Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Sensors, Volume 13, Issue 1 (January 2013), Pages 1-1384

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-80
Export citation of selected articles as:
Open AccessReview Nucleic Acids for Ultra-Sensitive Protein Detection
Sensors 2013, 13(1), 1353-1384; https://doi.org/10.3390/s130101353
Received: 21 November 2012 / Revised: 26 December 2012 / Accepted: 28 December 2012 / Published: 21 January 2013
Cited by 18 | PDF Full-text (1435 KB) | HTML Full-text | XML Full-text
Abstract
Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing
[...] Read more.
Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of “personalized medicine”. Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given. Full article
(This article belongs to the Section Biosensors)
Open AccessArticle Fluorescent Ratiometric Indicators Based on Cu(II)-Induced Changes in Poly(NIPAM) Microparticle Volume
Sensors 2013, 13(1), 1341-1352; https://doi.org/10.3390/s130101341
Received: 1 December 2012 / Revised: 12 January 2013 / Accepted: 15 January 2013 / Published: 21 January 2013
Cited by 5 | PDF Full-text (864 KB) | HTML Full-text | XML Full-text
Abstract
Microparticles consisting of the thermal responsive polymer N-isopropyl acrylamide (polyNIPAM), a metal ion-binding ligand and a fluorophore pair that undergoes fluorescence resonance energy transfer (FRET) have been prepared and characterized. Upon the addition of Cu(II), the microparticles swell or contract depending on
[...] Read more.
Microparticles consisting of the thermal responsive polymer N-isopropyl acrylamide (polyNIPAM), a metal ion-binding ligand and a fluorophore pair that undergoes fluorescence resonance energy transfer (FRET) have been prepared and characterized. Upon the addition of Cu(II), the microparticles swell or contract depending on whether charge is introduced or neutralized on the polymer backbone. The variation in microparticle morphology is translated into changes in emission of each fluorophore in the FRET pair. By measuring the emission intensity ratio between the FRET pair upon Cu(II) addition, the concentration of metal ion in solution can be quantified. This ratiometric fluorescent indicator is the newest technique in an ongoing effort to use emission spectroscopy to monitor Cu(II) thermodynamic activity in environmental water samples. Full article
(This article belongs to the Section Chemical Sensors)
Figures

Figure 1

Open AccessArticle Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications
Sensors 2013, 13(1), 1329-1340; https://doi.org/10.3390/s130101329
Received: 19 November 2012 / Revised: 8 January 2013 / Accepted: 9 January 2013 / Published: 21 January 2013
Cited by 25 | PDF Full-text (2594 KB) | HTML Full-text | XML Full-text
Abstract
We report on single mode optical transmission of hollow core glass waveguides (HWG) coupled with an external cavity mid-IR quantum cascade lasers (QCLs). The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have
[...] Read more.
We report on single mode optical transmission of hollow core glass waveguides (HWG) coupled with an external cavity mid-IR quantum cascade lasers (QCLs). The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ~5 mrad were measured. Using a HGW fiber with internal core size of 300 µm we obtained single mode laser transmission at 10.54 µm and successful employed it in a quartz enhanced photoacoustic gas sensor setup. Full article
(This article belongs to the Special Issue Laser Sensing and Imaging)
Open AccessArticle Design of the Dual Stone Locating System on an Extracorporeal Shock Wave Lithotriptor
Sensors 2013, 13(1), 1319-1328; https://doi.org/10.3390/s130101319
Received: 13 November 2012 / Revised: 4 January 2013 / Accepted: 17 January 2013 / Published: 21 January 2013
Cited by 7 | PDF Full-text (476 KB) | HTML Full-text | XML Full-text
Abstract
Extracorporeal Shock Wave Lithotriptors are very popular for the treatment of urinary stones all over the world. They depend basically upon either X-ray fluoroscopy or ultrasound scans to detect the stones before therapy begins. To increase the effectiveness of treatment this study took
[...] Read more.
Extracorporeal Shock Wave Lithotriptors are very popular for the treatment of urinary stones all over the world. They depend basically upon either X-ray fluoroscopy or ultrasound scans to detect the stones before therapy begins. To increase the effectiveness of treatment this study took advantage of both X-ray and ultrasound to develop a dual stone locating system with image processing modules. Its functions include the initial stone locating mode with stone detection by fluorescent images and the follow-up automatic stone tracking mode made by constant ultrasound scanning. The authors have integrated both apparatus and present the operating principles for both modes. The system used two in vitro experiments to justify its abilities of stone location in all procedures. Full article
(This article belongs to the Special Issue Medical & Biological Imaging)
Figures

Figure 1

Open AccessReview Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview
Sensors 2013, 13(1), 1300-1318; https://doi.org/10.3390/s130101300
Received: 22 October 2012 / Revised: 16 January 2013 / Accepted: 19 January 2013 / Published: 21 January 2013
Cited by 8 | PDF Full-text (856 KB) | HTML Full-text | XML Full-text
Abstract
Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in
[...] Read more.
Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Italy 2012)
Open AccessArticle Robot Evolutionary Localization Based on Attentive Visual Short-Term Memory
Sensors 2013, 13(1), 1268-1299; https://doi.org/10.3390/s130101268
Received: 22 December 2012 / Revised: 14 January 2013 / Accepted: 14 January 2013 / Published: 21 January 2013
Cited by 3 | PDF Full-text (3110 KB) | HTML Full-text | XML Full-text
Abstract
Cameras are one of the most relevant sensors in autonomous robots. However, two of their challenges are to extract useful information from captured images, and to manage the small field of view of regular cameras. This paper proposes implementing a dynamic visual memory
[...] Read more.
Cameras are one of the most relevant sensors in autonomous robots. However, two of their challenges are to extract useful information from captured images, and to manage the small field of view of regular cameras. This paper proposes implementing a dynamic visual memory to store the information gathered from a moving camera on board a robot, followed by an attention system to choose where to look with this mobile camera, and a visual localization algorithm that incorporates this visual memory. The visual memory is a collection of relevant task-oriented objects and 3D segments, and its scope is wider than the current camera field of view. The attention module takes into account the need to reobserve objects in the visual memory and the need to explore new areas. The visual memory is useful also in localization tasks, as it provides more information about robot surroundings than the current instantaneous image. This visual system is intended as underlying technology for service robot applications in real people’s homes. Several experiments have been carried out, both with simulated and real Pioneer and Nao robots, to validate the system and each of its components in office scenarios. Full article
(This article belongs to the Special Issue New Trends towards Automatic Vehicle Control and Perception Systems)
Open AccessArticle An Aerial-Ground Robotic System for Navigation and Obstacle Mapping in Large Outdoor Areas
Sensors 2013, 13(1), 1247-1267; https://doi.org/10.3390/s130101247
Received: 16 October 2012 / Revised: 24 December 2012 / Accepted: 14 January 2013 / Published: 21 January 2013
Cited by 26 | PDF Full-text (2769 KB) | HTML Full-text | XML Full-text
Abstract
There are many outdoor robotic applications where a robot must reach a goal position or explore an area without previous knowledge of the environment around it. Additionally, other applications (like path planning) require the use of known maps or previous information of the
[...] Read more.
There are many outdoor robotic applications where a robot must reach a goal position or explore an area without previous knowledge of the environment around it. Additionally, other applications (like path planning) require the use of known maps or previous information of the environment. This work presents a system composed by a terrestrial and an aerial robot that cooperate and share sensor information in order to address those requirements. The ground robot is able to navigate in an unknown large environment aided by visual feedback from a camera on board the aerial robot. At the same time, the obstacles are mapped in real-time by putting together the information from the camera and the positioning system of the ground robot. A set of experiments were carried out with the purpose of verifying the system applicability. The experiments were performed in a simulation environment and outdoor with a medium-sized ground robot and a mini quad-rotor. The proposed robotic system shows outstanding results in simultaneous navigation and mapping applications in large outdoor environments. Full article
(This article belongs to the Special Issue New Trends towards Automatic Vehicle Control and Perception Systems)
Figures

Graphical abstract

Open AccessArticle A Comparative Study on Three Different Transducers for the Measurement of Nonlinear Solitary Waves
Sensors 2013, 13(1), 1231-1246; https://doi.org/10.3390/s130101231
Received: 30 November 2012 / Revised: 28 December 2012 / Accepted: 11 January 2013 / Published: 18 January 2013
Cited by 5 | PDF Full-text (601 KB) | HTML Full-text | XML Full-text
Abstract
In the last decade there has been an increasing interest in the use of highly- and weakly- nonlinear solitary waves in engineering and physics. Nonlinear solitary waves can form and travel in nonlinear systems such as one-dimensional chains of particles, where they are
[...] Read more.
In the last decade there has been an increasing interest in the use of highly- and weakly- nonlinear solitary waves in engineering and physics. Nonlinear solitary waves can form and travel in nonlinear systems such as one-dimensional chains of particles, where they are conventionally generated by the mechanical impact of a striker and are measured either by using thin transducers embedded in between two half-particles or by a force sensor placed at the chain’s base. These waves have a constant spatial wavelength and their speed, amplitude, and duration can be tuned by modifying the particles’ material or size, or the velocity of the striker. In this paper we propose two alternative sensing configurations for the measurements of solitary waves propagating in a chain of spherical particles. One configuration uses piezo rods placed in the chain while the other exploits the magnetostrictive property of ferromagnetic materials. The accuracy of these two sensing systems on the measurement of the solitary wave’s characteristics is assessed by comparing experimental data to the numerical prediction of a discrete particle model and to the experimental measurements obtained by means of a conventional transducer. The results show very good agreement and the advantages and limitations of the new sensors are discussed. Full article
(This article belongs to the Special Issue Piezoelectric Sensors and Actuators)
Open AccessArticle A Network Access Control Framework for 6LoWPAN Networks
Sensors 2013, 13(1), 1210-1230; https://doi.org/10.3390/s130101210
Received: 30 November 2012 / Revised: 8 January 2013 / Accepted: 16 January 2013 / Published: 18 January 2013
Cited by 12 | PDF Full-text (294 KB) | HTML Full-text | XML Full-text
Abstract
Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is
[...] Read more.
Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. Full article
(This article belongs to the Special Issue Ubiquitous Sensing)
Open AccessArticle Customized Multiwavelets for Planetary Gearbox Fault Detection Based on Vibration Sensor Signals
Sensors 2013, 13(1), 1183-1209; https://doi.org/10.3390/s130101183
Received: 27 November 2012 / Revised: 22 December 2012 / Accepted: 8 January 2013 / Published: 18 January 2013
Cited by 21 | PDF Full-text (714 KB) | HTML Full-text | XML Full-text
Abstract
Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and
[...] Read more.
Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox. Full article
(This article belongs to the Section Physical Sensors)
Open AccessArticle A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System
Sensors 2013, 13(1), 1160-1182; https://doi.org/10.3390/s130101160
Received: 16 August 2012 / Revised: 1 December 2012 / Accepted: 31 December 2012 / Published: 17 January 2013
Cited by 11 | PDF Full-text (1043 KB) | HTML Full-text | XML Full-text
Abstract
In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be
[...] Read more.
In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy. Full article
(This article belongs to the Special Issue Ubiquitous Sensing)
Figures

Graphical abstract

Open AccessNew Book Received Antenna Systems and Electronic Warfare Applications. Edited by Richard A. Poisel, Artech House, 2012; 1036 pages. Price: £129.00, ISBN 978-1-60807-484-6
Sensors 2013, 13(1), 1158-1159; https://doi.org/10.3390/s130101158
Received: 10 January 2013 / Accepted: 14 January 2013 / Published: 17 January 2013
PDF Full-text (112 KB) | HTML Full-text | XML Full-text
Abstract
This comprehensive book serves as a one-stop resource for practical EW antenna system know-how. Supported with over 700 illustrations and nearly 1,700 equations, this authoritative reference offers you detailed explanations of all the important foundations and aspects of this technology. Moreover, you get
[...] Read more.
This comprehensive book serves as a one-stop resource for practical EW antenna system know-how. Supported with over 700 illustrations and nearly 1,700 equations, this authoritative reference offers you detailed explanations of all the important foundations and aspects of this technology. Moreover, you get an in-depth treatment of a wide range of antenna system applications. Full article
(This article belongs to the Section Chemical Sensors)
Open AccessNew Book Received Electronic Warfare Target Location Methods, Second Edition. Edited by Richard A. Poisel, Artech House, 2012; 422 pages. Price: £99.00, ISBN 978-1-60807-523-2
Sensors 2013, 13(1), 1151-1157; https://doi.org/10.3390/s130101151
Received: 10 January 2013 / Accepted: 14 January 2013 / Published: 17 January 2013
PDF Full-text (123 KB) | HTML Full-text | XML Full-text
Abstract
Describing the mathematical development underlying current and classical methods of geolocating electronic systems that are emitting, this newly revised and greatly expanded edition of a classic Artech House book offers practical guidance in electronic warfare target location. The Second Edition features a wealth
[...] Read more.
Describing the mathematical development underlying current and classical methods of geolocating electronic systems that are emitting, this newly revised and greatly expanded edition of a classic Artech House book offers practical guidance in electronic warfare target location. The Second Edition features a wealth of additional material including new chapters on time delay estimation, direction finding techniques, and the MUSIC algorithm. This practical resource provides you with critical design information on geolocation algorithms, and establishes the fundamentals of existing algorithms as a launch point for further algorithm development. You gain an in-depth understanding of key target location methods that you can effectively apply to your work in the field. You discover triangulation algorithms that offer a highly efficient way to geolocate targets when the real estate on the sensor systems is adequate to support an antenna array. The book also presents quadratic geolocation techniques that can be implemented with extremely modest antennas — frequently a single dipole or monopole. Moreover, this authoritative volume details methods for geolocating the source of high frequency signals with a single sensor site. Full article
(This article belongs to the Section Chemical Sensors)
Open AccessNew Book Received Introduction to Modern EW Systems. Edited by Andrea De Martino, Artech House, 2012; 417 pages. Price: £119.00, ISBN 978-1-60807-207-1
Sensors 2013, 13(1), 1146-1150; https://doi.org/10.3390/s130101146
Received: 10 January 2013 / Accepted: 14 January 2013 / Published: 17 January 2013
PDF Full-text (121 KB) | HTML Full-text | XML Full-text
Abstract
Master the latest electronic warfare (EW) techniques and technologies related to on-board military platforms with this authoritative resource. You gain expert design guidance on technologies and equipment used to detect and identify emitter threats, giving you an advantage in the never-ending chess game
[...] Read more.
Master the latest electronic warfare (EW) techniques and technologies related to on-board military platforms with this authoritative resource. You gain expert design guidance on technologies and equipment used to detect and identify emitter threats, giving you an advantage in the never-ending chess game between sensor guided weapons and EW systems. This unique book offers you deeper insight into EW systems principles of operation and their mathematical descriptions, arming you with better knowledge for your specific design applications. Full article
(This article belongs to the Section Chemical Sensors)
Open AccessArticle Characterization of a New Heat Dissipation Matric Potential Sensor
Sensors 2013, 13(1), 1137-1145; https://doi.org/10.3390/s130101137
Received: 15 October 2012 / Revised: 28 December 2012 / Accepted: 14 January 2013 / Published: 17 January 2013
Cited by 2 | PDF Full-text (713 KB) | HTML Full-text | XML Full-text
Abstract
Soil moisture sensors can help to reduce the amount of water needed for irrigation. In this paper we describe the PlantCare soil moisture sensor as a new type of heat dissipation sensor, its calibration and the correction for temperature changes. With the PlantCare
[...] Read more.
Soil moisture sensors can help to reduce the amount of water needed for irrigation. In this paper we describe the PlantCare soil moisture sensor as a new type of heat dissipation sensor, its calibration and the correction for temperature changes. With the PlantCare sensor it is possible to measure the matric potential indirectly to monitor or control irrigation. This sensor is based on thermal properties of a synthetic felt. After a defined heating phase the cooling time to a threshold temperature is a function of the water content in the synthetic felt. The water content in this porous matrix is controlled by the matric potential in the surrounding soil. Calibration measurements have shown that the sensor is most sensitive to −400 hPa and allows lower sensitivity measurements to −800 hPa. The disturbing effect of the temperature change during the measurement on the cooling time can be corrected by a linear function and the differences among sensors are minimized by a two point calibration. Full article
(This article belongs to the Section Physical Sensors)
Back to Top