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Abstract: The chemical synthesis of DNA and RNA is universally carried out using 

nucleoside phosphoramidites or H-phosphonates as synthons. This review focuses on the 

phosphorus chemistry behind these synthons and how it has been developed to generate 

procedures whereby yields per condensation approach 100% with very few side products. 

Additionally the synthesis and properties of certain DNA and RNA analogs that are 

modified at phosphorus will also be discussed. These analogs include boranephosphonates, 

metallophosphonates, and alkylboranephosphines. 
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1. Introduction 

The ability to chemically synthesize 2'-deoxyoligonucleotides and oligoribonucleotides  

(oligonucleotides) in high yield and purity has revolutionized biochemical research as well as enabled 

a large number of other technologies such as DNA/RNA based therapeutics, DNA forensics, and  

high-throughput sequencing. The chemical structure of DNA/RNA consists of purines and pyrimidines 

attached to 2'-deoxyribose or ribose sugars. These 2'-deoxyribonucleosides or ribonucleosides are then 

joined via phosphodiester linkages. Thus phosphorus chemistry is central to the development of 

synthetic methods for preparing these important biological molecules and for achieving the high yield, 

high-throughput synthesis of oligonucleotides.  
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In this review we will focus on one aspect of organophosphorus chemistry, namely the reactivity of 

P (III) centers that enables the synthesis of DNA/RNA. We will describe these developments by first 

reviewing the work of Robert Letsinger and co-workers as their research led to the phosphoramidite 

approach in our laboratory. We will also discuss the H-phosphonate methodology that is an alternative 

P (III) chemistry for the synthesis of oligonucleotides. Both approaches have been used to prepare a 

plethora of nucleic acid analogs modified at phosphorus. This is a vast field of research in itself and a 

comprehensive description of all the different derivatives is outside the scope of this review. We will 

instead discuss a recent and promising class of analogs in which a P (III) center is bonded to a Lewis 

acid such as borane and forms stable internucleotide linkages.  

2. Synthesis of DNA Using Chlorophosphites and Tetrazoylphosphites 

Development of the phosphoramidite method of DNA synthesis was based upon two observations. One 

was that chloro- and dichlorophosphites react rapidly with the 3'-hydroxyl group of a 2'-deoxynucleoside, 

whereas the corresponding phosphorochloridates require several hours at room temperature [1]. Yields 

were also much higher with chloro and dichlorophosphites. Thus the possibility existed that DNA 

could be prepared rapidly and in high yield from activated phosphites. The other observation was that 

Robert Letsinger’s laboratory had used dichlorophosphites to synthesize a 2'-deoxythymidine 

pentanucleotide. Stepwise yields for addition of each mononucleotide were 69%–82%. Most 

encouraging was the observation that reaction times were only 5 minutes in comparison to hours for 

earlier approaches.  

These observations led us to explore the use of 2'-deoxynucleoside P (III) derivatives for 

synthesizing 2'-deoxyoligonucleotides on polymeric supports [2,3]. For several reasons, our research 

was predicated on the use of HPLC-grade silica (also known as controlled pore glass (CPG)) as a 

support. One was that all previous research utilizing organic polymers, such as polystyrene, to 

synthesize DNA [4] had failed in part because organic supports readily adsorbed the synthons and 

other reagents. Thus removal of these materials after each condensation step was difficult. This 

problem, when coupled with the knowledge that HPLC-grade silica had been designed for efficient 

mass transfer, dictated its investigation. Our expectation was that both solvents and reagents could be 

removed rapidly and completely from the matrix. This was observed in our early work. Silica was also 

expected to be chemically inert towards all the reagents we contemplated using and was a rigid, non-

swelling matrix in common organic solvents. Therefore, it could be packed into a column and reactants 

merely pumped through the column.  

The initial approach we developed is outlined in Scheme 1. The first step was activating the silica 

matrix by attaching (3-aminopropyl)triethoxysilane to silica and then treating the product of this 

reaction with succinic anhydride in order to generate 1. The next step was condensing  

5'-dimethoxytrityl-2'-deoxythymidine to the support using dicyclohexylcarbodiimide (DCC) to activate 

the carboxylic acid. After removal of the 5'-dimethoxytrityl group with ZnBr2 to yield 2, condensation 

with a 2'-deoxynucleoside 3'-phosphite 3 was carried out. Of the synthons we examined, the most 

reactive while generating the fewest side-products, were the 5'-dimethoxytrityl 3'-methyltetrazoyl 

phosphites. Using these synthons, 95% yields per condensation were observed during synthesis. After 

oxidation of the phosphite to phosphate with aqueous iodine, capping with diethoxytriazolephosphine 
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to remove any unreacted intermediates, and removal of the dimethoxytrityl group with ZnBr2, the 

product 4 of this reaction sequence could be extended by repetitive use of this cycle in order to 

generate a 2'-deoxyoligonucleotide. Finally after completion of oligonucleotide synthesis, methyl 

groups were removed from phosphates using thiophenol. This oligomer was then cleaved from the 

support and base protecting groups (N-isobutyrylguanine, N-benzoylcytosine and N-benzoyladenine) 

removed with ammonium hydroxide. By measuring the amount of dimethoxytrityl cation released 

following synthesis of a 12mer, the overall yield was determined to be 55%, which was unprecedented 

at that time in the nucleic acid field. 

Scheme 1. DNA Synthesis on HPLC Silica. 

 

During the course of this work, we also developed a semiautomatic machine where one cycle of 

synthesis on a silica column, including the use of all reagents and solvents, could be programmed and 

completed automatically. The operator then just added the next appropriately protected 2'-deoxy-

nucleoside-3'-phosphite to the column and initiated another synthesis cycle. Although more successful 

than any previous method, it was still far from acceptable. The main problem was that the 2'-deoxy-

nucleoside 3'-tetrazoylphosphites had to be prepared at −78 °C and preferably used the same day. The 

most significant outcome from this research that continues to the present, was the successful 

development of silica as a matrix for DNA synthesis. 
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3. The Phosphoramidite Approach for Synthesis of DNA and RNA 

Our discovery of phosphoramidites as synthons was initiated with a study aimed at activating 

aminophosphines. The strategy was to activate 5'-dimethoxytrityl 2'-deoxynucleoside 3'-amino-phosphines 

via insertion of CO2, CS2 or COS to form mixed anhydrides [5,6] that we posited would condense with 

a 2'-deoxynucleoside. In our hands, this strategy was not successful. However during the attempted 

synthesis of the aminophosphines by reacting 5'-O-dimethoxytrityl-2'-deoxythymidine with  

N,N-dimethylaminomethoxychlorophosphine in pyridine, we observed the appearance of a new 

dimethoxytrityl positive spot on TLC (thin-layer chromatography) that moved similar to a 

dinucleotide. Based upon the previous literature on the acid activation of aminophosphines [7], we 

reasoned that the initial product, 5'-dimethoxytrityl 2'-deoxythymidine 3'-N,N-dimethylamino-

methoxyphosphine (a phosphoramidite), was activated by pyridine hydrochloride that was produced in situ 

during the reaction. The protonated 5'-dimethoxytrityl 2'-deoxythymidine 3'-O-methoxy-N,N-

dimethylammonium phosphine would then react with the free 3'-hydroxyl of excess 5'-dimethoxytrityl 

2'-deoxythymidine present in the reaction mixture to form bis(5'-dimethoxytrityl 2'-deoxythymidine  

3'-O) methylphosphite. Subsequently by repeating this reaction in the presence of a stronger base 

(Hunig’s base) in the reaction mixture in order to remove the acid produced, we were able to isolate 

the desired phosphoramidites. This allowed us to confirm that phosphoramidites could indeed be 

activated with ease towards nucleophilic substitution using a number of weak acids. We then proceeded to 

combine this discovery with the use of CPG as a solid support to develop a high yielding method for 

oligonucleotide synthesis that has remained essentially unmodified since our original report [8]. 

The synthesis of DNA and RNA using the phosphoramidite approach is depicted in Scheme 2. The 

synthetic cycle begins with the removal of 5'-DMTr from 5 by treatment with a solution of 3% 

trichloroacetic acid in dichloromethane to yield 2. Condensation of a 5'-dimethoxytrityl-2'-deoxynucleoside 

3'-phosphoramidite 6 with 2 is then completed using tetrazole as an activator to produce the phosphite 

triester 7. The most commonly used phosphoramidites contain a diisopropyl-amino group. The steric 

bulk of this group was found to provide an ideal balance between stability during preparation of these 

synthons and ease of activation [9]. Although many activators have been proposed, tetrazole remains a 

popular choice as it can be obtained as a solid by sublimation and kept stably as an anhydrous solution 

on the DNA synthesis machine for long periods of time.  

The next step is capping of unreacted 5'-hydroxyl groups using acetic anhydride activated by  

N-methylimidazole in pyridine (Step C). This is important as it prevents any unreacted 

oligonucleotides from continuing to grow. Failing to do this leads to a final product mixture whereby 

the major oligonucleotide impurities are hard to remove because they are shorter by only a few 

nucleotides. For the synthesis of DNA (≥150 mers) on glass chips using inkjet printers, the capping 

step was found to be unnecessary [10]. This likely resulted from surface effects that allow even better 

condensation yields than possible with traditional CPG supports. The final step is oxidation of the 

phosphite triester to phosphate 9 using aqueous iodine. The entire sequence can then be repeated 

iteratively to obtain the desired oligomer. For the synthesis of various analogs such as 

phosphorothioates and phosphoramidates, oxidation can alternatively be carried out using a sulfurizing 

agent or iodine and amines respectively.  
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Scheme 2. The Phosphoramidite Approach for Oligonucleotide Synthesis. 

 

At this stage, the oligomer can be hydrolyzed from the support using an aqueous solution of 

ammonia which also removes the amide groups used to protect the exocylic amines of cytosine, 

guanine and adenine as well as the cyanoethyl protection [11] on phosphate. The oligomers can then be 

purified by reverse phase HPLC or gel electrophoresis.  

During an exploration of various phosphorus protecting groups, we observed that o-methylbenzyl 

was removed during the iodine oxidation step [12]. Moreover a deoxyoligonucleotide 20 in length, as 

prepared with this protecting group, gave a very high yield of a homogeneous product. At the same 

time, van Boom and co-workers published similar results with the 2-cyano-1,1-dimethylethyl 

phosphorus protecting group [13]. These observations led us to propose that alkyl deoxynucleoside 

phosphites (10a–c, Scheme 3), having alkyl groups that stabilize the SN1 character of the second stage 

of an Arbuzov reaction, upon reaction with most electrophiles, would lead to elimination of the alkyl 

protecting group with concomitant formation of the phosphoryl bond. Thus upon oxidation with iodine 

(the electrophile), the tertiary alkyl protecting group would be eliminated and generate the 

phosphoroiodate. Nucleophilic substitution of iodine would yield various desired compounds. For 

example if the reaction were performed in aqueous iodine, the product would be the natural, 

internucleotide phosphate diester linkage (compound 13, R6 = H). If however oxidation were to take 

place under anhydrous conditions in the presence of amines, azides or alcohols then the appropriate 

phosphoramidates 11, phosphoroazoamidates 12, or phosphate triesters 13 (R6 = alkyl or aryl) would 

be the final products. In contrast if these phosphites were oxidized with tert-butylhydroperoxide or 

sulfur, the product was the dinucleotide phosphate triester or thiophosphate triester respectively. 

Removal of the 2-cyano-1,1-dimethylethyl protecting group with base would then generate the 

phosphate diester or phosphorothioate diester. Thus this approach, depending upon oxidation 
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conditions for each synthesis cycle, can be used to introduce different analogs selectively throughout 

an oligonucleotide.  

Scheme 3. (a–c): R1 = 4,4'-dimethoxytrityl, R2 = 3'-acetylthymidylyl; a: R3 = 2-cyano-1,1-

dimethylethyl, R4 = n-butyl; b: R2 = 3'-acetylthymidylyl, R5 = 3-(N-ethylcarbazoyl),  

R3 = o-methylbenzyl; c: R2 = methyl, R3 = 2-cyano-1,1-dimethylethyl, R6 = H, alkyl, or aryl. 

 

4. The H-Phosphonate Approach for Synthesis of DNA and RNA 

H-Phosphonates are a distinct category of tervalent P (III) compounds that contain a phosphoryl 

group (P=O) and a hydrogen atom bonded to the phosphorous center (e.g., 18). H-Phosphonates have a 

tetrahedral geometry that is similar to P (V) compounds. The phosphorus atom in H-phosphonates is 

electrophillic and lacks a lone pair of electrons. Therefore it is much more resistant towards oxidation 

under ambient conditions than most P (III) compounds. At the same time, upon activation, H-Phosphonate 

monoesters can be induced to undergo nucleophillic substitutions efficiently. This combination of 

properties has made them attractive synthons for preparing oligonucleotides. 

H-Phosphonates were first used in nucleotide chemistry by Sir Alexander Todd [14,15].  

They demonstrated that treatment of benzyl H-phosphonate monoester 16 with diphenyl 

phosphorochloridate (Scheme 4) led to the putative formation of the corresponding activated mixed 

anhydride 17. This compound was reacted in situ with the 5'-hydroxyl of a 2',3'-isopropylidine 

nucleoside to produce the H-phosphonate diester 18 that was in turn oxidized by N-chlorosuccinimide 

to the phosphorochloridate diester 19. They later adapted this methodology for the first chemical 

synthesis of a natural 5'-3' linked dinucleotide [16]. Ogilvie and Nemer in 1980 [17] as well as  

Kume et al. in 1984 [18] next demonstrated the synthesis of dinucleotides containing H-phosphonate 

internucleotide linkages. However the use of H-phosphonates as synthons for oligonucleotide synthesis 

was not developed till three decades after Todd’s initial reports, when Garegg et al. [19] and later 

Froehler and Matteucci [20] described the synthesis of 2'-deoxynucleoside H-phosphonate diesters by 

activating 2'-deoxynucleoside H-phosphonate monoesters with several reagents such as 2,4,6-tri- 
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isopropylbenzenesulfonylchloride, N,N-bis(2-oxo-3-oxazolidinyl)-phosphorodiamide chloride, 

diphenyl-chlorophosphate and pivaloyl chloride.  

Scheme 4. Mixed Anhydride Activation of H-Phosphonates. 

 

Froehler et al. [21] and Garegg et al. [22,23] next demonstrated the use of this method for the solid 

phase synthesis of oligonucleotides using 2'-deoxy and ribonucleoside H-phosphonate monoesters as 

synthons. The general method is shown in Scheme 5A. Following acid-mediated removal of the  

5'-dimethoxytrityl protecting group, condensation is carried out by addition of an appropriately 

protected 2'-deoxy or ribonucleoside H-phosphonate monoester 20 and an activating agent—typically 

pivaloyl chloride or adamantoyl chloride. Reaction of the acid chloride with the H-phosphonate 

monoester produces the corresponding mixed phosphonocarboxylic anhydride. This mixed anhydride 

undergoes a nucleophilic attack at the phosphorous by the 5'- hydroxyl of the nucleoside joined to a 

polymer support. The product of this reaction is the H-phosphonate diester 21. Unlike the phosphite 

triester 7, this linkage is stable to the acidic conditions (3% trichloroacetic acid in dichloromethane) 

required for removal of the 5'-dimethoxytrityl group. Thus it is unnecessary to carry out oxidation at 

every cycle. Chain elongation therefore consists of two steps. Oxidation to the phosphodiester with 

aqueous iodine is completed following oligonucleotide synthesis. Alternatively oxidation can be 

carried out under non-aqueous conditions using various reagents which has enabled the synthesis of a  

number of modified oligonucleotides such as phosphoramidates [24], phosphorothioates [25], and 

phosphoro-selenoates [26]. After the oxidation step, aqueous ammonia is used to remove nucleobase 

amide protecting groups and to cleave the oligonucleotide from the support. 
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Scheme 5. The H-Phosphonate Approach to DNA/RNA Synthesis. 

 

The H-phosphonate method is particularly well suited for RNA synthesis as some of the problems 

associated with this approach, such as double activation and phosphorus acylation, are ameliorated 

when using ribonucleosides having a 2'-protecting group [27]. Coupling of ribonucleoside  

H-phosphonates on a solid support when compared to coupling ribonucleoside phosphoramidites is 

less sensitive to steric effects that arise due to the 2'-protecting group. RNA molecules up to 50 to 60 

nucleotides in length can be made in high yields by this method.  

An additional attraction of this chemistry for synthesis of certain DNA or RNA derivatives stems from 

the fact that the H-phosphonate diester exists in equilibrium with its phosphite form (Scheme 5B). 

Ordinarily the H-phosphonate is more stable and the predominant species. However silylation can be 

used to trap the phosphite triester form 23, which creates a nucleophilic phosphorus center having a 

lone pair of electrons. This phosphite triester can then be treated with electrophiles to allow synthesis 

of various phosphorus analogs. As the silylation procedure can be performed at the end of the synthetic 

cycles, repetitive exposure of the desired derivative to the acidic deprotection solution is avoided. This 

is an important advantage when preparing acid sensitive analogs. However a limitation of this protocol 

is that only uniformly modified oligomers can be produced. H-Phosphonate diesters also have stable 

stereochemical configurations and undergo oxidation or conversion to phosphite triesters (as in 

Scheme 5B) in a stereospecific manner [28]. This has been exploited as a method for the synthesis of 

stereodefined DNA derivatives.  

H-Phosphonates offer a useful alternative to the phosphoramidite method particularly for the 

synthesis of RNA and acid labile oligonucleotide analogs. Although phosphoramidites continue to be 

much more widely adopted because of higher stepwise yields and fewer side-products, it should be 

noted that at present H-phosphonates are the only other commercially available DNA/RNA synthons. 

It is expected that H-phosphonate chemistry will continue to be useful for the preparation of certain 

novel DNA derivatives. 
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5. DNA Containing Stable Complexes of P (III) with Lewis Acids 

The presence of a lone pair of electrons on the phosphorous atom in P (III) compounds allows it to 

form stable complexes with Lewis acids. Such complexation stabilizes the phosphorous towards 

oxidation or attack by electrophiles. Barbara Ramsay Shaw and co-workers were the first to exploit 

this bonding scheme in their synthesis of 2'-deoxythymidylyl-(3'-5')-2'-deoxythymidine which 

contained a hydrolytically stable boranephosphonate (also referred to as boranophosphate in the 

literature) linkage 24 (Figure 1) [29,30]. These compounds are conventionally described as having one 

of the non-bridging phosphate oxygens replaced by borane (compound 24a). This depiction 

emphasizes that the stability of these compounds is similar to phosphate diesters. On the other hand 

this linkage can also be described as a P (III) compound complexed with a borane group (compound 

24b). This representation ties these analogs to a wider category of similar compounds and helps to 

illustrate the fact that bonding of this type can be a general approach to creating varied backbone 

structures with engineered properties. For example we have reported that methyphosphine diesters 

complexed with borane (compound 25) [31] yield a stable structure that is neutral as opposed to the 

negatively charged boranephosphonate. Oligomers containing these neutral linkages demonstrate 

enhanced cellular uptake. This approach can be extended to include a number of substituents including 

amines (compound 26) and acetate (vide infra) with each having unique and tailored properties. In 

addition to borane, other Lewis acids can also be used as demonstrated by the synthesis of 

dinucleotides containing a P (III) center complexed to pentacarbonyltungstate(-1) and pentacarbonyl-

molybdate(-1) (27) [32,33]. These metallophosphonate derivatives should prove to be useful molecules 

for the construction of DNA based circuits and metallic nanostructures. Because extensive research on 

the chemical and biochemical properties of boranephosphonate DNA and RNA (bpDNA or bpRNA) 

has already been completed, the primary emphasis in the following section is on bpDNA with only 

brief mention of the synthetic methods used to prepare the other analogs shown in Figure 1. 

Figure 1. Lewis Acid—Phosphorous Analogs of DNA. 
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Although the first report of dithymidine having a boranephosphonate diester linkage was published 

more than twenty years ago, the lack of high yielding chemical methods till recently has severely 

limited the applicability of these molecules. However in the interim, the Ramsay-Shaw laboratory 

developed an elegant enzymatic method for synthesizing bpDNA and bpRNA. Their procedure used 

2'-deoxynucleoside or ribonucleoside triphosphates that contained a borane moiety at the α 

phosphorous. When these triphosphates were used with certain polymerases and an appropriate 

primer/template, bpDNA or bpRNA could readily be prepared [34–37]. Enzymatically synthesized 

bpDNA (or bpRNA) enabled early studies that were important in demonstrating the biochemical 

potential of boranephosphonate oligonucleotides. Unfortunately enzymatic synthesis was not only 

expensive and low yielding but, because only one of the dNTPs could be replaced by its corresponding 

borane derivative during any one synthesis, the flexibility of positioning and density of 

boranephosphonate linkages within an oligomer was severely restricted. However it should be noted 

that an advantage of enzymatic synthesis was that polymerases recognize only one of the two 

enantiomers of α-P-borano dNTPs. Thus diastereomerically pure oligomers were produced by 

enzymatic synthesis whereas chemical methods generate mixtures of diastereomers. 

Conceptually, the chemical synthesis of boranephosphonates simply requires substituting oxidation 

in the synthesis cycle with boronation. Chemically this means that a BH3 group is exchanged between 

a labile borane complex (such as THF-borane) and the phosphite triester (e.g., 7, Scheme 2). However 

in practice two problems must be addressed. First, BH3 reduces the amide protecting groups that are 

conventionally used with the exocylic amines of cytosine, adenine and guanine. The resulting alkyl 

amines cannot be removed and therefore represent an undesirable DNA modification. Additionally  

the trityl cation, which is generated during deprotection of the 5'-hydroxyl, reacts with the  

phosphite-borane linkage and causes degradation.  

The earliest chemical synthesis of boranephosphonate oligomers yielded 2'-deoxyoligothymidines 

via the H-phosphonate approach (Scheme 6) [38–40]. Following synthesis of an oligonucleotide, the 

H-phosphonate linkages were silylated and the resulting phosphite triesters were boronated to obtain 

the phosphite triester-borane linkage. The silyl groups were then removed with NH3 which generated 

boranephosphonate-linked 2'-deoxyoligothymidines 28. Using this approach, 10-14mers were 

successfully prepared in high yields. As this approach has the advantage of not exposing the  

P (III)-Lewis Acid complex to multiple rounds of strong acids, it was found to be well suited for 

preparing metallo phosphonate dinucleotides as well (compound 29) [33]. In place of borane the 

silyltriester was treated with pentacarbonyltungstate or pentacarbonylmolybdate. 

In order to prepare boranephosphonate linked oligomers containing all four nucleobases, Wada has 

developed the phosphotriester approach [41,42]. In this method a pre-boronated phosphitylating agent 

(triethylammonium bis(2-cyanoethyl) boranophosphate) was coupled to a 5'-dimethoxytrityl-2'-

deoxynucleoside to yield 5'-dimethoxytrityl-3'-boranephosphonate-2'-deoxynucleoside diester. 

Coupling of this synthon to a 2'-deoxynucleoside attached to a support through the 3'-hydroxyl was 

carried out using 3-nitro-1, 2, 4-triazol-1-yl-tris(pyrrolidin-1-yl)phosphonium hexafluorophosphate as 

an activator. Triethylsilane was added during acid deprotection in order to scavenge trityl cations. The 

low step-wise coupling yields however limited the utility of this approach.  
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Scheme 6. H-Phosphonate method for synthesis of boranephosphonate DNA and 

metallophosphonate DNA.  

 

Reagents: (i). N,O-bistrimethylsilylacetamide/DMF, (iia). BH3.THF or BH3.SMe2, (iib). 
M(CO)5.THF, (iii). aq. NH3. 

We have reported an alternative method, adapted from RNA synthesis, that uses 5'-O-silyl 2'-

deoxynucleosides 3'-phosphoramidites containing N-trimethoxytrityl (TMTr)-protected nucleobases [43]. 

These protecting groups were found to be stable toward reduction by borane. Thus boronation could be 

performed after each coupling step to obtain the phosphite triester-borane linkage. Removal of the 

TMTr groups at the end of the synthesis using aqueous acetic acid did not lead to trityl cation induced 

degradation of the boranephosphite triester linkages. Mixed base 14mer oligonucleotides containing 

phosphodiester and boranephosphonate diester linkages could be synthesized in good yields. The same 

strategy was also useful for the preparation of oligomers containing up to six methylphosphineborane 

modifications within a 16-mer 2'-deoxyoligonucleotide [31]. For borane-phosphonates as well as 

methylphosphineboranes, attempts to synthesize longer oligomers however led to many degradation 

products. These results were perhaps due to the instability of these linkages towards iterative treatment 

with basic fluoride solutions that were required for removal of 5'-silyl protection. In addition DNA 

synthesizers had to be equipped to handle basic fluoride. This component of the synthesis procedure 

therefore limited the broad adoption of the methodology.  

To circumvent these obstacles we have recently developed N-silyl protected 5'-dimethoxytrityl-2'-

deoxynucleoside 3'-phosphoramidites (30a–c; Scheme 7) [44]. This silyl group (di-tert-butylisobutylsilyl) 

is stable towards boronation as well as all other reagents used in DNA synthesis. These synthons in 

conjunction with the use of a more efficient trityl scavenger (trimethylphosphite borane; TMPB) 

allowed us to prepare 24–30 mer bpDNA oligomers in yields similar to those obtained for standard 

phosphate linked DNA. Moreover these conditions allow synthesis of bpDNA essentially using the 

same cycle as described in Figure 2 for standard DNA synthesis. The only modification involves 

replacement of the iodine oxidation reaction with boronation (Step 3). This leads to conversion of the 

phosphite triester 31 to a trialkylphosphite-borane derivative 33. If desired, oxidation of 31 with  
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tert-butylhydroperoxide can be performed in order to produce the phosphate triester 32. Thus 

oligonucleotides having any desired combination of phosphate and boranephosphonate linkages can be 

synthesized by this procedure.  

Scheme 7. N-Silyl Protected Phosphoramidites as Synthons for bpDNA. 

 

A future goal is to prepare stereoregular bpDNA and bpRNA oligomers using chemical methods. 

Such oligomers as demonstrated by the Ramsay-Shaw lab using enzymatically synthesized bpDNA or 

bpRNA have superior biochemical properties when compared to the diastereomeric mixtures that are 

currently obtained through chemical synthesis. In this respect a noteworthy report by Iwamoto et al. [45] 

achieved the stereoregular synthesis of boranephosphonate 2'-deoxyoligothymidines using  

3'-O-oxazaphospholidine derivatives of 2'-deoxythymidine. A pure stereoisomer of this synthon  

(compound 34), when activated, generates stereodefined phosphite triesters 35 that can be converted to 

boranephosphonates 37 or 38 in a stereospecific manner via an H-phosphonate intermediate 36 

(Scheme 8). Taken together these advances raise the possibility of mixed based, stereoregular synthesis 

of boranephosphonate linked DNA. 
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Scheme 8. Synthesis of stereodefined boranephosphonate linked DNA.  

 
Reagents and Conditions: (i). 1% Trifluoroacetic acid in CH2Cl2. (ii). BH3.SMe2/N,O-
bistrimethylsilylacetamide/DMF (1:1:8, v/v/v), RT, 15 min; then sat. NH3/CH3OH, RT, 1 h. 

Boranephosphonate diesters posses many properties that are intermediate between P (III) and P (V) 

compounds. For example they have a 31P-NMR chemical shift of 94 ppm, which lies between 140 ppm 

for phosphite triesters and 0 ppm for phosphates. These compounds are stable to mild acids (pH > 2) 

and oxidizing agents (e.g., tert-butylhydroperoxide) but react with stronger acids or oxidizers such as 

iodine [46]. The significantly greater stability of borane-P (III) complexes, relative to analogous 

nitrogen complexes, stems from the fact that, in addition to donation of the lone pair from the P atom, 

back donation from the σ obital of the BH3 group to empty orbitals on the P atom also occurs. The 

reduced hydridic character of BH3 is indirect evidence for this explanation. Substituents on 

phosphorous also affect the strength of the backbonding interaction [47] and thus the overall stability 

of the P-B bond. Unpublished experiments from our laboratory demonstrate that replacement of the 

non-bridging oxygen in boranephosphonate diesters by the less electronegative methyl group significantly 

increases the hydridic properties of the BH3 group. Systematic evaluation of such factors in the future 

has the potential to create new DNA derivatives with desired chemical and biochemical properties. 

The biochemical properties of boranephosphonate linked nucleic acid oligomers have been 

investigated. They are stable towards hydrolysis by nucleases [36], are effective substrates for RNaseH 

and siRNA [48], and are more lipophilic than unmodified DNA. Current work in our laboratory has 

also revealed that these oligomers can be transfected into HeLa cells in the absence of lipid. 

We have recently reported that bpDNA reacts with metal ions that possess a high reduction 

potential (Ag+, Au3+ and Pt2+) [49]. The products of these reductions are metallic nanoparticles. 

Investigations of this reaction further revealed that the boranephosphonate linkage is converted into a 

phosphate diester when carried out in water or to a phosphate triester in simple alcohols. We have 

taken advantage of this combination of reducing properties and an ability to undergo Watson-Crick 

base pairing to incorporate bpDNA at specific locations within DNA assemblies. This in turn allowed 

us to carry out deposition of metal nanoparticles onto these assemblies with high spatial resolution [44].  
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6. Conclusions 

Chemical methods that allow synthesis of DNA/RNA and various derivatives have had tremendous 

effects on a large number of disciplines. At the heart of all these developments are fundamental 

discoveries in the chemistry of phosphorous. In particular the reactivity of P (III) compounds led to 

phosphoramidites as extremely stable, but easily activated synthons for condensation with various 

nucleophiles to generate DNA or RNA in very high yields. This discovery was a significant milestone, 

initially in the nucleic acids field, but more recently in other research areas as well. Chemists have also 

taken advantage of the versatility of phosphorous chemistry in order to create a large number of 

oligonucleotide derivatives. The majority of these analogs have been developed for use as therapeutics 

and several such candidates are in advanced clinical trials. In addition DNA derivatives that can 

combine the binding properties of oligonucleotides with chemically useful functionality are beginning 

to find applications in new research areas such as nanotechnology and data storage. 

The ability to chemically synthesize DNA that is several hundred nucleotides in length is another 

challenge that awaits chemists. While current methods lead to the synthesis of DNA 20–30 nucleotides 

in length and more recently to oligomers 150 in length [10] in very high yields and purity, extension to 

ultra long regimes raises many issues. Thus the field is ripe once again for fresh developments in the 

chemistry of phosphorous that will allow realization of these goals.  
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