 2018 / Published: 23 April 2018
PDF Full-text (1250 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The epidermal growth factor receptor (EGFR) is an abundant membrane protein, which is essential for regulating many cellular processes including cell proliferation. In our earlier studies, we observed an activation of the EGFR and subsequent signaling events after the exposure of epithelial cells
[...] Read more.
The epidermal growth factor receptor (EGFR) is an abundant membrane protein, which is essential for regulating many cellular processes including cell proliferation. In our earlier studies, we observed an activation of the EGFR and subsequent signaling events after the exposure of epithelial cells to carbon nanoparticles. In the current study, we describe molecular mechanisms that allow for discriminating carbon nanoparticle-specific from ligand-dependent receptor activation. Caveolin-1 is a key player that co-localizes with the EGFR upon receptor activation by carbon nanoparticles. This specific process mediated by nanoparticle-induced reactive oxygen species and the accumulation of ceramides in the plasma membrane is not triggered when cells are exposed to non-nano carbon particles or the physiological ligand EGF. The role of caveolae formation was demonstrated by the induction of higher order structures of caveolin-1 and by the inhibition of caveolae formation. Using an in vivo model with genetically modified mice lacking caveolin-1, it was possible to demonstrate that carbon nanoparticles in vivo trigger EGFR downstream signaling cascades via caveolin-1. The identified molecular mechanisms are, therefore, of toxicological relevance for inhaled nanoparticles. However, nanoparticles that are intentionally applied to humans might cause side effects depending on this phenomenon. Full article
(This article belongs to the Special Issue Nanosafety 2017)
Figures

Figure 1

Open AccessArticle Electrodes Based on Carbon Aerogels Partially Graphitized by Doping with Transition Metals for Oxygen Reduction Reaction
Nanomaterials 2018, 8(4), 266; https://doi.org/10.3390/nano8040266
Received: 18 April 2018 / Revised: 18 April 2018 / Accepted: 20 April 2018 / Published: 23 April 2018
PDF Full-text (23968 KB) | HTML Full-text | XML Full-text
Abstract
A series of carbon aerogels doped with iron, cobalt and nickel have been prepared. Metal nanoparticles very well dispersed into the carbon matrix catalyze the formation of graphitic clusters around them. Samples with different Ni content are obtained to test the influence of
[...] Read more.
A series of carbon aerogels doped with iron, cobalt and nickel have been prepared. Metal nanoparticles very well dispersed into the carbon matrix catalyze the formation of graphitic clusters around them. Samples with different Ni content are obtained to test the influence of the metal loading. All aerogels have been characterized to analyze their textural properties, surface chemistry and crystal structures. These metal-doped aerogels have a very well-developed porosity, making their mesoporosity remarkable. Ni-doped aerogels are the ones with the largest surface area and the smallest graphitization. They also present larger mesopore volumes than Co- and Fe-doped aerogels. These materials are tested as electro-catalysts for the oxygen reduction reaction. Results show a clear and strong influence of the carbonaceous structure on the whole electro-catalytic behavior of the aerogels. Regarding the type of metal doping, aerogel doped with Co is the most active one, followed by Ni- and Fe-doped aerogels, respectively. As the Ni content is larger, the kinetic current densities increase. Comparatively, among the different doping metals, the results obtained with Ni are especially remarkable. Full article
(This article belongs to the Special Issue Electrochemically Engineering of Nanoporous Materials)
Figures

Graphical abstract

Open AccessArticle Galvanic-Cell-Reaction-Driven Deposition of Large-Area Au Nanourchin Arrays for Surface-Enhanced Raman Scattering
Nanomaterials 2018, 8(4), 265; https://doi.org/10.3390/nano8040265
Received: 21 March 2018 / Revised: 10 April 2018 / Accepted: 18 April 2018 / Published: 23 April 2018
PDF Full-text (4541 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Here we report a low-cost synthetic approach for the direct fabrication of large-area Au nanourchin arrays on indium tin oxide (ITO) via a facile galvanic-cell-reaction-driven deposition in an aqueous solution of chloroauric acid and poly(vinyl pyrrolidone) (PVP). The homogeneous Au nanourchins are composed
[...] Read more.
Here we report a low-cost synthetic approach for the direct fabrication of large-area Au nanourchin arrays on indium tin oxide (ITO) via a facile galvanic-cell-reaction-driven deposition in an aqueous solution of chloroauric acid and poly(vinyl pyrrolidone) (PVP). The homogeneous Au nanourchins are composed of abundant sharp nanotips, which can served as nanoantennas and increase the local electromagnetic field enhancement dramatically. Finite element theoretical calculations confirm the strong electromagnetic field can be created around the sharp nanotips and located in the nanogaps between adjacent tips of the Au nanourchins. In addition, the interparticle nanogaps between the neighboring Au nanourchins may create additional hotspots, which can induce the higher electromagnetic field intensity. By using rhodamine 6G as a test molecule, the large-area Au nanourchin arrays on ITO exhibit active, uniform, and reproducible surface-enhanced Raman scattering (SERS) effect. To trial their practical application, the Au nanourchin arrays are utilized as SERS substrates to detect 3,3’,4,4’-tetrachlorobiphenyl (PCB-77) one congener of polychlorinated biphenyls (PCBs) as a notorious class of persistent organic pollutants. The characteristic Raman peaks can be still identified when the concentration of PCB-77 is down to 5 × 10−6 M. Full article
Figures

Graphical abstract

Open AccessArticle Electrically and Thermally Conductive Low Density Polyethylene-Based Nanocomposites Reinforced by MWCNT or Hybrid MWCNT/Graphene Nanoplatelets with Improved Thermo-Oxidative Stability
Nanomaterials 2018, 8(4), 264; https://doi.org/10.3390/nano8040264
Received: 4 April 2018 / Revised: 16 April 2018 / Accepted: 19 April 2018 / Published: 22 April 2018
Cited by 1 | PDF Full-text (7605 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, the electrical and thermal conductivity and morphological behavior of low density polyethylene (LDPE)/multi-walled carbon nanotubes (MWCNTs) + graphene nanoplatelets (GNPs) hybrid nanocomposites (HNCs) have been studied. The distribution of MWCNTs and the hybrid of MWCNTs/GNPs within the polymer matrix has
[...] Read more.
In this paper, the electrical and thermal conductivity and morphological behavior of low density polyethylene (LDPE)/multi-walled carbon nanotubes (MWCNTs) + graphene nanoplatelets (GNPs) hybrid nanocomposites (HNCs) have been studied. The distribution of MWCNTs and the hybrid of MWCNTs/GNPs within the polymer matrix has been investigated with scanning electron microscopy (SEM). The results showed that the thermal and electrical conductivity of the LDPE-based nanocomposites increased along with the increasing content of carbon nanofillers. However, one could observe greater improvement in the thermal and electrical conductivity when only MWCNTs have been incorporated. Moreover, the improvement in tensile properties and thermal stability has been observed when carbon nanofillers have been mixed with LDPE. At the same time, the increasing content of MWCNTs and MWCNTs/GNPs caused an increase in the melt viscosity with only little effect on phase transition temperatures. Full article
(This article belongs to the Special Issue Thermoplastic Nanocomposites)
Figures

Graphical abstract

Open AccessArticle Effect of Organic Substrates on the Photocatalytic Reduction of Cr(VI) by Porous Hollow Ga2O3 Nanoparticles
Nanomaterials 2018, 8(4), 263; https://doi.org/10.3390/nano8040263
Received: 6 March 2018 / Revised: 19 April 2018 / Accepted: 19 April 2018 / Published: 22 April 2018
PDF Full-text (5436 KB) | HTML Full-text | XML Full-text
Abstract
Porous hollow Ga2O3 nanoparticles were successfully synthesized by a hydrolysis method followed by calcination. The prepared samples were characterized by field emission scanning electron microscope, transmission electron microscope, thermogravimetry and differential scanning calorimetry, UV-vis diffuse reflectance spectra and Raman spectrum.
[...] Read more.
Porous hollow Ga2O3 nanoparticles were successfully synthesized by a hydrolysis method followed by calcination. The prepared samples were characterized by field emission scanning electron microscope, transmission electron microscope, thermogravimetry and differential scanning calorimetry, UV-vis diffuse reflectance spectra and Raman spectrum. The porous structure of Ga2O3 nanoparticles can enhance the light harvesting efficiency, and provide lots of channels for the diffusion of Cr(VI) and Cr(III). Photocatalytic reduction of Cr(VI), with different initial pH and degradation of several organic substrates by porous hollow Ga2O3 nanoparticles in single system and binary system, were investigated in detail. The reduction rate of Cr(VI) in the binary pollutant system is markedly faster than that in the single Cr(VI) system, because Cr(VI) mainly acts as photogenerated electron acceptor. In addition, the type and concentration of organic substrates have an important role in the photocatalytic reduction of Cr(VI). Full article
Figures

Graphical abstract

Open AccessReview Thermocatalytic Behavior of Manganese (IV) Oxide as Nanoporous Material on the Dissociation of a Gas Mixture Containing Hydrogen Peroxide
Nanomaterials 2018, 8(4), 262; https://doi.org/10.3390/nano8040262
Received: 27 March 2018 / Revised: 16 April 2018 / Accepted: 19 April 2018 / Published: 21 April 2018
PDF Full-text (4826 KB) | HTML Full-text | XML Full-text
Abstract
In this article, we present an overview on the thermocatalytic reaction of hydrogen peroxide (H 2 O 2 ) gas on a manganese (IV) oxide (MnO 2 ) catalytic structure. The principle of operation and manufacturing techniques are introduced for a calorimetric H
[...] Read more.
In this article, we present an overview on the thermocatalytic reaction of hydrogen peroxide (H 2 O 2 ) gas on a manganese (IV) oxide (MnO 2 ) catalytic structure. The principle of operation and manufacturing techniques are introduced for a calorimetric H 2 O 2 gas sensor based on porous MnO 2 . Results from surface analyses by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) of the catalytic material provide indication of the H 2 O 2 dissociation reaction schemes. The correlation between theory and the experiments is documented in numerical models of the catalytic reaction. The aim of the numerical models is to provide further information on the reaction kinetics and performance enhancement of the porous MnO 2 catalyst. Full article
(This article belongs to the Special Issue Oxide Nanomaterials for Chemical Sensors)
Figures

Graphical abstract

Open AccessArticle A Facile Method for the Preparation of Colored Bi4Ti3O12−x Nanosheets with Enhanced Visible-Light Photocatalytic Hydrogen Evolution Activity
Nanomaterials 2018, 8(4), 261; https://doi.org/10.3390/nano8040261
Received: 15 March 2018 / Revised: 12 April 2018 / Accepted: 16 April 2018 / Published: 21 April 2018
PDF Full-text (34606 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Bi4Ti3O12−x nanosheet photocatalysts with abundant oxygen vacancies are fabricated by a facile solid-state chemical reduction method for the first time. This method is simple in operation, has short reaction time, and can be conducted at mild temperatures
[...] Read more.
Bi4Ti3O12−x nanosheet photocatalysts with abundant oxygen vacancies are fabricated by a facile solid-state chemical reduction method for the first time. This method is simple in operation, has short reaction time, and can be conducted at mild temperatures (300~400 °C). The electron paramagnetic resonance, thermogravimetric analysis, X-ray photoelectron spectrometer, and positron annihilation lifetime spectra results indicate that oxygen vacancies are produced in Bi4Ti3O12−x, and they can be adjusted by tuning the reduction reaction conditions. Control experiments show that the reduction time and temperature have great influences on the photocatalytic activities of Bi4Ti3O12−x. The optimal Bi4Ti3O12−x is the sample undergoing the reduction treatment at 350 °C for 60 min and it affords a hydrogen evolution rate of 129 μmol·g−1·h−1 under visible-light irradiation, which is about 3.4 times that of the pristine Bi4Ti3O12. The Bi4Ti3O12−x photocatalysts have good reusability and storage stability and can be used to decompose formaldehyde and formic acid for hydrogen production. The surface oxygen vacancies states result in the broadening of the valence band and the narrowing of the band gap. Such energy level structure variation helps promote the separation of photo-generated electron-hole pairs thus leading to enhancement in the visible-light photocatalytic hydrogen evolution. Meanwhile, the narrowing of the band gap leads to a broader visible light absorption of Bi4Ti3O12−x. Full article
Figures

Graphical abstract

Open AccessArticle Efficient Blue to Red Afterglow Tuning in a Binary Nanocomposite Plastic Film
Nanomaterials 2018, 8(4), 260; https://doi.org/10.3390/nano8040260
Received: 13 March 2018 / Revised: 16 April 2018 / Accepted: 16 April 2018 / Published: 20 April 2018
PDF Full-text (1697 KB) | HTML Full-text | XML Full-text
Abstract
Colorful spectra are important for the diverse applications of persistent phosphors. A color conversion concept is developed to obtain abundant persistent luminescence color by mining capacities of known persistent phosphors with the most efficient persistent properties. Here, SiO2/Sr2MgSi2
[...] Read more.
Colorful spectra are important for the diverse applications of persistent phosphors. A color conversion concept is developed to obtain abundant persistent luminescence color by mining capacities of known persistent phosphors with the most efficient persistent properties. Here, SiO2/Sr2MgSi2O7:Eu,Dy nanoparticles are chosen as a blue persistent luminescence donor nanophosphor, while ultrafine CaAlSiN3:Eu is utilized as a red conversion phosphor to tune the persistent luminescence spectra from blue to red. The red afterglow emission can persist for more than 5 h. The decay of the red afterglow follows nearly the same kinetics as that of the blue one. Continuous color tuning can be successfully obtained by simply changing the mass ratio of the donor/conversion phosphor pair. This color conversion strategy may be significant in indicating numerous persistent/conversion nanocomposites or nanostructures and advance the development of persistent phosphors in diverse fields which need colorful spectral properties. Full article
(This article belongs to the Special Issue Nanosized Luminescent Materials: Advances and Applications)
Figures

Graphical abstract

Open AccessReview Polymer-Based Electrospun Nanofibers for Biomedical Applications
Nanomaterials 2018, 8(4), 259; https://doi.org/10.3390/nano8040259
Received: 17 February 2018 / Revised: 2 April 2018 / Accepted: 9 April 2018 / Published: 20 April 2018
Cited by 1 | PDF Full-text (34747 KB) | HTML Full-text | XML Full-text
Abstract
Electrospinning has been considered a promising and novel procedure to fabricate polymer nanofibers due to its simplicity, cost effectiveness, and high production rate, making this technique highly relevant for both industry and academia. It is used to fabricate non-woven fibers with unique characteristics
[...] Read more.
Electrospinning has been considered a promising and novel procedure to fabricate polymer nanofibers due to its simplicity, cost effectiveness, and high production rate, making this technique highly relevant for both industry and academia. It is used to fabricate non-woven fibers with unique characteristics such as high permeability, stability, porosity, surface area to volume ratio, ease of functionalization, and excellent mechanical performance. Nanofibers can be synthesized and tailored to suit a wide range of applications including energy, biotechnology, healthcare, and environmental engineering. A comprehensive outlook on the recent developments, and the influence of electrospinning on biomedical uses such as wound dressing, drug release, and tissue engineering, has been presented. Concerns regarding the procedural restrictions and research contests are addressed, in addition to providing insights about the future of this fabrication technique in the biomedical field. Full article
(This article belongs to the Special Issue The Fabrication and Application of Nanofibers)
Figures

Figure 1

Open AccessArticle Label-Free Biosensor Using a Silver Specific RNA-Cleaving DNAzyme Functionalized Single-Walled Carbon Nanotube for Silver Ion Determination
Nanomaterials 2018, 8(4), 258; https://doi.org/10.3390/nano8040258
Received: 19 March 2018 / Revised: 17 April 2018 / Accepted: 18 April 2018 / Published: 20 April 2018
PDF Full-text (4777 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was
[...] Read more.
Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 106 pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results. Full article
(This article belongs to the Special Issue Applications of Carbon Nanotubes)
Figures

Figure 1

Open AccessFeature PaperReview Imprinted Oxide and MIP/Oxide Hybrid Nanomaterials for Chemical Sensors
Nanomaterials 2018, 8(4), 257; https://doi.org/10.3390/nano8040257
Received: 28 March 2018 / Revised: 11 April 2018 / Accepted: 16 April 2018 / Published: 20 April 2018
Cited by 1 | PDF Full-text (7196 KB) | HTML Full-text | XML Full-text
Abstract
The oxides of transition, post-transition and rare-earth metals have a long history of robust and fast responsive recognition elements for electronic, optical, and gravimetric devices. A wide range of applications successfully utilized pristine or doped metal oxides and polymer-oxide hybrids as nanostructured recognition
[...] Read more.
The oxides of transition, post-transition and rare-earth metals have a long history of robust and fast responsive recognition elements for electronic, optical, and gravimetric devices. A wide range of applications successfully utilized pristine or doped metal oxides and polymer-oxide hybrids as nanostructured recognition elements for the detection of biologically relevant molecules, harmful organic substances, and drugs as well as for the investigative process control applications. An overview of the selected recognition applications of molecularly imprinted sol-gel phases, metal oxides and hybrid nanomaterials composed of molecularly imprinted polymers (MIP) and metal oxides is presented herein. The formation and fabrication processes for imprinted sol-gel layers, metal oxides, MIP-coated oxide nanoparticles and other MIP/oxide nanohybrids are discussed along with their applications in monitoring bioorganic analytes and processes. The sensor characteristics such as dynamic detection range and limit of detection are compared as the performance criterion and the miniaturization and commercialization possibilities are critically discussed. Full article
(This article belongs to the Special Issue Oxide Nanomaterials for Chemical Sensors)
Figures

Figure 1

Open AccessReview Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review
Nanomaterials 2018, 8(4), 256; https://doi.org/10.3390/nano8040256
Received: 3 February 2018 / Revised: 5 April 2018 / Accepted: 17 April 2018 / Published: 19 April 2018
PDF Full-text (27593 KB) | HTML Full-text | XML Full-text
Abstract
Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because
[...] Read more.
Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed. Full article
Figures

Graphical abstract

Open AccessArticle Self-Sacrificial Salt Templating: Simple Auxiliary Control over the Nanoporous Structure of Porous Carbon Monoliths Prepared through the Solvothermal Route
Nanomaterials 2018, 8(4), 255; https://doi.org/10.3390/nano8040255
Received: 5 March 2018 / Revised: 10 April 2018 / Accepted: 16 April 2018 / Published: 19 April 2018
PDF Full-text (16871 KB) | HTML Full-text | XML Full-text
Abstract
The conventional sol-gel method for preparing porous carbons is tedious and high-cost to prepare porous carbons and the control over the nanoporous architecture by solvents and carbonization is restricted. A simple and novel self-sacrificial salt templating method was first presented to adjust the
[...] Read more.
The conventional sol-gel method for preparing porous carbons is tedious and high-cost to prepare porous carbons and the control over the nanoporous architecture by solvents and carbonization is restricted. A simple and novel self-sacrificial salt templating method was first presented to adjust the microporous structure of porous carbon monoliths synthesized via the solvothermal method. Apart from good monolithic appearance, the solvothermal route allowed for ambient drying because it made sure that the polymerization reaction was completed quickly and thoroughly. The intact and crack-free porous carbon monoliths were investigated by scanning electron microscopy (SEM), thermogravimetric differential scanning calorimetry (TG-DSC), Fourier transform infrared (FT-IR), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and nitrogen sorption measurements. It was proven that the self-sacrificial salts NH4SCN had been removed during pyrolyzing and so, porous carbon monoliths could be directly obtained after carbonization without the need of washing removal of salts. Most importantly, the microporous specific surface area of the resultant porous carbon monoliths was dramatically increased up to 770 m2/g and the Brunauer–Emmett–Teller (BET) specific surface area was up to 1131 m2/g. That was because the salts NH4SCN as self-sacrificial templating helped to form more around 0.6 nm, 0.72 nm and 1.1 nm micropores. The self-sacrificial salt templating is also a suitable and feasible method for controlling the nanoporous structure of other porous materials. Full article
Figures

Figure 1

Back to Top