E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Organophosphorus Chemistry"

Quicklinks

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Organic Synthesis".

Deadline for manuscript submissions: closed (31 July 2013)

Special Issue Editor

Guest Editor
Prof. Dr. György Keglevich

Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
Website | E-Mail
Interests: organophosphorus chemistry (P-heterocycles, phospha -Michael reactions, Kabachnik-Fields (phospha-Mannich) reaction, C-P coupling reactions); green chemistry; MW chemistry; platinum complexes with P-ligands; synthesis of dronates; phase transfer catalysis

Special Issue Information

Dear Colleagues,

These days, organophosphorus (OP) chemistry became an integrant part of synthetic organic chemistry. OP compounds are used as starting materials, reagents, catalysts (phase transfer catalysts or P(III)-transition metal complexes) and solvents (ionic liquids (IL)) in research laboratories and in the industry. A part of these applications are in the focus today. There are a lot of frequently used reactions, such as reductions, the Wittig reaction and its variations, the Arbuzov reaction, the Mitsunobu reaction etc. that apply P-containing reagents. Other reactions eg. homogeneous catalytic transformations or C-C coupling reactions involve P-ligands in the catalysts. There has been an enormous development in the field of chiral OP compounds. Methods have been elaborated for the resolution of tertiary phosphine oxides and for stereoselective OP transformations. The optically active P(III) species may be used in transition metal (Pt, Pd, etc.) complex catalysts promoting enantioselective transformations. The heterocyclic discipline may include P-heterocycles and classical O- and N-heterocycles with P-functions. A special field comprises P-containing macrocycles and other macromolecules, like dendrimers. An up-to-date approach is to perform syntheses in the OP discipline in an environmentally-friendly manner. This may include the use of microwave. At the other end, OP species (eg. catalysts and ILs) may be tools in general synthetic organic chemistry. Monitoring the reactions in order to optimize the conditions or to observe reactive species is a challenging field. Theoretical calculations within OP chemistry is also developing field; these days stereostructures and mechanisms may be easily evaluated. A very importanft segment od OP chemistry, better to say a driving force for the development, is the pool of biologically active OP compounds that are searched and used as drugs, or plant protecting agents. The natural analogue P-compounds (eg. peptide and aminoacid analogues) should also be mentioned. Lots of new phosphine oxides, phosphinates, phosphonates and phosphoric esters have been described that may obtain application on a broad scale.
The OP special issue of Molecules will welcome all kind of submissions that fit the above outline.

Prof. Dr. György Keglevich
Guest Editor

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed Open Access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs).

Keywords

  • organophosphorus chemistry
  • phosphine chalcogenides
  • phosphines
  • phosphinic acids
  • phosphonic acids
  • phosphine boranes
  • phosphine complexes
  • P-heterocycles
  • macrocycles
  • dendrimers
  • catalysts
  • homogeneous catalysis
  • ionic liquids
  • microwave
  • monitoration
  • theoretical calculations
  • biologically active substrates

Related Special Issue

Published Papers (9 papers)

View options order results:
result details:
Displaying articles 1-9
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial Editorial to the Organophosphorus Chemistry Special Issue of Molecules (2012–2014)
Molecules 2014, 19(10), 15408-15410; doi:10.3390/molecules191015408
Received: 19 September 2014 / Revised: 21 September 2014 / Accepted: 22 September 2014 / Published: 26 September 2014
PDF Full-text (605 KB) | HTML Full-text | XML Full-text
Abstract
The review entitled “Organophosphorus Chemistry for the Synthesis of Dendrimers” gives an overview of the methods of synthesis of phosphorus-containing dendrimers, with emphasis on the various roles played by the chemistry of phosphorus [1]. It is demonstrated that the presence of phosphorus atom(s)
[...] Read more.
The review entitled “Organophosphorus Chemistry for the Synthesis of Dendrimers” gives an overview of the methods of synthesis of phosphorus-containing dendrimers, with emphasis on the various roles played by the chemistry of phosphorus [1]. It is demonstrated that the presence of phosphorus atom(s) at each branching point of the dendrimeric structure is particularly important and highly valuable. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry)

Research

Jump to: Editorial, Review

Open AccessArticle Cs+ Removal from Aqueous Solutions through Adsorption onto Florisil® Impregnated with Trihexyl(tetradecyl)phosphonium Chloride
Molecules 2013, 18(10), 12845-12856; doi:10.3390/molecules181012845
Received: 1 August 2013 / Revised: 9 October 2013 / Accepted: 10 October 2013 / Published: 16 October 2013
Cited by 10 | PDF Full-text (195 KB) | HTML Full-text | XML Full-text
Abstract
This research determined the adsorption performance of Florisil® impregnated with trihexyl(tetradecyl)phosphonium chloride (Cyphos IL-101) in the process of Cs+ removal from aqueous solutions. The obtained Florisil® impregnated with the studied ionic liquid was characterized through energy dispersive X-ray analysis and
[...] Read more.
This research determined the adsorption performance of Florisil® impregnated with trihexyl(tetradecyl)phosphonium chloride (Cyphos IL-101) in the process of Cs+ removal from aqueous solutions. The obtained Florisil® impregnated with the studied ionic liquid was characterized through energy dispersive X-ray analysis and Fourier transform infrared spectroscopy in order to verify that the impregnation with the ionic liquid had occurred. The adsorption process has been investigated as a function of pH, solid:liquid ratio, adsorbate concentration, contact time and temperature. The isotherm data was well described by a Langmuir isotherm model. The maximum adsorption capacities of the Florisil® impregnated with the studied ionic liquid was found to be 3.086 mg Cs+/g of adsorbent. The results indicated that the adsorption fitted well with the pseudo-second order kinetic model. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry)
Figures

Open AccessArticle Hydrophosphonylation of Nanoparticle Schiff Bases as a Mean for Preparation of Aminophosphonate-Functionalized Nanoparticles
Molecules 2013, 18(7), 8473-8484; doi:10.3390/molecules18078473
Received: 9 June 2013 / Revised: 9 July 2013 / Accepted: 15 July 2013 / Published: 18 July 2013
Cited by 4 | PDF Full-text (550 KB) | HTML Full-text | XML Full-text
Abstract
The development of nanotechnology is responsible for an increase in the achievements in medical diagnostics and in the preparation of new therapeutic vehicles. In particular, magnetic nanoparticles with a modified surface are a very attractive alternative to deliver therapeutic agents. We describe the
[...] Read more.
The development of nanotechnology is responsible for an increase in the achievements in medical diagnostics and in the preparation of new therapeutic vehicles. In particular, magnetic nanoparticles with a modified surface are a very attractive alternative to deliver therapeutic agents. We describe the modification of the surface of the iron oxide nanoparticles with aminophosphonic acids by applying the classic hydrophosphonylation approach. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry)

Review

Jump to: Editorial, Research

Open AccessReview Chemistry of Phosphorylated Formaldehyde Derivatives. Part I
Molecules 2014, 19(9), 12949-13009; doi:10.3390/molecules190912949
Received: 8 July 2014 / Revised: 8 August 2014 / Accepted: 15 August 2014 / Published: 25 August 2014
Cited by 3 | PDF Full-text (981 KB) | HTML Full-text | XML Full-text
Abstract
The underinvestigated derivatives of unstable phosphorylated formaldehyde acetals and some of the structurally related compounds, such as thioacetals, aminonitriles, aminomethylphosphinoyl compounds, are considered. Separately considered are halogen aminals of phosphorylated formaldehyde, acetals of phosphorylated formaldehyde of H-phosphinate-type and a phosphorylated gem-diol of formaldehyde.
[...] Read more.
The underinvestigated derivatives of unstable phosphorylated formaldehyde acetals and some of the structurally related compounds, such as thioacetals, aminonitriles, aminomethylphosphinoyl compounds, are considered. Separately considered are halogen aminals of phosphorylated formaldehyde, acetals of phosphorylated formaldehyde of H-phosphinate-type and a phosphorylated gem-diol of formaldehyde. Synthetic methods, chemical properties and examples of practical applications are given. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry)
Figures

Open AccessReview Synthesis of DNA/RNA and Their Analogs via Phosphoramidite and H-Phosphonate Chemistries
Molecules 2013, 18(11), 14268-14284; doi:10.3390/molecules181114268
Received: 8 October 2013 / Revised: 8 November 2013 / Accepted: 8 November 2013 / Published: 18 November 2013
Cited by 17 | PDF Full-text (680 KB) | HTML Full-text | XML Full-text
Abstract
The chemical synthesis of DNA and RNA is universally carried out using nucleoside phosphoramidites or H-phosphonates as synthons. This review focuses on the phosphorus chemistry behind these synthons and how it has been developed to generate procedures whereby yields per condensation approach 100%
[...] Read more.
The chemical synthesis of DNA and RNA is universally carried out using nucleoside phosphoramidites or H-phosphonates as synthons. This review focuses on the phosphorus chemistry behind these synthons and how it has been developed to generate procedures whereby yields per condensation approach 100% with very few side products. Additionally the synthesis and properties of certain DNA and RNA analogs that are modified at phosphorus will also be discussed. These analogs include boranephosphonates, metallophosphonates, and alkylboranephosphines. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry)
Open AccessReview Stoichiometric and Catalytic Synthesis of Alkynylphosphines
Molecules 2012, 17(12), 14573-14587; doi:10.3390/molecules171214573
Received: 23 November 2012 / Revised: 29 November 2012 / Accepted: 5 December 2012 / Published: 7 December 2012
Cited by 11 | PDF Full-text (263 KB)
Abstract
Alkynylphosphines or their borane complexes are available either through C–P bond forming reactions or through modification of the phosphorus or the alkynyl function of various alkynyl phosphorus derivatives. The latter strategy, and in particular the one involving phosphoryl reduction by alanes or silanes,
[...] Read more.
Alkynylphosphines or their borane complexes are available either through C–P bond forming reactions or through modification of the phosphorus or the alkynyl function of various alkynyl phosphorus derivatives. The latter strategy, and in particular the one involving phosphoryl reduction by alanes or silanes, is the method of choice for preparing primary and secondary alkynylphosphines, while the former strategy is usually employed for the synthesis of tertiary alkynylphosphines or their borane complexes. The classical C–P bond forming methods rely on the reaction between halophosphines or their borane complexes with terminal acetylenes in the presence of a stoichiometric amount of organometallic bases, which precludes the access to alkynylphosphines bearing sensitive functional groups. In less than a decade, efficient catalytic procedures, mostly involving copper complexes and either an electrophilic or a nucleophilic phosphorus reagent, have emerged. By proceeding under mild conditions, these new methods have allowed a significant broadening of the substituent scope and structure complexity. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry)
Figures

Open AccessReview Organophosphorus Chemistry for the Synthesis of Dendrimers
Molecules 2012, 17(11), 13605-13621; doi:10.3390/molecules171113605
Received: 31 October 2012 / Revised: 9 November 2012 / Accepted: 12 November 2012 / Published: 16 November 2012
Cited by 13 | PDF Full-text (1190 KB)
Abstract
Dendrimers are multifunctional, hyperbranched and perfectly defined macromolecules, synthesized layer after layer in an iterative manner. Besides the nature of the terminal groups responsible for most of the properties, the nature of the internal structure, and more precisely of the branching points, is
[...] Read more.
Dendrimers are multifunctional, hyperbranched and perfectly defined macromolecules, synthesized layer after layer in an iterative manner. Besides the nature of the terminal groups responsible for most of the properties, the nature of the internal structure, and more precisely of the branching points, is also of crucial importance. For more than 15 years, we have demonstrated that the presence of phosphorus atom(s) at each branching point of the dendrimeric structure is particularly important and highly valuable for three main reasons: (i) the versatility of phosphorus chemistry that allows diversified organochemistry for the synthesis of dendrimers; (ii) the use of 31P-NMR, which is a highly valuable tool for the characterization of dendrimers; (iii) some properties (in the fields of catalysis, materials, and especially biology), that are directly connected to the nature of the internal structure and of the branching points. This review will give an overview of the methods of synthesis of phosphorus-containing dendrimers, as well on the ways to graft phosphorus derivatives as terminal groups, with emphasis on the various roles played by the chemistry of phosphorus. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry)
Figures

Open AccessReview Synthesis and Modifications of Phosphinic Dipeptide Analogues
Molecules 2012, 17(11), 13530-13568; doi:10.3390/molecules171113530
Received: 17 October 2012 / Revised: 9 November 2012 / Accepted: 12 November 2012 / Published: 15 November 2012
Cited by 14 | PDF Full-text (904 KB)
Abstract
Pseudopeptides containing the phosphinate moiety (-P(O)(OH)CH2-) have been studied extensively, mainly as transition state analogue inhibitors of metalloproteases. The key synthetic aspect of their chemistry is construction of phosphinic dipeptide derivatives bearing appropriate side-chain substituents. Typically, this synthesis involves a multistep
[...] Read more.
Pseudopeptides containing the phosphinate moiety (-P(O)(OH)CH2-) have been studied extensively, mainly as transition state analogue inhibitors of metalloproteases. The key synthetic aspect of their chemistry is construction of phosphinic dipeptide derivatives bearing appropriate side-chain substituents. Typically, this synthesis involves a multistep preparation of two individual building blocks, which are combined in the final step. As this methodology does not allow simple variation of the side-chain structure, many efforts have been dedicated to the development of alternative approaches. Recent achievements in this field are summarized in this review. Improved methods for the formation of the phosphinic peptide backbone, including stereoselective and multicomponent reactions, are presented. Parallel modifications leading to the structurally diversified substituents are also described. Finally, selected examples of the biomedical applications of the title compounds are given. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry)
Open AccessReview The Kabachnik–Fields Reaction: Mechanism and Synthetic Use
Molecules 2012, 17(11), 12821-12835; doi:10.3390/molecules171112821
Received: 18 October 2012 / Revised: 25 October 2012 / Accepted: 26 October 2012 / Published: 1 November 2012
Cited by 57 | PDF Full-text (303 KB) | HTML Full-text | XML Full-text
Abstract
The Kabachnik–Fields (phospha-Mannich) reaction involving the condensation of primary or secondary amines, oxo compounds (aldehydes and ketones) and >P(O)H species, especially dialkyl phosphites, represents a good choice for the synthesis of α-aminophosphonates that are of significant importance due to their biological activity. In
[...] Read more.
The Kabachnik–Fields (phospha-Mannich) reaction involving the condensation of primary or secondary amines, oxo compounds (aldehydes and ketones) and >P(O)H species, especially dialkyl phosphites, represents a good choice for the synthesis of α-aminophosphonates that are of significant importance due to their biological activity. In general, these three-component reactions may take place via an imine or an α-hydroxy-phosphonate intermediate. The monitoring of a few Kabachnik–Fields reactions by in situ Fourier transform IR spectroscopy has indicated the involvement of the imine intermediate that was also justified by theoretical calculations. The Kabachnik–Fields reaction was extended to >P(O)H species, comprising cyclic phosphites, acyclic and cyclic H-phosphinates, as well as secondary phosphine oxides. On the other hand, heterocyclic amines were also used to prepare new α-amino phosphonic, phosphinic and phosphine oxide derivatives. In most cases, the synthesis under solvent-free microwave (MW) conditions is the method of choice. It was proved that, in the cases studied by us, there was no need for the use of any catalyst. Moreover, it can be said that sophisticated and environmentally unfriendly catalysts suggested are completely unnecessary under MW conditions. Finally, the double Kabachnik–Fields reaction has made available bis(phosphonomethyl)amines, bis(phosphinoxidomethyl)amines and related species. The bis(phosphinoxidomethyl)amines serve as precursors for bisphosphines that furnish ring platinum complexes on reaction with dichlorodibenzonitriloplatinum. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry)

Journal Contact

MDPI AG
Molecules Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
molecules@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Molecules
Back to Top