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Abstract: Porous hollow Ga2O3 nanoparticles were successfully synthesized by a hydrolysis method
followed by calcination. The prepared samples were characterized by field emission scanning
electron microscope, transmission electron microscope, thermogravimetry and differential scanning
calorimetry, UV-vis diffuse reflectance spectra and Raman spectrum. The porous structure of Ga2O3

nanoparticles can enhance the light harvesting efficiency, and provide lots of channels for the diffusion
of Cr(VI) and Cr(III). Photocatalytic reduction of Cr(VI), with different initial pH and degradation of
several organic substrates by porous hollow Ga2O3 nanoparticles in single system and binary system,
were investigated in detail. The reduction rate of Cr(VI) in the binary pollutant system is markedly
faster than that in the single Cr(VI) system, because Cr(VI) mainly acts as photogenerated electron
acceptor. In addition, the type and concentration of organic substrates have an important role in the
photocatalytic reduction of Cr(VI).

Keywords: Ga2O3; porous; Cr(VI); organic pollutants

1. Introduction

Heavy metal ions from wastewater have become the primary threat to the human environment
with the development of industrial civilization [1–4]. Hexavalent chromium (Cr(VI)) is a typical heavy
metal contaminant with high solubility and toxicity, which originates from various industrial processes
such as electroplating, leather tanning, and paint manufacture [5]. A common method of treating
Cr(VI) in wastewater is to convert it into low toxic Cr(III), which can be precipitated as Cr(OH)3 in
neutral or alkaline solutions, and removed as a solid waste [6]. Recently, photocatalytic reduction of
Cr(VI) to Cr(III) has been recognized as an efficient and economical form of technology [7–11]. Briefly,
photocatalytic reduction of Cr(VI) is based on the photogenerated electrons in the conduction band
of semiconductor when it is irradiated by UV/visible light having energy greater than the band gap
energy of the semiconductor. In addition, organic and inorganic pollutants usually co-exist in industrial
wastewater and natural aqueous environment, and no doubt the presence of organic pollutants in
wastewater will greatly increase the difficulty of photocatalytic reduction of Cr(VI) [12–14].

During the photocatalytic process, the photocatalyst is the key factor, and it is necessary to design
and fabricate efficient and stable photocatalysts. Ga2O3 is one of most popular photocatalysts used
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in the photocatalytic degradation of organic pollutants and reduction of CO2 [15–18], owing to its
high activity and environmental friendliness. Its activity can be further enhanced through a proper
synthetic strategy to obtain nanostructured materials, as the morphology, size and pore structure of
materials can significantly influence their properties and applications [19–21]. As one promising field
of research, porous hollow nanostructures have been investigated for a long time. Compared with
bulk materials, porous hollow materials have higher porosity, larger specific surface areas, and lots of
active chemical sites, which could enhance light harvesting efficiency and provide lots of channels for
the diffusion of pollutants, while also improving photocatalytic activity efficiently [22–24].

In this study, porous hollow Ga2O3 nanoparticles were prepared via a hydrolysis method followed
by calcination. The effect of parameters including pH and concentration of metronidazole on the
reduction rate of Cr(VI) by the porous hollow Ga2O3 nanoparticles was also studied. Meanwhile,
the photocatalytic reduction of Cr(VI) was also systematically investigated in the absence and presence
of organic substrates. To the best of our knowledge, this is the first report on the simultaneous treatment
of organics and Cr(VI) using porous hollow Ga2O3.

2. Materials and Methods

2.1. Materials

Ga2O3 (99.999%), NaCO3 (AR, 99.8%), and NaOH (AR, 96%) were purchased from Shanghai
Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China) and HCl (AR, 36–38%) were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) Deionized water was used throughout
the experiments.

2.2. Synthesis of Porous Hollow Ga2O3 Nanoparticles

Porous hollow Ga2O3 nanoparticles were synthesized via a thermal transformation of GaOOH
precursor based on our previous study [25]. The NaGaO2 powders were prepared by heating a
stoichiometric mixture of Na2CO3 and Ga2O3 at 850 ◦C for 12 h. The GaOOH precursor was prepared
by a hydrolysis reaction of NaGaO2 colloidal solution. The NaGaO2 powders (1.0 g) was dispersed in
deionized water (100 mL) to obtain a colloidal solution with ultrasonic oscillations. Then, 5 mol/L
HCl solution was added to the NaGaO2 colloidal solution with magnetic stirring; the final pH value
was kept at 9.0. The obtained white suspension was treated thermally at 80 ◦C for 12 h. The obtained
GaOOH precursor was separated by centrifugation and dried at 70 ◦C for 10 h. The Ga2O3 was
prepared by calcining GaOOH precursor with a programmed temperature (400 ◦C, 5 h and 700 ◦C,
1.5 h, 1 ◦C/min).

2.3. Characterization

The Raman spectrum was recorded using a Raman spectrometer (RM2000) (Renishaw,
Gloucestershire, UK). Field emission scanning electron microscope (FESEM) images were obtained
using a MERLIN scanning microscope at an accelerating voltage of 10 kV (ZEISS, Oberkochen, German).
Scanning transmission electron microscopy (STEM), transmission electron microscope (TEM) and
high-resolution transmission electron microscopy (HRTEM) images were obtained using a JEOL-2010
transmission electron microscope (JEOL Ltd., Kyoto, Japan) at an accelerating voltage of 200 kV. TEM is
equipped with an energy-dispersive X-ray spectroscopy (EDS) analysis system. The quantitation
method for Ga and O elements is Cliff Lorimer thin ratio section. Thermogravimetry and differential
scanning calorimetry (TG-DSC) analysis was performed on a STA 6000 (Perkin Elmer, Waltham, MA,
USA) instrument at a heating rate of 10 ◦C/min. UV-vis diffuse reflectance spectra (UV-vis DRS) were
obtained by a UV-2600 UV-vis spectrophotometer (Shimadzu Corporation, Kyoto, Japan).
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2.4. Photocatalytic Experiments

Photoreduction of Cr(VI) (K2Cr2O7) and photocatalytic degradation of rhodamine B (RhB), acid
red 1 (AR1), methyl orange (MO) and metronidazole (MNZ) as well as their binary mixtures, were
adopted to evaluate the photocatalytic activity of the as-synthesized Ga2O3 sample. The concentration
of Cr(VI) and organics is the same in single and binary pollutants (Table 1). Typically, 20 mg of the
Ga2O3 sample was added into a 50 mL Cr(VI) aqueous solution. The initial pH of the Cr(VI) solution
was adjusted to 2–9 by adding HCl or NaOH. Prior to irradiation, the suspensions were magnetically
stirred for 30 min to establish the adsorption-desorption equilibrium. The irradiation was performed
with a 30 W UV light lamp (λ = 253.7 nm). At a given time interval, about 3 mL suspension was
taken for further analysis after centrifugation. The concentration of organic pollutants, including RhB,
AR1, MO and MNZ, were analyzed by UV-vis spectroscopy at 554, 505, 464 and 320 nm, respectively.
Meanwhile, the concentration of Cr(VI) was analyzed by a 1,5-diphenylcarbazide spectrophotometric
method with a spectrophotometer at 540 nm (GB 7466-87, Standards of China). The characteristic
absorbance peaks of organic pollutants (rhodamine B, acid red 1, methyl orange, metronidazole) are
different; their absorbances are different when the concentrations are same. In order to quickly measure
the absorbance of organic pollutants by UV-vis spectroscopy, we created the proper concentrations.

Table 1. The concentration of Cr(VI) and organics in single and binary pollutant system.

Name Single Pollutant System, mg/L
Binary Pollutant System, mg/L

RhB + Cr(VI) AR1 + Cr(VI) MO + Cr(VI) MNZ + Cr(VI)

Cr(VI) 2.5 2.5 2.5 2.5 2.5
RhB 5 5 × × ×
AR1 20 × 20 × ×
MO 10 × × 10 ×

MNZ 20 × × × 20

3. Results and Discussion

3.1. Composition and Morphology

Previous X-ray diffraction (XRD) results show that the phase composition of the GaOOH precursor
and its calcined product are α-GaOOH (JCPDS No. 06-0180) and β-Ga2O3 (JCPDS No. 41-1103),
respectively [25]. The average crystallite size of β-Ga2O3 sample is about 27.3 nm by the Scherrer
equation. [26] The composition of Ga2O3 samples was further investigated by Raman spectra, owing
to the greater sensitivity of Raman spectroscopy to the outer region of the solid samples than XRD [27].
The Raman spectra of Ga2O3 samples from the GaOOH precursor—calcined at 600 ◦C and 700 ◦C—are
shown in Figure 1. The characteristic Raman bands of α-Ga2O3 and β-Ga2O3 are shown in Figure 1a,b,
respectively; this is consistent with the reported results [28,29]. This result indicates that the α-Ga2O3

gradually transforms into β-Ga2O3 with the increase of calcination temperature; pure phase β-Ga2O3

is finally obtained at 700 ◦C.
The composition of porous hollow Ga2O3 nanoparticles was also analyzed by EDS elemental

mapping images and EDS spectrum. As shown in Figure 2, it is clearly seen that Ga2O3 nanoparticles
possess a porous structure, and that Ga and O elements are distributed homogenously in the Ga2O3

sample and their atomic ratio was close to 2:3, which further indicates that the synthesized sample is
pure Ga2O3.
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Figure 1. Raman spectra of Ga2O3 from the GaOOH precursor calcined at (a) 600 °C and (b) 700 °C. 
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Figure 1. Raman spectra of Ga2O3 from the GaOOH precursor calcined at (a) 600 ◦C and (b) 700 ◦C.
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Figure 2. (a) Scanning transmission electron microscopy (STEM) image, (b,c) energy-dispersive X-ray
spectroscopy (EDS) elemental mapping images and (d) EDS spectrum of Ga2O3.

The morphology and microstructure of GaOOH precursor and its calcined product Ga2O3 were
investigated by TEM and SEM. As shown in Figure 3a,b, the GaOOH precursor presents monodisperse
nanoplate-like structure. Compared with GaOOH (Figure 3a,b), Ga2O3 nanoparticles (Figure 3c)
present porous hollow structures. Moreover, the clearly resolved lattice fringes with d spacing of
0.23 nm (distance between two arrow heads in Figure 3d) correspond to the (311) lattice planes of
monoclinic β-Ga2O3, which is in good agreement with the XRD result. Figure 4 also shows that
the Ga2O3 nanoparticles possess hollow structures [25]. The porous hollow structure of Ga2O3

nanoparticles is mainly ascribed to the thermal dehydration of the GaOOH precursor. These porous
structure can enhance the light harvesting efficiency and provide lots of channels for the diffusion of
Cr(VI) and Cr(III), resulting in the improvement of photocatalytic efficiency [30]. The size distribution
of Ga2O3 in Figure 5 was evaluated from the SEM image (Figure 4) by measuring the diamenter of
about 100 nanoparticles. It is clearly seen that the size of most Ga2O3 nanoparticles is 160–230 nm.
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3.2. Hermogravimetry and Differential Scanning Calorimetry TG-DSC Analysis

To understand the thermal conversion of the GaOOH precursor to Ga2O3, a TG-DSC measurement
was performed. The TG-DSC measurement, performed from 40 to 900 ◦C for the GaOOH precursor,
is shown in Figure 6. The major exothermic peak at about 394 ◦C was probably caused by the phase
transformation of the sample from GaOOH to Ga2O3, as evidenced by a weight loss of 12% in the
range of 40–400 ◦C in TG curve. A weight loss of 3% in the range of 400–600 ◦C, which is demarcated
by weak endothermic peak in DSC curve, indicates the conversion of α-Ga2O3 to β-Ga2O3 above
600 ◦C [31]. The result is consistent with the Raman band of the GaOOH precursor calcined at 600 ◦C
(Figure 1). The XRD, Raman spectra, and TG-DSC results indicate that the pure phase β-Ga2O3 can be
obtained at 700 ◦C, and that α-Ga2O3 gradually transforms into β-Ga2O3 in the temperature range of
600–700 ◦C.
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GaOOH precursor.

3.3. Photocatalytic Experiments

3.3.1. Photocatalytic Reduction of Cr(VI)

The pH of the solution is one of the most important parameters affecting the photocatalytic
reduction of Cr(VI) on photocatalysts. The temporal concentration variation of Cr(VI) reduction by the
porous hollow Ga2O3 nanoparticles at a pH range from 2.0 to 9.0 is shown in Figure 7. Obviously, the
reduction of Cr(VI) is increased rapidly by decreasing the pH when the initial pH is in the range of
3–9. In general, the predominant form of Cr(VI) is Cr2O7

2− at a pH range of 2–6, while the major form
was CrO4

2− at pH > 7 [32,33]. The photocatalytic reduction of Cr(VI) to Cr(III) consumes H+ in an
acidic solution (Equation (1)), and produces OH− in an alkaline solution (Equation (2)). At a low pH,
the Ga2O3 nanoparticles are highly protonated and have a strong affinity toward the anion Cr2O7

2−,
and thus enhance the photocatalytic reduction of Cr(VI). However, the photocatalytic reduction of
Cr(VI) is decreased when the initial pH is kept at 2–2.5, which may be attributed the dissolution
of Ga2O3 nanoparticles. At a higher pH, the surface charge of the Ga2O3 nanoparticles will be less
positively charged, or even negatively charged, which tends to electrostatically repel the anionic
Cr(VI), and adsorb the cationic Cr(III) [34,35]. The electrostatical repulsion makes it more difficult for
the anionic Cr(VI) to obtain the photogenerated electrons. Meanwhile, Cr(OH)3 precipitate will be
formed at pH > 6, and occupies the active sites of Ga2O3 nanoparticles, leading to the decrease in the
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photocatalytic reduction of Cr(VI). Therefore, it is concluded that the photocatalytic reduction of Cr(VI)
to Cr(III) is highly efficient at a suitable acidic condition, and is restrained at an alkaline condition.

Cr2O2−
7 + 14H+ + 6e− → 2Cr3+ + 7H2O (1)

CrO4
2− + 4H2O + 3e− → Cr(OH)3 + 5OH− (2)

3.3.2. Photocatalytic Degradation of Organic Pollutants

Besides the photocatalytic reduction of Cr(VI), typical organic pollutants such as RhB, AR1, MO
and MNZ were also used to evaluate the photocatalytic activity of porous hollow Ga2O3 nanoparticles.
As shown in Figure 8, these four pollutants can be effectively degraded by the Ga2O3 nanoparticles
in 60 min when they are in the single pollutant system (Table 1). The results indicate that the porous
hollow Ga2O3 is a promising photocatalyst in water treatment.
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3.3.3. Simultaneous Treatment of Cr(VI) and Organic Pollutants

Cr(VI) is often discharged together with hazardous organics from industrial wastewater. To further
study the photocatalytic activity of porous hollow Ga2O3 nanoparticles, several binary pollutants were
simulated using organics as the additional substrates. As shown in Figure 9, the reduction rate of
Cr(VI) in the binary pollutants is markedly faster than that of the single Cr(VI). Cr(VI) mainly acts
as photogenerated electron acceptor. However, the degradation rate of the organic pollutants in the
binary pollutant system is lower than that of the corresponding single pollutant system. Based on our
previous study, the photogenerated electrons play an important role in the degradation of organic
pollutants by Ga2O3. The photogenerated electrons in the conduction band of Ga2O3 are assumed
by Cr(VI), reducing the degradation rate of organic pollutants. The photocatalytic stability of the
prepared Ga2O3 for the treatment of pollutants has been investigated by the recycling experiments.
However, the photocatalytic reduction rate of Cr(VI) is 67% after two cycling runs. In order to activate
the recycled Ga2O3 photocatalyst, an ultrasound treatment is used; a photocatalytic reduction rate of
Cr(VI) is able to maintain 81%, under the same conditions. However, the photocatalytic reduction rate
of Cr(VI) is only 44%, even after four cycling runs with the ultrasound treatment. The photocatalytic
degradation rate of organic pollutants (RhB, AR1, MO, MNZ) is stable, even after five cycling runs.
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3.3.4. Effect of Substrate Concentration on Photocatalytic Reduction of Cr(VI)

To further assess the effect of organic pollutants as substrates on the photocatalytic reduction
of Cr(VI), several different concentrations of MNZ in the Cr(VI)/MNZ binary pollutants were
investigated. As shown in Figure 10, only 57% of Cr(VI) is photocatalytically reduced in the
absence of MNZ after 60 min, and the reduction of Cr(VI) is increased striking when MNZ is added
into the system. By increasing the concentration of MNZ to 10 mg/L, 94% of Cr(VI) is reduced.
The reason may be that the presence of MNZ can consume the photogenerated holes in photocatalyst,
and more photogenerated electrons are captured by Cr(VI), improving the photocatalytic reduction
of Cr(VI). The reduction rate of Cr(VI) is not markedly changed when the concentration of MNZ is
further increased.
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4. Conclusions

In summary, porous hollow Ga2O3 nanoparticles were successfully synthesized by a hydrolysis
method followed by calcination. It was demonstrated that the Ga2O3 photocatalyst is effective for the
treatment of Cr(VI) and organic pollutants—as well as a mixture of them. The photocatalytic removal
rate of Cr(VI) is highest when the initial pH of Cr(VI) is 3.0. The presence of organic pollutants in the
reaction system improves the photocatalytic reduction of Cr(VI) by acting as a holes scavenger, leading
to better charge carrier separation. The results broaden the range of approaches for the treatment of
practical wastewater.
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