Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 23, Issue 1 (January 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) These are small molecules with a 10-carbon skeleton called monoterpenes, which show great [...] Read more.
View options order results:
result details:
Displaying articles 1-219
Export citation of selected articles as:
Open AccessFeature PaperReview The Potential of Phytomelatonin as a Nutraceutical
Molecules 2018, 23(1), 238; https://doi.org/10.3390/molecules23010238
Received: 10 January 2018 / Revised: 17 January 2018 / Accepted: 18 January 2018 / Published: 22 January 2018
Cited by 4 | PDF Full-text (2469 KB) | HTML Full-text | XML Full-text
Abstract
Phytomelatonin (plant melatonin) is chemically related to the amino acid tryptophan and has many diverse properties. Phytomelatonin is an interesting compound due to its outstanding actions at the cellular and physiological level, especially its protective effect in plants exposed to diverse stress situations,
[...] Read more.
Phytomelatonin (plant melatonin) is chemically related to the amino acid tryptophan and has many diverse properties. Phytomelatonin is an interesting compound due to its outstanding actions at the cellular and physiological level, especially its protective effect in plants exposed to diverse stress situations, while its vegetable origin offers many opportunities because it is a natural compound. We present an overview of its origin, its action in plants in general (particularly in plant species with high levels of phytomelatonin), and its possibilities for use as a nutraceutical with particular attention paid to the beneficial effects that it may have in human health. The differences between synthetic melatonin and phytomelatonin, according to its origin and purity, are presented. Finally, the current market for phytomelatonin and its limits and potentials are discussed. Full article
Figures

Figure 1

Open AccessArticle HnRNPA1 Specifically Recognizes the Base of Nucleotide at the Loop of RNA G-Quadruplex
Molecules 2018, 23(1), 237; https://doi.org/10.3390/molecules23010237
Received: 13 December 2017 / Revised: 5 January 2018 / Accepted: 16 January 2018 / Published: 22 January 2018
PDF Full-text (910 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Human telomere RNA performs various cellular functions, such as telomere length regulation, heterochromatin formation, and end protection. We recently demonstrated that the loops in the RNA G-quadruplex are important in the interaction of telomere RNA with heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). Here, we
[...] Read more.
Human telomere RNA performs various cellular functions, such as telomere length regulation, heterochromatin formation, and end protection. We recently demonstrated that the loops in the RNA G-quadruplex are important in the interaction of telomere RNA with heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). Here, we report on a detailed analysis of hnRNPA1 binding to telomere RNA G-quadruplexes with a group of loop variants using an electrophoretic mobility shift assay (EMSA) and circular dichroism (CD) spectroscopy. We found that the hnRNPA1 binds to RNA G-quadruplexes with the 2’-O-methyl and DNA loops, but fails to bind with the abasic RNA and DNA loops. These results suggested that hnRNPA1 binds to the loop of the RNA G-quadruplex by recognizing the base of the loop’s nucleotides. The observation provides the first evidence that the base of the loop’s nucleotides is a key factor for hnRNPA1 specifically recognizing the RNA G-quadruplex. Full article
(This article belongs to the Special Issue G-Quadruplex Ligands and Cancer)
Figures

Figure 1

Open AccessArticle Biochemical Analysis of the Role of Leucine-Rich Repeat Receptor-Like Kinases and the Carboxy-Terminus of Receptor Kinases in Regulating Kinase Activity in Arabidopsis thaliana and Brassica oleracea
Molecules 2018, 23(1), 236; https://doi.org/10.3390/molecules23010236
Received: 11 December 2017 / Revised: 8 January 2018 / Accepted: 15 January 2018 / Published: 22 January 2018
PDF Full-text (3461 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Protein post-translational modification by phosphorylation is essential for the activity and stability of proteins in higher plants and underlies their responses to diverse stimuli. There are more than 300 leucine-rich repeat receptor-like kinases (LRR-RLKs), a major group of receptor-like kinases (RLKs) that plays
[...] Read more.
Protein post-translational modification by phosphorylation is essential for the activity and stability of proteins in higher plants and underlies their responses to diverse stimuli. There are more than 300 leucine-rich repeat receptor-like kinases (LRR-RLKs), a major group of receptor-like kinases (RLKs) that plays an important role in growth, development, and biotic stress responses in higher plants. To analyze auto- and transphosphorylation patterns and kinase activities in vitro, 43 full-length complementary DNA (cDNA) sequences were cloned from genes encoding LRR-RLKs. Autophosphorylation activity was found in the cytoplasmic domains (CDs) of 18 LRR-RLKs; 13 of these LRR-RLKs with autophosphorylation activity showed transphosphorylation in Escherichia coli. BRI1-Associated Receptor Kinase (BAK1), which is critically involved in the brassinosteroid and plant innate immunity signal transduction pathways, showed strong auto- and transphosphorylation with multi-specific kinase activity within 2 h of induction of Brassica oleraceae BAK1-CD (BoBAK1-CD) in E. coli; moreover, the carboxy-terminus of LRR-RLKs regulated phosphorylation and kinase activity in Arabidopsis thaliana and vegetative crops. Full article
(This article belongs to the Special Issue Protein Modifications and Bioconjugation)
Figures

Graphical abstract

Open AccessArticle One-Pot Synthesis of 3-Functionalized 4-Hydroxycoumarin under Catalyst-Free Conditions
Molecules 2018, 23(1), 235; https://doi.org/10.3390/molecules23010235
Received: 15 December 2017 / Revised: 17 January 2018 / Accepted: 19 January 2018 / Published: 22 January 2018
PDF Full-text (1648 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A concise and efficient one-pot synthesis of 3-functionalized 4-hydroxycoumarin derivatives via a three-component domino reaction of 4-hydroxycoumarin, phenylglyoxal and 3-arylaminocyclopent-2-enone or 4-arylaminofuran-2(5H)-one under catalyst-free and microwave irradiation conditions is described. This synthesis involves a group-assisted purification process, which avoids traditional recrystallization
[...] Read more.
A concise and efficient one-pot synthesis of 3-functionalized 4-hydroxycoumarin derivatives via a three-component domino reaction of 4-hydroxycoumarin, phenylglyoxal and 3-arylaminocyclopent-2-enone or 4-arylaminofuran-2(5H)-one under catalyst-free and microwave irradiation conditions is described. This synthesis involves a group-assisted purification process, which avoids traditional recrystallization and chromatographic purification methods. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Figure 1

Open AccessArticle Chemical Constituents from Apios americana and Their Inhibitory Activity on Tyrosinase
Molecules 2018, 23(1), 232; https://doi.org/10.3390/molecules23010232
Received: 15 November 2017 / Revised: 2 January 2018 / Accepted: 6 January 2018 / Published: 22 January 2018
PDF Full-text (2293 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The goal of this study was to identify phytochemicals with inhibitory activity against tyrosinase. Nine compounds 19 were isolated from the tubers of Apios americana. This is the first report of aromadendrin 5-methyl ether (1) being isolated from the
[...] Read more.
The goal of this study was to identify phytochemicals with inhibitory activity against tyrosinase. Nine compounds 19 were isolated from the tubers of Apios americana. This is the first report of aromadendrin 5-methyl ether (1) being isolated from the Apios species. Among them, compounds 2 and 8 showed inhibitory activity toward tyrosinase. Based on a Dixon plot, the potential Ki values of competitive inhibitors 2 and 8 were calculated as 10.3 ± 0.8 µM and 44.2 ± 1.7 µM, respectively. An IC50 value of 13.2 ± 1.0 µM was calculated for the slow-binding inhibitor 2 after preincubation with tyrosinase. Additionally, the predicted binding sites between the receptor and ligand, as well as secondary structure changes, in the presence of 2 were examined by molecular simulation. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Graphical abstract

Open AccessArticle A Comparative Pharmacokinetic Study by UHPLC-MS/MS of Main Active Compounds after Oral Administration of Zushima-Gancao Extract in Normal and Adjuvant-Induced Arthritis Rats
Molecules 2018, 23(1), 227; https://doi.org/10.3390/molecules23010227
Received: 18 December 2017 / Revised: 11 January 2018 / Accepted: 18 January 2018 / Published: 22 January 2018
PDF Full-text (1590 KB) | HTML Full-text | XML Full-text
Abstract
A sensitive and rapid ultra high-performance liquid-chromatography tandem mass spectrometry (UHPLC-MS/MS) method has been applied to investigate the influence of rheumatoid arthritis (RA) on the pharmacokinetics of nine analytes (daphnetin, daphnoretin, 7-hydroxycoumarin, liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin, glycyrrhizin, and glycyrrhetinic acid), which are major
[...] Read more.
A sensitive and rapid ultra high-performance liquid-chromatography tandem mass spectrometry (UHPLC-MS/MS) method has been applied to investigate the influence of rheumatoid arthritis (RA) on the pharmacokinetics of nine analytes (daphnetin, daphnoretin, 7-hydroxycoumarin, liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin, glycyrrhizin, and glycyrrhetinic acid), which are major active components in Zushima-Gancao extract. The analytes and internal standard (IS) were separated in a Hypersil Gold C18 column and detected on a triple-stage quadrupole mass spectrometer using the validated method. All analytes exhibited good linearities (R2 > 0.98), and the lower limit of quantification (LLOQs) were sufficient for quantitative analysis. Intra- and inter-batch precision were all within 14.96% while the accuracy of nine analytes ranged from −17.99 to 14.48%, and these results were all within acceptance criteria. The extraction recoveries, matrix effects, and stabilities were all satisfactory. Main pharmacokinetic parameters of each compound were compared, and significant differences were found in parameters of daphnetin, daphnoretin, liquiritin, isoliquiritin, isoliquiritigenin, glycyrrhizin, and glycyrrhetinic acid, especially the last one, between the two groups. Therefore, adjuvant-induced arthritis has different effects on the pharmacokinetics of ingredients in Zushima-Gancao extract. The comparative pharmacokinetic study between normal and adjuvant-induced arthritis rats might provide more comprehensive information to guide the clinical usage of Zushima-Gancao extract for treating RA. Full article
Figures

Figure 1

Open AccessReview Tamm–Horsfall Protein is a Potent Immunomodulatory Molecule and a Disease Biomarker in the Urinary System
Molecules 2018, 23(1), 200; https://doi.org/10.3390/molecules23010200
Received: 20 December 2017 / Revised: 17 January 2018 / Accepted: 17 January 2018 / Published: 22 January 2018
PDF Full-text (1099 KB) | HTML Full-text | XML Full-text
Abstract
Tamm–Horsfall protein (THP), or uromodulin (UMOD), is an 80–90-kDa phosphatidylinositol-anchored glycoprotein produced exclusively by the renal tubular cells in the thick ascending limb of the loop of Henle. Physiologically, THP is implicated in renal countercurrent gradient formation, sodium homeostasis, blood pressure regulation, and
[...] Read more.
Tamm–Horsfall protein (THP), or uromodulin (UMOD), is an 80–90-kDa phosphatidylinositol-anchored glycoprotein produced exclusively by the renal tubular cells in the thick ascending limb of the loop of Henle. Physiologically, THP is implicated in renal countercurrent gradient formation, sodium homeostasis, blood pressure regulation, and a defense molecule against infections in the urinary system. Investigations have also revealed that THP is an effective binding ligand for serum albumin, immunoglobulin G light chains, complement components C1 and C1q, interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, and interferon-γ through its carbohydrate side chains for maintaining circulatory and renal immune homeostasis. Thus, THP can be regarded as part of the innate immune system. UMOD mutations play crucial roles in congenital urolithiasis, hereditary hyperuricemia/gout, and medullary cystic kidney diseases. Recent investigations have focused on the immunomodulatory effects of THP on immune cells and on THP as a disease biomarker of acute and chronic kidney diseases. Our studies have suggested that normal urinary THP, through its epidermal growth factor (EGF)-like domains, binds to the surface-expressed EGF-like receptors, cathepsin G, or lactoferrin to enhance polymorphonuclear leukocyte phagocytosis, proinflammatory cytokine production by monocytes/macrophages, and lymphocyte proliferation by activating the Rho family and mitogen-activated protein kinase signaling pathways. Furthermore, our data support both an intact protein core structure and carbohydrate side chains are important for the different protein-binding capacities of THP. Prospectively, parts of the whole THP molecule may be used for anti-TNF-α therapy in inflammatory diseases, autoantibody-depleting therapy in autoimmune disorders, and immune intensification in immunocompromised hosts. Full article
Figures

Graphical abstract

Open AccessArticle Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum
Molecules 2018, 23(1), 182; https://doi.org/10.3390/molecules23010182
Received: 9 November 2017 / Revised: 14 January 2018 / Accepted: 15 January 2018 / Published: 22 January 2018
Cited by 1 | PDF Full-text (625 KB) | HTML Full-text | XML Full-text
Abstract
The purpose of this study was to investigate the chemical composition and biological activity of the volatile oils (VOs) from the flowers of three buckwheat species, Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum cymosum. The VOs were obtained from the fresh buckwheat
[...] Read more.
The purpose of this study was to investigate the chemical composition and biological activity of the volatile oils (VOs) from the flowers of three buckwheat species, Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum cymosum. The VOs were obtained from the fresh buckwheat flowers by hydrodistillation, and were analyzed for their chemical composition by gas chromatography-mass spectrometry (GC-MS). Nonanoic acid (7.58%), (E)-3-hexen-1-ol (6.52%), and benzothiazole (5.08%) were the major constituents among the 28 identified components which accounted for 92.89% of the total oil of F. esculentum. 2-Pentadecanone (18.61%), eugenol (17.18%), 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester (13.19%), and (E,E)-farnesylacetone (7.15%) were the major compounds among the 14 identified components which accounted for 88.48% of the total oil of F. tataricum. Eugenol (12.22%), (E)-3-hexen-1-yl acetate (8.03%), linalool oxide (7.47%), 1-hexanol (7.07%), and benzothiazole (6.72%) were the main compounds of the 20 identified components which accounted for 90.23% of the total oil of F. cymosum. The three VOs were screened to have broad spectrum antibacterial activity with minimum inhibitory concentration (MIC) values ranged from 100.0 μg/mL to 800.0 μg/mL against the tested bacteria, and their median inhibitory concentration (IC50) values were from 68.32 μg/mL to 452.32 μg/mL. Xanthomonas vesicatoria was the most sensitive bacterium. Moreover, the flower VOs of F. esculentum, F. tataricum and F. cymosum also exhibited noteworthy antioxidant capacity with the IC50 value of 354.15 μg/mL, 210.63 μg/mL, and 264.92 μg/mL for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, and the value of 242.06 μg/mL, 184.13 μg/mL, and 206.11 μg/mL respectively for the β-carotene-linoleic bleaching test. These results suggested the volatile oils of buckwheat flowers could be potential resource of natural antimicrobial and antioxidant agents. Full article
(This article belongs to the Special Issue Essential Oils as Antimicrobial and Anti-infectious Agents)
Figures

Figure 1

Open AccessReview Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand
Molecules 2018, 23(1), 231; https://doi.org/10.3390/molecules23010231
Received: 20 November 2017 / Revised: 4 January 2018 / Accepted: 18 January 2018 / Published: 21 January 2018
PDF Full-text (695 KB) | HTML Full-text | XML Full-text
Abstract
Commonly cultivated Brassicaceae mustards, namely garlic mustard (Alliaria petiolata), white mustard (Brassica alba), Ethiopian mustard (B. carinata), Asian mustard (B. juncea), oilseed rape (B. napus), black mustard (B. nigra), rapeseed (
[...] Read more.
Commonly cultivated Brassicaceae mustards, namely garlic mustard (Alliaria petiolata), white mustard (Brassica alba), Ethiopian mustard (B. carinata), Asian mustard (B. juncea), oilseed rape (B. napus), black mustard (B. nigra), rapeseed (B. rapa), white ball mustard (Calepina irregularis), ball mustard (Neslia paniculata), treacle mustard (Erysimum repandum), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), smooth mustard (S. erysimoides) and canola are the major economically important oilseed crops in many countries. Mustards were naturalized to Australia and New Zealand and Australia is currently the second largest exporter of Brassicaceae oilseeds to meet the global demand for a healthy plant-derived oil, high in polyunsaturated fats. Apart from providing edible oil, various parts of these plants and many of their phytochemicals have been used traditionally for both agronomic as well as medicinal purposes, with evidence of their use by early Australian and New Zealand settlers and also the indigenous population. This review provides an overview of the current knowledge of traditional and agronomic uses of Brassicaceae oilseeds and mustards with a focus on their importance in Australia and New Zealand. Full article
(This article belongs to the Special Issue Natural Products Research in Australia and New Zealand)
Figures

Figure 1

Open AccessArticle Towards a Novel Class of Multitarget-Directed Ligands: Dual P2X7–NMDA Receptor Antagonists
Molecules 2018, 23(1), 230; https://doi.org/10.3390/molecules23010230
Received: 2 December 2017 / Revised: 15 January 2018 / Accepted: 16 January 2018 / Published: 21 January 2018
Cited by 1 | PDF Full-text (3182 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Multi-target-directed ligands (MTDLs) offer new hope for the treatment of multifactorial complex diseases such as Alzheimer’s Disease (AD). Herein, we present compounds aimed at targeting the NMDA and the P2X7 receptors, which embody a different approach to AD therapy. On one hand, we
[...] Read more.
Multi-target-directed ligands (MTDLs) offer new hope for the treatment of multifactorial complex diseases such as Alzheimer’s Disease (AD). Herein, we present compounds aimed at targeting the NMDA and the P2X7 receptors, which embody a different approach to AD therapy. On one hand, we are seeking to delay neurodegeneration targeting the glutamatergic NMDA receptors; on the other hand, we also aim to reduce neuroinflammation, targeting P2X7 receptors. Although the NMDA receptor is a widely recognized therapeutic target in treating AD, the P2X7 receptor remains largely unexplored for this purpose; therefore, the dual inhibitor presented herein—which is open to further optimization—represents the first member of a new class of MTDLs. Full article
Figures

Figure 1

Open AccessArticle Supported Zeolite Beta Layers via an Organic Template-Free Preparation Route
Molecules 2018, 23(1), 220; https://doi.org/10.3390/molecules23010220
Received: 7 November 2017 / Revised: 11 January 2018 / Accepted: 15 January 2018 / Published: 21 January 2018
PDF Full-text (2146 KB) | HTML Full-text | XML Full-text
Abstract
Layers of high silica zeolites, synthesized with an organic structure directing agent (OSDA) and grown onto porous support structures, frequently suffer from the thermal stress during the removal of OSDA via the calcination process. The different thermal expansion coefficients of the zeolite and
[...] Read more.
Layers of high silica zeolites, synthesized with an organic structure directing agent (OSDA) and grown onto porous support structures, frequently suffer from the thermal stress during the removal of OSDA via the calcination process. The different thermal expansion coefficients of the zeolite and the support material, especially when stainless steel is used as a support, causes enormous tension resulting in defect formation in the zeolite layer. However, the calcination is an easy procedure to decompose the OSDA in the pore system of the zeolite. Recently, methods to synthesize zeolite beta without the use of an organic structure directing agent have been described. In the present study, a seed-directed synthesis is used to prepare OSDA-free zeolite beta layers on stainless steel supports via an in situ preparation route. For the application as membrane, a porous stainless steel support has been chosen. The beta/stainless steel composites are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To prove its possible application as a membrane, the beta/stainless steel composites were also tested by single gas permeances of H2, He, CO2, N2, and CH4. Full article
Figures

Figure 1

Open AccessArticle Distribution Assessments of Coumarins from Angelicae Pubescentis Radix in Rat Cerebrospinal Fluid and Brain by Liquid Chromatography Tandem Mass Spectrometry Analysis
Molecules 2018, 23(1), 225; https://doi.org/10.3390/molecules23010225
Received: 29 December 2017 / Revised: 16 January 2018 / Accepted: 17 January 2018 / Published: 20 January 2018
PDF Full-text (1548 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Angelicae Pubescentis Radix (APR) is a widely-used traditional Chinese medicine. Pharmacological studies have begun to probe its biological activities on neurological disorders recently. To assess the brain penetration and distribution of APR, a validated ultra-performance liquid chromatography tandem mass spectrometry method was applied
[...] Read more.
Angelicae Pubescentis Radix (APR) is a widely-used traditional Chinese medicine. Pharmacological studies have begun to probe its biological activities on neurological disorders recently. To assess the brain penetration and distribution of APR, a validated ultra-performance liquid chromatography tandem mass spectrometry method was applied to the simultaneous determinations of the main coumarins from APR in the rat cerebrospinal fluid (CSF) and brain after oral administration of APR extract, including psoralen, xanthotoxin, bergapten, isoimperatorin, columbianetin, columbianetin acetate, columbianadin, oxypeucedanin hydrate, angelol B, osthole, meranzin hydrate and nodakenetin. Most of the tested coumarins entered the rat CSF and brain quickly, and double-peak phenomena in concentration-time curves were similar to those of their plasma pharmacokinetics. Columbianetin had the highest concentration in the CSF and brain, while psoralen and columbianetin acetate had the largest percent of CSF/plasma and brain/plasma, indicating that these three coumarins may be worthy of further research on the possible nervous effects. Correlations between the in vivo brain distributions and plasma pharmacokinetics of these coumarins were well verified. These results provided valuable information for the overall in vivo brain distribution characteristics of APR and also for its further studies on the active substances for the central nervous system. Full article
Figures

Figure 1

Open AccessArticle A Semi-Pilot Photocatalytic Rotating Reactor (RFR) with Supported TiO2/Ag Catalysts for Water Treatment
Molecules 2018, 23(1), 224; https://doi.org/10.3390/molecules23010224
Received: 21 October 2017 / Revised: 15 December 2017 / Accepted: 30 December 2017 / Published: 20 January 2018
PDF Full-text (1642 KB) | HTML Full-text | XML Full-text
Abstract
A four stage semi-pilot scale RFR reactor with ceramic disks as support for TiO2 modified with silver particles was developed for the removal of organic pollutants. The design presented in this article is an adaptation of the rotating biological reactors (RBR) and
[...] Read more.
A four stage semi-pilot scale RFR reactor with ceramic disks as support for TiO2 modified with silver particles was developed for the removal of organic pollutants. The design presented in this article is an adaptation of the rotating biological reactors (RBR) and its coupling with the modified catalyst provides additional advantages to designs where a catalyst in suspension is used. The optimal parameter of rotation was 54 rpm and the submerged surface of the disks offer a total contact area of 387 M2. The modified solid showed a decrease in the value of its bandgap compared to commercial titanium. The system has a semi-automatic operation with a maximum reaction time of 50 h. Photo-activity tests show high conversion rates at low concentrations. The results conform to the Langmuir heterogeneous catalysis model. Full article
(This article belongs to the Section Photochemistry)
Figures

Figure 1

Open AccessArticle Protective Mechanism of the Antioxidant Baicalein toward Hydroxyl Radical-Treated Bone Marrow-Derived Mesenchymal Stem Cells
Molecules 2018, 23(1), 223; https://doi.org/10.3390/molecules23010223
Received: 5 December 2017 / Revised: 16 January 2018 / Accepted: 17 January 2018 / Published: 20 January 2018
Cited by 1 | PDF Full-text (6979 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Our study explores the antioxidant and cytoprotective effects of baicalein and further discusses the possible mechanisms. A methyl thiazolyl tetrazolium (MTT) assay revealed that baicalein could considerably enhance the viability of hydroxyl radical-treated bone marrow-mesenchymal stem cells (bmMSCs) at 37–370 µM. The highest
[...] Read more.
Our study explores the antioxidant and cytoprotective effects of baicalein and further discusses the possible mechanisms. A methyl thiazolyl tetrazolium (MTT) assay revealed that baicalein could considerably enhance the viability of hydroxyl radical-treated bone marrow-mesenchymal stem cells (bmMSCs) at 37–370 µM. The highest viability rate was 120.4%. In subsequent studies, baicalein was observed to effectively scavenge hydroxyl radical and PTIO• radicals, reducing Fe3+ and Cu2+ ions. In the Fe2+-chelating UV-vis spectra, mixing of baicalein with Fe2+ yielded two evident redshifts (275 → 279 nm and 324 → 352 nm) and a broad absorption peak (λmax ≈ 650 nm, ε = 1.6 × 103 L mol−1·cm−1). Finally, we compared the Fe2+-chelating UV-vis spectra of baicalein and its analogues, including 5-hydroxyflavone, 6-hydroxyflavone, 7-hydroxyflavone, catechol, pyrogallol, and chrysin. This analysis revealed that the 4-keto group of the C-ring played a role. The 5,6,7-trihydroxy-group (pyrogallol group) in the A-ring served as an auxochrome, enhancing the absorbance of the UV-vis spectra and deepening the color of the Fe2+-complex. We concluded that baicalein, as an effective hydroxyl radical-scavenger, can protect bmMSCs from hydroxyl radical-mediated oxidative stress. Its hydroxyl radical-scavenging effects are likely exerted via two pathways: direct scavenging of hydroxyl radicals, possibly through electron transfer, and indirect inhibition of hydroxyl radical generation via Fe2+ chelation through the 4-keto-5,6,7-trihydroxy groups. Full article
Figures

Figure 1

Open AccessArticle Antioxidant and Cytoprotective Effects of the Di-O-Caffeoylquinic Acid Family: The Mechanism, Structure–Activity Relationship, and Conformational Effect
Molecules 2018, 23(1), 222; https://doi.org/10.3390/molecules23010222
Received: 8 December 2017 / Revised: 6 January 2018 / Accepted: 18 January 2018 / Published: 20 January 2018
Cited by 1 | PDF Full-text (1767 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this study, a series of di-O-caffeoylquinic acids (di-COQs) were systematically investigated for their antioxidant and cytoprotective effects towards •OH-damaged bone marrow-derived mesenchymal stem cells (bmMSCs). Five di-COQs were measured using a set of antioxidant assays. The results show
[...] Read more.
In this study, a series of di-O-caffeoylquinic acids (di-COQs) were systematically investigated for their antioxidant and cytoprotective effects towards •OH-damaged bone marrow-derived mesenchymal stem cells (bmMSCs). Five di-COQs were measured using a set of antioxidant assays. The results show that adjacent 4,5-Di-O-caffeoylquinic acid (4,5-COQ) and 3,4-di-O-caffeoylquinic acid (3,4-COQ) always gave lower IC50 values than did non-adjacent di-COQs. In the Fe2+-chelating assay, 4,5-COQ and 3,4-COQ presented greater UV-Vis spectra and darker colors than did non-adjacent di-COQs. In the UPLC-ESI-MS/MS analysis, no corresponding radical adduct formation (RAF) peak was found in the reaction products of di-COQs with PTIO•. In the MTT assay, all di-COQs (especially 1,5-COQ, 1,3-COQ, and 4,5-COQ) dose-dependently increased the cellular viabilities of •OH-damaged bmMSCs. Based on this evidence, we conclude that the five antioxidant di-COQs can protect bmMSCs from •OH-induced damage. Their antioxidant mechanisms may include electron-transfer (ET), H+-transfer, and Fe2+-chelating, except for RAF. Two adjacent di-COQs (4,5-COQ and 3,4-COQ) always possessed a higher antioxidant ability than the non-adjacent di-COQs (1,3-COQ, 1,5-COQ, and 3,5-COQ) in chemical models. However, non-adjacent 1,3-COQ and 1,5-COQ exhibited a higher cytoprotective effect than did adjacent di-COQs. These differences can be attributed to the relative positions of two caffeoyl moieties and, ultimately, to the conformational effect from the cyclohexane skeleton. Full article
(This article belongs to the Special Issue Structure-Activity Relationship of Natural Products 2018)
Figures

Figure 1

Back to Top