Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 22, Issue 3 (March 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story In the New Medicines for Trypanosomatidic Infections (NMTRypI) project funded by the EU, we have [...] Read more.
View options order results:
result details:
Displaying articles 1-163
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

Open AccessEditorial Renewable Green Platform Chemicals for Polymers
Molecules 2017, 22(3), 376; doi:10.3390/molecules22030376
Received: 21 February 2017 / Revised: 21 February 2017 / Accepted: 22 February 2017 / Published: 28 February 2017
PDF Full-text (163 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Frontier in Green Chemistry Approaches)
Open AccessEditorial Flavonoids: From Structure to Health Issues
Molecules 2017, 22(3), 477; doi:10.3390/molecules22030477
Received: 16 March 2017 / Revised: 16 March 2017 / Accepted: 16 March 2017 / Published: 17 March 2017
PDF Full-text (167 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)

Research

Jump to: Editorial, Review, Other

Open AccessArticle Flavonoids from Agrimonia pilosa Ledeb: Free Radical Scavenging and DNA Oxidative Damage Protection Activities and Analysis of Bioactivity-Structure Relationship Based on Molecular and Electronic Structures
Molecules 2017, 22(3), 195; doi:10.3390/molecules22030195
Received: 10 December 2016 / Revised: 15 January 2017 / Accepted: 19 January 2017 / Published: 26 February 2017
PDF Full-text (1993 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
To clarify the substantial basis of the excellent antioxidant capacity of Agrimonia pilosa Ledeb. Fourteen flavonoids were isolated and identified from Agrimonia pilosa Ledeb, seven of which have notable DPPH radical scavenging activities, i.e., catechin, luteolin, quercetin, quercitrin, hyperoside, rutin, luteolin-7-O-β-glucoside
[...] Read more.
To clarify the substantial basis of the excellent antioxidant capacity of Agrimonia pilosa Ledeb. Fourteen flavonoids were isolated and identified from Agrimonia pilosa Ledeb, seven of which have notable DPPH radical scavenging activities, i.e., catechin, luteolin, quercetin, quercitrin, hyperoside, rutin, luteolin-7-O-β-glucoside with IC50 values of 5.06, 7.29, 4.36, 7.12, 6.34, 6.36 and 8.12 µM, respectively. The DNA nicking assay showed that five flavonoids from Agrimonia pilosa Ledeb—taxifolin, catechin, hyperoside, quercitrin and rutin—have good protective activity against DNA oxidative damage. Further, we analyzed the bioactivity-structure relationship of these 14 flavonoids by applying quantum theory. According to their O-H bond dissociation enthalpy (BDE), C ring’s spin density and stable molecular structure, the relationship between their structures and radical scavenging capacities was evaluated and clarified. We found that among flavonoid aglycones from Agrimonia pilosa Ledeb, the O-H BDE of quercetin is lowest with the values of 69.02 and the O-H BDE of apigenin is highest with the values of 79.77. It is interesting that the O-H BDE value of isovitexin (78.55) with glycoside at C-6 position is lower than that of its aglycone (79.77) and vitexin (99.20) with glycoside at C-8 position. Further analysis indicated that the glycosidation of flavonoids at C-6 in the A-ring makes a more uniform distribution of spin density and improves the stability of free radicals leading to the increase in antioxidant capacity. Flavonoids with good antioxidant capacity might contribute to the pharmacological effects of Agrimonia pilosa Ledeb. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Luteolin Inhibits Fibrillary β-Amyloid1–40-Induced Inflammation in a Human Blood-Brain Barrier Model by Suppressing the p38 MAPK-Mediated NF-κB Signaling Pathways
Molecules 2017, 22(3), 334; doi:10.3390/molecules22030334
Received: 14 November 2016 / Revised: 30 January 2017 / Accepted: 10 February 2017 / Published: 24 February 2017
Cited by 3 | PDF Full-text (3147 KB) | HTML Full-text | XML Full-text
Abstract
Amyloid-β peptides (Aβ) exist in several forms and are known as key modulators of Alzheimer’s disease (AD). Fibrillary Aβ (fAβ) has been found to disrupt the blood-brain barrier (BBB) by triggering and promoting inflammation. In this study, luteolin, a naturally occurring flavonoid that
[...] Read more.
Amyloid-β peptides (Aβ) exist in several forms and are known as key modulators of Alzheimer’s disease (AD). Fibrillary Aβ (fAβ) has been found to disrupt the blood-brain barrier (BBB) by triggering and promoting inflammation. In this study, luteolin, a naturally occurring flavonoid that has shown beneficial properties in the central nervous system, was evaluated as a potential agent to preserve barrier function and inhibit inflammatory responses at the BBB that was injured by fAβ1–40. We established an in vitro BBB model by co-culturing human brain microvascular endothelial cells (hBMECs) and human astrocytes (hAs) under fAβ1–40-damaged conditions and investigated the effect of luteolin by analyzing cellular toxicity, barrier function, cytokine production and inflammation-related intracellular signaling pathways. Our results demonstrated that, in cells injured by fAβ1–40, luteolin increased cell viability of hBMECs and hAs. The cytoprotection of the co-culture against the damage induced by fAβ1–40 was also increased at both the apical and basolateral sides. Luteolin protected the barrier function by preserving transendothelial electrical resistance and relieving aggravated permeability in the human BBB model after being exposed to fAβ1–40. Moreover, in both the apical and basolateral sides of the co-culture, luteolin reduced fAβ1–40-induced inflammatory mediator and cytokine production, including cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin 1 β (IL-1β), interleukin 6 (IL-6), and interleukin 8 (IL-8), however it did not show sufficient effects on scavenging intracellular reactive oxygen species (ROS) in hBMECs and hAs. The mechanism of BBB protection against fAβ1–40-induced injury may be related to the regulation of inflammatory signal transduction, which involves inhibition of p38 mitogen-activated protein kinase (MAPK) activation, downregulation of phosphorylated inhibitory κB kinase (phosphor-IKK) levels, relief of inhibitory κB α (IκBα) degradation, blockage of nuclear factor κB (NF-κB) p65 nuclear translocation, and reduction of the release of inflammatory cytokines. Moreover, the employment of p38 MAPK and NF-κB inhibitors reversed luteolin-mediated barrier function and cytokine release. Taken together, luteolin may serve as a potential therapeutic agent for BBB protection by inhibiting inflammation following fAβ1–40-induced injury. Full article
Figures

Figure 1

Open AccessArticle Essential Oil of Aristolochia trilobata: Synthesis, Routes of Exposure, Acute Toxicity, Binary Mixtures and Behavioral Effects on Leaf-Cutting Ants
Molecules 2017, 22(3), 335; doi:10.3390/molecules22030335
Received: 17 January 2017 / Revised: 10 February 2017 / Accepted: 15 February 2017 / Published: 25 February 2017
Cited by 2 | PDF Full-text (2441 KB) | HTML Full-text | XML Full-text
Abstract
Plants of the genus Aristolochia have been frequently reported as important medicinal plants. Despite their high bioactive potential, to date, there are no reports of their effects on leaf-cutting ants. Therefore, the present study aimed to evaluate the insecticidal activity of the essential
[...] Read more.
Plants of the genus Aristolochia have been frequently reported as important medicinal plants. Despite their high bioactive potential, to date, there are no reports of their effects on leaf-cutting ants. Therefore, the present study aimed to evaluate the insecticidal activity of the essential oil of Aristolochia trilobata and its major components on Atta sexdens and Acromyrmex balzani, two species of leaf-cutting ants. The bioassays were performed regarding routes of exposure, acute toxicity, binary mixtures of the major components and behavioral effects. Twenty-five components were identified in the essential oil of A. trilobata using a gas chromatographic system equipped with a mass spectrometer and a flame ionization detector. The components found in higher proportions were sulcatyl acetate, limonene, p-cymene and linalool. The essential oil of A. trilobata and its individual major components were efficient against A. balzani and A. sexdens workers when applied by fumigation. These components showed fast and efficient insecticidal activity on ants. The components acted synergistically and additively on A. balzani and A. sexdens, respectively, and caused a strong repellency/irritability in the ants. Thus, our results demonstrate the great potential of the essential oil of A. trilobata and its major components for the development of new insecticides. Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Bioactivity)
Figures

Figure 1

Open AccessArticle Antimalarials with Benzothiophene Moieties as Aminoquinoline Partners
Molecules 2017, 22(3), 343; doi:10.3390/molecules22030343
Received: 9 January 2017 / Revised: 6 February 2017 / Accepted: 16 February 2017 / Published: 24 February 2017
PDF Full-text (6848 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Malaria is a severe and life-threatening disease caused by Plasmodium parasites that are spread to humans through bites of infected Anopheles mosquitoes. Here, we report on the efficacy of aminoquinolines coupled to benzothiophene and thiophene rings in inhibiting Plasmodium falciparum parasite growth. Synthesized
[...] Read more.
Malaria is a severe and life-threatening disease caused by Plasmodium parasites that are spread to humans through bites of infected Anopheles mosquitoes. Here, we report on the efficacy of aminoquinolines coupled to benzothiophene and thiophene rings in inhibiting Plasmodium falciparum parasite growth. Synthesized compounds were evaluated for their antimalarial activity and toxicity, in vitro and in mice. Benzothiophenes presented in this paper showed improved activities against a chloroquine susceptible (CQS) strain, with potencies of IC50 = 6 nM, and cured 5/5 Plasmodium berghei infected mice when dosed orally at 160 mg/kg/day × 3 days. In the benzothiophene series, the examined antiplasmodials were more active against the CQS strain D6, than against strains chloroquine resistant (CQR) W2 and multidrug-resistant (MDR) TM91C235. For the thiophene series, a very interesting feature was revealed: hypersensitivity to the CQR strains, resistance index (RI) of <1. This is in sharp contrast to chloroquine, indicating that further development of the series would provide us with more potent antimalarials against CQR strains. Full article
(This article belongs to the Special Issue Emerging Drug Discovery Approaches against Infectious Diseases)
Figures

Open AccessArticle Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity
Molecules 2017, 22(3), 345; doi:10.3390/molecules22030345
Received: 4 January 2017 / Revised: 1 February 2017 / Accepted: 20 February 2017 / Published: 23 February 2017
Cited by 1 | PDF Full-text (2638 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers,
[...] Read more.
The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer—methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines. Full article
(This article belongs to the Special Issue Photodynamic Therapy)
Figures

Open AccessArticle Microwave-Assisted Synthesis of some Novel Azoles and Azolopyrimidines as Antimicrobial Agents
Molecules 2017, 22(3), 346; doi:10.3390/molecules22030346
Received: 1 January 2017 / Revised: 19 February 2017 / Accepted: 21 February 2017 / Published: 23 February 2017
PDF Full-text (1157 KB) | HTML Full-text | XML Full-text
Abstract
In this study, new derivatives of pyrazole, isoxazole, pyrazolylthiazole, and azolopyrimidine having a thiophene ring were synthesized under microwave irradiation. Their pharmacological activity toward bacteria and fungi inhibition was screened and compared to the references Chloramphenicol and Trimethoprim/sulphamethoxazole. The antimicrobial
[...] Read more.
In this study, new derivatives of pyrazole, isoxazole, pyrazolylthiazole, and azolopyrimidine having a thiophene ring were synthesized under microwave irradiation. Their pharmacological activity toward bacteria and fungi inhibition was screened and compared to the references Chloramphenicol and Trimethoprim/sulphamethoxazole. The antimicrobial results of the investigated compounds revealed promising results and some derivatives have activities similar to the references used. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Scheme 1

Open AccessArticle Is Gamma Radiation Suitable to Preserve Phenolic Compounds and to Decontaminate Mycotoxins in Aromatic Plants? A Case-Study with Aloysia citrodora Paláu
Molecules 2017, 22(3), 347; doi:10.3390/molecules22030347
Received: 4 January 2017 / Revised: 16 February 2017 / Accepted: 20 February 2017 / Published: 23 February 2017
Cited by 1 | PDF Full-text (416 KB) | HTML Full-text | XML Full-text
Abstract
This study aimed to determine the effect of gamma radiation on the preservation of phenolic compounds and on decontamination of dry herbs in terms of ochratoxin A (OTA) and aflatoxin B1 (AFB1), using Aloysia citrodora Paláu as a case study. For this purpose,
[...] Read more.
This study aimed to determine the effect of gamma radiation on the preservation of phenolic compounds and on decontamination of dry herbs in terms of ochratoxin A (OTA) and aflatoxin B1 (AFB1), using Aloysia citrodora Paláu as a case study. For this purpose, artificially contaminated dry leaves were submitted to gamma radiation at different doses (1, 5, and 10 kGy; at dose rate of 1.7 kGy/h). Phenolic compounds were analysed by HPLC-DAD-ESI/MS and mycotoxin levels were determined by HPLC-fluorescence. Eleven phenolic compounds were identified in the samples and despite the apparent degradation of some compounds (namely verbasoside), 1 and 10 kGy doses point to a preservation of the majority of the compounds. The mean mycotoxin reduction varied between 5.3% and 9.6% for OTA and from 4.9% to 5.2% for AFB1. It was not observed a significant effect of the irradiation treatments on mycotoxin levels, and a slight degradation of the phenolic compounds in the irradiated samples was observed. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Open AccessArticle Screening of Six Medicinal Plant Extracts Obtained by Two Conventional Methods and Supercritical CO2 Extraction Targeted on Coumarin Content, 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Capacity and Total Phenols Content
Molecules 2017, 22(3), 348; doi:10.3390/molecules22030348
Received: 6 January 2017 / Revised: 12 February 2017 / Accepted: 20 February 2017 / Published: 24 February 2017
Cited by 2 | PDF Full-text (502 KB) | HTML Full-text | XML Full-text
Abstract
Six medicinal plants Helichrysum italicum (Roth) G. Don, Angelica archangelica L., Lavandula officinalis L., Salvia officinalis L., Melilotus officinalis L., and Ruta graveolens L. were used. The aim of the study was to compare their extracts obtained by Soxhlet (hexane) extraction, maceration with
[...] Read more.
Six medicinal plants Helichrysum italicum (Roth) G. Don, Angelica archangelica L., Lavandula officinalis L., Salvia officinalis L., Melilotus officinalis L., and Ruta graveolens L. were used. The aim of the study was to compare their extracts obtained by Soxhlet (hexane) extraction, maceration with ethanol (EtOH), and supercritical CO2 extraction (SC-CO2) targeted on coumarin content (by high performance liquid chromatography with ultraviolet detection, HPLC-UV), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging capacity, and total phenols (TPs) content (by Folin–Ciocalteu assay). The highest extraction yields were obtained by EtOH, followed by hexane and SC-CO2. The highest coumarin content (316.37 mg/100 g) was found in M. officinalis EtOH extracts, but its SC-CO2 extraction yield was very low for further investigation. Coumarin was also found in SC-CO2 extracts of S. officinalis, R. graveolens, A. archangelica, and L. officinalis. EtOH extracts of all plants exhibited the highest DPPH scavenging capacity. SC-CO2 extracts exhibited antiradical capacity similar to hexane extracts, while S. officinalis SC-CO2 extracts were the most potent (95.7%). EtOH extracts contained the most TPs (up to 132.1 mg gallic acid equivalents (GAE)/g from H. italicum) in comparison to hexane or SC-CO2 extracts. TPs content was highly correlated to the DPPH scavenging capacity of the extracts. The results indicate that for comprehensive screening of different medicinal plants, various extraction techniques should be used in order to get a better insight into their components content or antiradical capacity. Full article
(This article belongs to the Special Issue Sub- and Supercritical Fluids and Green Chemistry)
Figures

Figure 1

Open AccessCommunication Comparison of Free Total Amino Acid Compositions and Their Functional Classifications in 13 Wild Edible Mushrooms
Molecules 2017, 22(3), 350; doi:10.3390/molecules22030350
Received: 5 February 2017 / Revised: 18 February 2017 / Accepted: 19 February 2017 / Published: 24 February 2017
PDF Full-text (1421 KB) | HTML Full-text | XML Full-text
Abstract
Thirteen popular wild edible mushroom species in Yunnan Province, Boletus bicolor, Boletus speciosus, Boletus sinicus, Boletus craspedius, Boletus griseus, Boletus ornatipes, Xerocomus, Suillus placidus, Boletinus pinetorus, Tricholoma terreum, Tricholomopsis lividipileata, Termitomyces microcarpus
[...] Read more.
Thirteen popular wild edible mushroom species in Yunnan Province, Boletus bicolor, Boletus speciosus, Boletus sinicus, Boletus craspedius, Boletus griseus, Boletus ornatipes, Xerocomus, Suillus placidus, Boletinus pinetorus, Tricholoma terreum, Tricholomopsis lividipileata, Termitomyces microcarpus, and Amanita hemibapha, were analyzed for their free amino acid compositions by online pre-column derivazation reversed phase high-performance liquid chromatography (RP-HPLC) analysis. Twenty free amino acids, aspartic acid, glutamic acid, serine, glycine, alanine, praline, cysteine, valine, methionine, phenylalanine, isoleucine, leucine, lysine, histidine, threonine, asparagines, glutamine, arginine, tyrosine, and tryptophan, were determined. The total free amino acid (TAA) contents ranged from 1462.6 mg/100 g in B. craspedius to 13,106.2 mg/100 g in T. microcarpus. The different species showed distinct free amino acid profiles. The ratio of total essential amino acids (EAA) to TAA was 0.13–0.41. All of the analyzed species showed high contents of hydrophobic amino acids, at 33%–54% of TAA. Alanine, cysteine, glutamine, and glutamic acid were among the most abundant amino acids present in all species. The results showed that the analyzed mushrooms possessed significant free amino acid contents, which may be important compounds contributing to the typical mushroom taste, nutritional value, and potent antioxidant properties of these wild edible mushrooms. Furthermore, the principal component analysis (PCA) showed that the accumulative variance contribution rate of the first four principal components reached 94.39%. Cluster analysis revealed EAA composition and content might be an important parameter to separate the mushroom species, and T. microcarpus and A. hemibapha showed remarkable EAA content among the 13 species. Full article
Figures

Figure 1

Open AccessArticle Pt-Au/MOx-CeO2 (M = Mn, Fe, Ti) Catalysts for the Co-Oxidation of CO and H2 at Room Temperature
Molecules 2017, 22(3), 351; doi:10.3390/molecules22030351
Received: 9 January 2017 / Revised: 17 February 2017 / Accepted: 21 February 2017 / Published: 27 February 2017
Cited by 1 | PDF Full-text (5618 KB) | HTML Full-text | XML Full-text
Abstract
A series of nanostructured Pt-Au/MOx-CeO2 (M = Mn, Fe, Ti) catalysts were prepared and their catalytic performance for the co-oxidation of carbon monoxide (CO) and hydrogen (H2) were evaluated at room temperature. The results showed that MOx
[...] Read more.
A series of nanostructured Pt-Au/MOx-CeO2 (M = Mn, Fe, Ti) catalysts were prepared and their catalytic performance for the co-oxidation of carbon monoxide (CO) and hydrogen (H2) were evaluated at room temperature. The results showed that MOx promoted the CO oxidation of Pt-Au/CeO2, but only the TiO2 could enhance co-oxidation of CO and H2 over Pt-Au/CeO2. Related characterizations were conducted to clarify the promoting effect of MOx. Temperature-programmed reduction of hydrogen (H2-TPR) and X-ray photoelectron spectroscopy (XPS) results suggested that MOx could improve the charge transfer from Au sites to CeO2, resulting in a high concentration of Ce3+ and cationic Au species which benefits for the CO oxidation. In-situ diffuse reflectance infrared Fourier transform spectroscopy (In-situ DRIFTS) results indicated that TiO2 could facilitate the oxidation of H2 over the Pt-Au/TiO2-CeO2 catalyst. Full article
(This article belongs to the Special Issue Bimetallic Catalysis)
Figures

Figure 1

Open AccessArticle Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture
Molecules 2017, 22(3), 352; doi:10.3390/molecules22030352
Received: 28 December 2016 / Revised: 2 February 2017 / Accepted: 22 February 2017 / Published: 25 February 2017
Cited by 2 | PDF Full-text (823 KB) | HTML Full-text | XML Full-text
Abstract
Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to
[...] Read more.
Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV) to organic derivatives (e.g., selenomethionine). Selenium introduced (20–30 mg Se4+∙L−1) to the experimental media in the form of sodium(IV) selenite (Na2SeO3) salt caused a significant increase in selenium content in the biomass of C. utilis,irrespective of the concentration. The highest amount of selenium (1841 μg∙gd.w.−1) was obtained after a 48-h culture in media containing 30 mg Se4+∙L−1. The highest content of selenomethionine (238.8 μg∙gd.w.−1) was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se4+∙L−1. Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L−1. The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans Full article
Figures

Figure 1

Open AccessArticle A UPLC-MS/MS Method for Simultaneous Determination of Free and Total Forms of a Phenolic Acid and Two Flavonoids in Rat Plasma and Its Application to Comparative Pharmacokinetic Studies of Polygonum capitatum Extract in Rats
Molecules 2017, 22(3), 353; doi:10.3390/molecules22030353
Received: 1 February 2017 / Revised: 22 February 2017 / Accepted: 23 February 2017 / Published: 25 February 2017
Cited by 2 | PDF Full-text (1879 KB) | HTML Full-text | XML Full-text
Abstract
The principal active constituents of Polygonum capitatum are phenolic acids and flavonoids, such as gallic acid, quercitrin, and quercetin. The aim of this study was to develop and validate a method to determine the three constituents and the corresponding conjugated metabolites of Polygonum
[...] Read more.
The principal active constituents of Polygonum capitatum are phenolic acids and flavonoids, such as gallic acid, quercitrin, and quercetin. The aim of this study was to develop and validate a method to determine the three constituents and the corresponding conjugated metabolites of Polygonum capitatum in vivo and to conduct pharmacokinetic studies on the herb, a well-known Miao medicinal plant in China. Gallic acid, quercitrin, and quercetin were analysed by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). Protein precipitation in plasma samples was performed using methanol. For the determination of total forms of analytes, an additional process of hydrolysis was conducted using β-glucuronidase and sulphatase. The analytes were separated on a BEH C18 column (50 mm × 2.1 mm; i.d., 1.7 μm) and quantified by multiple reaction monitoring (MRM) mode. The linear regression showed high linearity over a 729-fold dynamic range for the three analytes. The relative standard deviations of intra- and inter-day measurements were less than 9.5%, and the method was accurate to within −11.1% to 12.5%. The extraction recoveries for gallic acid, quercitrin, and quercetin were 94.3%–98.8%, 88.9%–98.8%, and 95.7%–98.5%, respectively. All samples were stable under short- and long-term storage conditions. The validated method was successfully applied to a comparative pharmacokinetic study of gallic acid, quercitrin, and quercetin in their free and total forms in rat plasma. The study revealed significantly higher exposure of the constituents in total forms for gallic acid and quercetin, while quercitrin was detected mainly in its corresponding free form in vivo. The established method was rapid and sensitive for the simultaneous quantification of free and total forms of multiple constituents of Polygonum capitatum extract in plasma. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Open AccessArticle Glutathione Peroxidase-Like Activity of Amino-Substituted Water-Soluble Cyclic Selenides: A Shift of the Major Catalytic Cycle in Methanol
Molecules 2017, 22(3), 354; doi:10.3390/molecules22030354
Received: 31 January 2017 / Revised: 21 February 2017 / Accepted: 22 February 2017 / Published: 25 February 2017
PDF Full-text (2959 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We previously reported that water-soluble cyclic selenides can mimic the antioxidative function of glutathione peroxidase (GPx) in water through a simple catalytic cycle, in which the selenide (>Se) is oxidized by H2O2 to the selenoxide (>Se=O) and the selenoxide is
[...] Read more.
We previously reported that water-soluble cyclic selenides can mimic the antioxidative function of glutathione peroxidase (GPx) in water through a simple catalytic cycle, in which the selenide (>Se) is oxidized by H2O2 to the selenoxide (>Se=O) and the selenoxide is reduced by a thiol back to the selenide. In methanol, however, the GPx-like activity could not be explained by this simple scenario. To look into the reasons for the unusual behaviors in methanol, monoamino-substituted cyclic selenides with a variable ring size were synthesized, and the intermediates of the catalytic cycle were characterized by means of 77Se-NMR and LC–MS spectroscopies. In water, it was confirmed that the selenide and the selenoxide mainly contribute to the antioxidative function, though a slight contribution from the dihydroxy selenane (>Se(OH)2) was also suggested. In methanol, on the other hand, other active species, such as hydroxyselenonium (>Se+–OH) and hydroxy perhydroxy selenane (>Se(OH)(OOH)), could be generated to build another catalytic cycle. This over-oxidation would be more feasible for amino-substituted cyclic selenides, probably because the ammonium (NH3+) group would transfer a proton to the selenoxide moiety to produce a hydroxyselenonium species in the absence of an additional proton source. Thus, a shift of the major catalytic cycle in methanol would make the GPx-like antioxidative function of selenides perplexing. Full article
Figures

Open AccessArticle Facial Regioselective Synthesis of Novel Bioactive Spiropyrrolidine/Pyrrolizine-Oxindole Derivatives via a Three Components Reaction as Potential Antimicrobial Agents
Molecules 2017, 22(3), 357; doi:10.3390/molecules22030357
Received: 9 January 2017 / Revised: 19 February 2017 / Accepted: 24 February 2017 / Published: 26 February 2017
Cited by 1 | PDF Full-text (554 KB) | HTML Full-text | XML Full-text
Abstract
This article presents the synthesis of new derivatives of spirooxindole-spiropiperidinone- pyrrolidines 6aj and spirooxindole-spiropiperidinone-pyrrolizines 8aj, through a 1,3-dipolar cycloaddition reaction of azomethineylides generated from isatin, sarcosine, and l-proline, through a decarboxylative route with dipolarophile 4aj. All
[...] Read more.
This article presents the synthesis of new derivatives of spirooxindole-spiropiperidinone- pyrrolidines 6aj and spirooxindole-spiropiperidinone-pyrrolizines 8aj, through a 1,3-dipolar cycloaddition reaction of azomethineylides generated from isatin, sarcosine, and l-proline, through a decarboxylative route with dipolarophile 4aj. All of the newly synthesized compounds were evaluated for their antimicrobial activities and their minimum inhibitory concentration (MIC) against most of the test organisms. The tested compounds displayed excellent activity against all of the tested microorganisms. Full article
(This article belongs to the collection Heterocyclic Compounds)
Figures

Scheme 1

Open AccessArticle Paeoniflorin Attenuates Cerebral Ischemia-Induced Injury by Regulating Ca2+/CaMKII/CREB Signaling Pathway
Molecules 2017, 22(3), 359; doi:10.3390/molecules22030359
Received: 5 February 2017 / Revised: 22 February 2017 / Accepted: 23 February 2017 / Published: 27 February 2017
Cited by 1 | PDF Full-text (2826 KB) | HTML Full-text | XML Full-text
Abstract
Paeoniflorin (PF) is an active ingredient of Paeoniae Radix which possesses the neuroprotective effect. However, so far, the neuroprotective mechanism of PF has still not been fully uncovered. The Ca2+/Ca2+/calmodulin-dependent protein kinase II (CaMKII)/cAMP response element-binding (CREB) signaling pathway
[...] Read more.
Paeoniflorin (PF) is an active ingredient of Paeoniae Radix which possesses the neuroprotective effect. However, so far, the neuroprotective mechanism of PF has still not been fully uncovered. The Ca2+/Ca2+/calmodulin-dependent protein kinase II (CaMKII)/cAMP response element-binding (CREB) signaling pathway plays an important role in the intracellular signal transduction pathway involved in cell proliferation, cell survival, inflammation and metabolism. Herein, the neuroprotective roles of PF in the models of middle cerebral artery occlusion (MCAO) followed by reperfusion in rats and N-methyl-d-aspartic acid (NMDA)-induced excitotoxicity in primary hippocampal neurons were investigated. Moreover, we attempted to confirm the hypothesis that its protection effect is via the modulation of the Ca2+/CaMKI)/CREB signaling pathway. In this study, PF not only significantly decreased neurological deficit scores and infarct volume in vivo, but also improved neurons’ cell viability, and inhibited neurons’ apoptosis and intracellular Ca2+ concentration in vitro. Furthermore, PF significantly up-regulated p-CREB and p-CaMKII, and down-regulated calmodulin (CaM) in vivo and in vitro. The results indicate that the protective effect of PF on cerebral ischemia reperfusion injury is possible through regulating the Ca2+/CaMKII/CREB signaling pathway. Full article
Figures

Figure 1

Open AccessArticle The Structure-Activity Relationship of Pterostilbene Against Candida albicans Biofilms
Molecules 2017, 22(3), 360; doi:10.3390/molecules22030360
Received: 5 November 2016 / Revised: 12 February 2017 / Accepted: 22 February 2017 / Published: 27 February 2017
Cited by 2 | PDF Full-text (23815 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Candida albicans biofilms contribute to invasive infections and dramatic drug resistance, and anti-biofilm agents are urgently needed in the clinic. Pterostilbene (PTE) is a natural plant product with potentials to be developed as an anti-biofilm agent. In this study, we evaluated the structure-activity
[...] Read more.
Candida albicans biofilms contribute to invasive infections and dramatic drug resistance, and anti-biofilm agents are urgently needed in the clinic. Pterostilbene (PTE) is a natural plant product with potentials to be developed as an anti-biofilm agent. In this study, we evaluated the structure-activity relationship (SAR) of PTE analogues against C. albicans biofilms. XTT (Sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt) reduction assay was used to evaluate the activity of the analogues against C. albicans biofilms. Knowing that hyphal formation is essential for C. albicans biofilms, anti-hyphal assay was further carried out. By comparing a series of compounds tested in this study, we found that compounds with para-hydroxy (–OH) in partition A exhibited better activity than those with other substituents in the para position, and the double bond in partition B and meta-dimethoxy (–OCH3) in partition C both contributed to the best activity. Consistent results were obtained by anti-hyphal assay. Collectively, para-hydroxy (–OH), double bond and meta-dimethoxy (–OCH3) are all needed for the best activity of PTE against C. albicans biofilms. Full article
(This article belongs to the Special Issue Structure-Activity Relationship of Natural Products)
Figures

Figure 1

Open AccessArticle Looking Inside the Intramolecular C−H∙∙∙O Hydrogen Bond in Lactams Derived from α-Methylbenzylamine
Molecules 2017, 22(3), 361; doi:10.3390/molecules22030361
Received: 2 February 2017 / Revised: 22 February 2017 / Accepted: 24 February 2017 / Published: 28 February 2017
Cited by 2 | PDF Full-text (1386 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Recently, strong evidence that supports the presence of an intramolecular C−H···O hydrogen bond in amides derived from the chiral auxiliary α-methylbenzylamine was disclosed. Due to the high importance of this chiral auxiliary in asymmetric synthesis, the inadvertent presence of this C−H···O interaction may
[...] Read more.
Recently, strong evidence that supports the presence of an intramolecular C−H···O hydrogen bond in amides derived from the chiral auxiliary α-methylbenzylamine was disclosed. Due to the high importance of this chiral auxiliary in asymmetric synthesis, the inadvertent presence of this C−H···O interaction may lead to new interpretations upon stereochemical models in which this chiral auxiliary is present. Therefore, a series of lactams containing the chiral auxiliary α-methylbenzylamine (from three to eight-membered ring) were theoretically studied at the MP2/cc-pVDZ level of theory with the purpose of studying the origin and nature of the C−Hα···O interaction. NBO analysis revealed that rehybridization at C atom of the C−Hα bond (s-character at C is ~23%) and the subsequent bond polarization are the dominant effect over the orbital interaction energy n(O)→σ*C−Hα (E(2) < 2 kcal/mol), causing an important shortening of the C−Hα bond distance and an increment in the positive charge in the Hα atom. Full article
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding 2017)
Figures

Figure 1

Open AccessArticle An Investigation on the Quantitative Structure-Activity Relationships of the Anti-Inflammatory Activity of Diterpenoid Alkaloids
Molecules 2017, 22(3), 363; doi:10.3390/molecules22030363
Received: 31 December 2016 / Revised: 21 February 2017 / Accepted: 23 February 2017 / Published: 27 February 2017
Cited by 2 | PDF Full-text (8263 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Diterpenoid alkaloids are extracted from plants. These compounds have broad biological activities, including effects on the cardiovascular system, anti-inflammatory and analgesic actions, and anti-tumor activity. The anti-inflammatory activity was determined by carrageenan-induced rat paw edema and experimental trauma in rats. The number of
[...] Read more.
Diterpenoid alkaloids are extracted from plants. These compounds have broad biological activities, including effects on the cardiovascular system, anti-inflammatory and analgesic actions, and anti-tumor activity. The anti-inflammatory activity was determined by carrageenan-induced rat paw edema and experimental trauma in rats. The number of studies focused on the determination, quantitation and pharmacological properties of these alkaloids has increased dramatically during the past few years. In this work we built a dataset composed of 15 diterpenoid alkaloid compounds with diverse structures, of which 11 compounds were included in the training set and the remaining compounds were included in the test set. The quantitative chemistry parameters of the 15 diterpenoid alkaloids compound were calculated using the HyperChem software, and the quantitative structure–activity relationship (QSAR) of these diterpenoid alkaloid compounds were assessed in an anti-inflammation model based on half maximal effective concentration (EC50) measurements obtained from rat paw edema data. The QSAR prediction model is as follows: log ( E C 50 ) = 0.0260 × SAA + 0.0086 × SAG + 0.0011 × VOL 0.0641 × HE 0.2628 × LogP 0.5594 × REF 0.2211 × POL 0.1964 × MASS + 0.088 × BE + 0.1398 × HF (R2 = 0.981, Q2 = 0.92). The validated consensus EC50 for the QSAR model, developed from the rat paw edema anti-inflammation model used in this study, indicate that this model was capable of effective prediction and can be used as a reliable computational predictor of diterpenoid alkaloid activity. Full article
(This article belongs to the Special Issue Structure-Activity Relationship of Natural Products)
Figures

Figure 1

Open AccessArticle A General Asymmetric Synthesis of (R)-Matsutakeol and Flavored Analogs
Molecules 2017, 22(3), 364; doi:10.3390/molecules22030364
Received: 18 January 2017 / Revised: 21 February 2017 / Accepted: 24 February 2017 / Published: 27 February 2017
Cited by 2 | PDF Full-text (1558 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
An efficient and practical synthetic route toward chiral matsutakeol and analogs was developed by asymmetric addition of terminal alkyne to aldehydes. (R)-matsutakeol and other flavored substances were feasibly synthesized from various alkylaldehydes in high yield (up to 49.5%, in three steps)
[...] Read more.
An efficient and practical synthetic route toward chiral matsutakeol and analogs was developed by asymmetric addition of terminal alkyne to aldehydes. (R)-matsutakeol and other flavored substances were feasibly synthesized from various alkylaldehydes in high yield (up to 49.5%, in three steps) and excellent enantiomeric excess (up to >99%). The protocols may serve as an alternative asymmetric synthetic method for active small-molecule library of natural fatty acid metabolites and analogs. These chiral allyl alcohols are prepared for food analysis and screening insect attractants. Full article
(This article belongs to the Special Issue Asymmetric Synthesis 2017)
Figures

Open AccessArticle Synthesis and Characterization of a New Bivalent Ligand Combining Caffeine and Docosahexaenoic Acid
Molecules 2017, 22(3), 366; doi:10.3390/molecules22030366
Received: 9 January 2017 / Accepted: 23 February 2017 / Published: 27 February 2017
Cited by 1 | PDF Full-text (1077 KB) | HTML Full-text | XML Full-text
Abstract
Caffeine is a promising drug for the management of neurodegenerative diseases such as Parkinson’s disease (PD), demonstrating neuroprotective properties that have been attributed to its interaction with the basal ganglia adenosine A2A receptor (A2AR). However, the doses needed to exert these neuroprotective effects
[...] Read more.
Caffeine is a promising drug for the management of neurodegenerative diseases such as Parkinson’s disease (PD), demonstrating neuroprotective properties that have been attributed to its interaction with the basal ganglia adenosine A2A receptor (A2AR). However, the doses needed to exert these neuroprotective effects may be too high. Thus, it is important to design novel approaches that selectively deliver this natural compound to the desired target. Docosahexaenoic acid (DHA) is the major omega-3 fatty acid in the brain and can act as a specific carrier of caffeine. Furthermore, DHA displays properties that may lead to its use as a neuroprotective agent. In the present study, we constructed a novel bivalent ligand covalently linking caffeine and DHA and assessed its pharmacological activity and safety profile in a simple cellular model. Interestingly, the new bivalent ligand presented higher potency as an A2AR inverse agonist than caffeine alone. We also determined the range of concentrations inducing toxicity both in a heterologous system and in primary striatal cultures. The novel strategy presented here of attaching DHA to caffeine may enable increased effects of the drug at desired sites, which could be of interest for the treatment of PD. Full article
(This article belongs to the Special Issue Adenosine Receptors)
Figures

Figure 1

Open AccessArticle Chemical Composition, In Vitro Antimicrobial, Free-Radical-Scavenging and Antioxidant Activities of the Essential Oil of Leucas inflata Benth
Molecules 2017, 22(3), 367; doi:10.3390/molecules22030367
Received: 8 February 2017 / Accepted: 21 February 2017 / Published: 27 February 2017
PDF Full-text (227 KB) | HTML Full-text | XML Full-text
Abstract
The essential oil of Leucas inflata Balf.f. (Lamiaceae), collected in Yemen, was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. Forty-three components were recognized, representing 89.2% of the total oil. The L. inflata volatile oil was found to contain a
[...] Read more.
The essential oil of Leucas inflata Balf.f. (Lamiaceae), collected in Yemen, was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. Forty-three components were recognized, representing 89.2% of the total oil. The L. inflata volatile oil was found to contain a high percentage of aliphatic acids (51.1%). Hexadecanoic acid (32.8%) and n-dodecanoic acid (7.8%) were identified as the major compounds. Oxygenated monoterpenes were distinguished as the second significant group of constituents (16.0%). Camphor (6.1%) and linalool (3.2%) were found to be the main components among the oxygenated monoterpenes. In addition, the volatile oil was assessed for its antimicrobial activity against four bacterial strains and one yeast species using broth micro-dilution assay for minimum inhibitory concentrations (MIC). In addition, antioxidant activity was measured utilizing the anti-radical activity of the sable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-Carotene-linoleic acid assays. The oil of L. inflata showed an excellent antibacterial activity against only the tested Gram-positive bacteria with a MIC-value of 0.81 mg/mL. Furthermore, the oil demonstrated, at a concentration of 1 mg/mL, a weak to moderate antiradical and antioxidant activity of 38% and 32%, respectively. Full article
Open AccessArticle Antiprotozoal Activity of Triazole Derivatives of Dehydroabietic Acid and Oleanolic Acid
Molecules 2017, 22(3), 369; doi:10.3390/molecules22030369
Received: 23 January 2017 / Revised: 13 February 2017 / Accepted: 21 February 2017 / Published: 28 February 2017
Cited by 2 | PDF Full-text (412 KB) | HTML Full-text | XML Full-text
Abstract
Tropical parasitic diseases such as Chagas disease and leishmaniasis are considered a major public health problem affecting hundreds of millions of people worldwide. As the drugs currently used to treat these diseases have several disadvantages and side effects, there is an urgent need
[...] Read more.
Tropical parasitic diseases such as Chagas disease and leishmaniasis are considered a major public health problem affecting hundreds of millions of people worldwide. As the drugs currently used to treat these diseases have several disadvantages and side effects, there is an urgent need for new drugs with better selectivity and less toxicity. Structural modifications of naturally occurring and synthetic compounds using click chemistry have enabled access to derivatives with promising antiparasitic activity. The antiprotozoal activity of the terpenes dehydroabietic acid, dehydroabietinol, oleanolic acid, and 34 synthetic derivatives were evaluated against epimastigote forms of Trypanosoma cruzi and promastigotes of Leishmaniabraziliensis and Leishmania infantum. The cytotoxicity of the compounds was assessed on NCTC-Clone 929 cells. The activity of the compounds was moderate and the antiparasitic effect was associated with the linker length between the diterpene and the triazole in dehydroabietinol derivatives. For the oleanolic acid derivatives, a free carboxylic acid function led to better antiparasitic activity. Full article
(This article belongs to the Special Issue Structure-Activity Relationship of Natural Products)
Figures

Open AccessArticle A Computational Investigation of the Substituent Effects on Geometric, Electronic, and Optical Properties of Siloles and 1,4-Disilacyclohexa-2,5-dienes
Molecules 2017, 22(3), 370; doi:10.3390/molecules22030370
Received: 17 January 2017 / Revised: 16 February 2017 / Accepted: 20 February 2017 / Published: 28 February 2017
PDF Full-text (3351 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Thirty two differently substituted siloles 1a1p and 1,4-disilacyclohexa-2,5-dienes 2a2p were investigated by quantum chemical calculations using the PBE0 hybrid density functional theory (DFT) method. The substituents included σ-electron donating and withdrawing, as well as π-electron donating and withdrawing groups,
[...] Read more.
Thirty two differently substituted siloles 1a1p and 1,4-disilacyclohexa-2,5-dienes 2a2p were investigated by quantum chemical calculations using the PBE0 hybrid density functional theory (DFT) method. The substituents included σ-electron donating and withdrawing, as well as π-electron donating and withdrawing groups, and their effects when placed at the Si atom(s) or at the C atoms were examined. Focus was placed on geometries, frontier orbital energies and the energies of the first allowed electronic excitations. We analyzed the variation in energies between the orbitals which correspond to HOMO and LUMO for the two parent species, here represented as ΔεHL, motivated by the fact that the first allowed transitions involve excitation between these orbitals. Even though ΔεHL and the excitation energies are lower for siloles than for 1,4-disilacyclohexa-2,5-dienes the latter display significantly larger variations with substitution. The ΔεHL of the siloles vary within 4.57–5.35 eV (ΔΔεHL = 0.78 eV) while for the 1,4-disilacyclohexa-2,5-dienes the range is 5.49–7.15 eV (ΔΔεHL = 1.66 eV). The excitation energy of the first allowed transitions display a moderate variation for siloles (3.60–4.41 eV) whereas the variation for 1,4-disilacyclohexa-2,5-dienes is nearly doubled (4.69–6.21 eV). Cyclobutadisiloles combine the characteristics of siloles and 1,4-disilacyclohexa-2,5-diene by having even lower excitation energies than siloles yet also extensive variation in excitation energies to substitution of 1,4-disilacyclohexa-2,5-dienes (3.47–4.77 eV, variation of 1.30 eV). Full article
(This article belongs to the Special Issue Advances in Silicon Chemistry)
Figures

Open AccessArticle Isolation and Structure Identification of Novel Brominated Diketopiperazines from Nocardia ignorata—A Lichen-Associated Actinobacterium
Molecules 2017, 22(3), 371; doi:10.3390/molecules22030371
Received: 25 January 2017 / Revised: 22 February 2017 / Accepted: 23 February 2017 / Published: 28 February 2017
Cited by 1 | PDF Full-text (1213 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Actinobacteria are well known for their potential in biotechnology and their production of metabolites of interest. Lichens are a promising source of new bacterial strains, especially Actinobacteria, which afford a broad chemical diversity. In this context, the culture medium of the actinobacterium Nocardia
[...] Read more.
Actinobacteria are well known for their potential in biotechnology and their production of metabolites of interest. Lichens are a promising source of new bacterial strains, especially Actinobacteria, which afford a broad chemical diversity. In this context, the culture medium of the actinobacterium Nocardia ignorata, isolated from the terrestrial lichen Collema auriforme, was studied. The strain was cultivated in a BioFlo 115 bioreactor, and the culture medium was extracted using an XAD7HP resin. Five known diketopiperazines: cyclo (l-Pro-l-OMet) (1), cyclo (l-Pro-l-Tyr) (2), cyclo (d-Pro-l-Tyr) (3), cyclo (l-Pro-l-Val) (4), cyclo (l-Pro-l-Leu) (5), and one auxin derivative: indole-carboxaldehyde (8) were isolated, along with two new brominated diketopiperazines: cyclo (d-Pro-l-Br-Tyr) (6) and cyclo (l-Pro-l-Br-Tyr) (7). Structure elucidation was performed using HRMS and 1D and 2D NMR analysis, and the synthesis of compounds 6 and 7 was carried out in order to confirm their structure. Full article
(This article belongs to the Special Issue Lichens: Chemistry, Ecological and Biological Activities)
Figures

Open AccessArticle Antioxidant Activity of the Lignins Derived from Fluidized-Bed Fast Pyrolysis
Molecules 2017, 22(3), 372; doi:10.3390/molecules22030372
Received: 23 December 2016 / Revised: 13 February 2017 / Accepted: 16 February 2017 / Published: 1 March 2017
PDF Full-text (4372 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A challenge in recent years has been the rational use of forest and agriculture residues for the production of bio-fuel, biochemical, and other bioproducts. In this study, potentially useful compounds from pyrolytic lignins were identified by HPLC-MS/MS and untargeted metabolomics. The metabolites identified
[...] Read more.
A challenge in recent years has been the rational use of forest and agriculture residues for the production of bio-fuel, biochemical, and other bioproducts. In this study, potentially useful compounds from pyrolytic lignins were identified by HPLC-MS/MS and untargeted metabolomics. The metabolites identified were 2-(4-allyl-2-methoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-1-propanol, benzyl benzoate, fisetinidol, phenyllactic acid, 2-phenylpropionic acid, 6,3′-dimethoxyflavone, and vanillin. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH), trolox equivalent antioxidant capacity (TEAC), and total phenolics content (TPC) per gram of pyrolytic lignin ranged from 14 to 503 mg ascorbic acid equivalents, 35 to 277 mg trolox equivalents, and 0.42 to 50 mg gallic acid equivalents, respectively. A very significant correlation was observed between the DPPH and TPC (r = 0.8663, p ≤ 0.0001), TEAC and TPC (r = 0.8044, p ≤ 0.0001), and DPPH and TEAC (r = 0.8851, p ≤ 0.0001). The polyphenolic compounds in the pyrolytic lignins which are responsible for radical scavenging activity and antioxidant properties can be readily profiled with HPLC-MS/MS combined with untargeted metabolomics. The results also suggest that DPPH, TEAC, and TPC assays are suitable methods for the measurement of antioxidant activity in a variety of pyrolytic lignins. These data show that the pyrolytic lignins can be considered as promising sources of natural antioxidants and value-added chemicals. Full article
Figures

Figure 1

Open AccessArticle Synthesis, X-ray Single Crystal Structure, Molecular Docking and DFT Computations on N-[(1E)-1-(2H-1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-hydroxylamine: A New Potential Antifungal Agent Precursor
Molecules 2017, 22(3), 373; doi:10.3390/molecules22030373
Received: 4 January 2017 / Revised: 12 February 2017 / Accepted: 21 February 2017 / Published: 28 February 2017
PDF Full-text (3288 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Mycoses are serious health problem, especially in immunocompromised individuals. A new imidazole-bearing compound containing an oxime functionality was synthesized and characterized with different spectroscopic techniques to be used for the preparation of new antifungal agents. The stereochemistry of the oxime double bond was
[...] Read more.
Mycoses are serious health problem, especially in immunocompromised individuals. A new imidazole-bearing compound containing an oxime functionality was synthesized and characterized with different spectroscopic techniques to be used for the preparation of new antifungal agents. The stereochemistry of the oxime double bond was unequivocally determined via the single crystal X-ray technique. The title compound 4, C13H13N3O3·C3H8O, crystallizes in the monoclinic space group P21with a = 9.0963(3) Å, b = 14.7244(6) Å, c = 10.7035(4) Å, β = 94.298 (3)°, V = 1429.57(9) Å3, Z = 2. The molecules were packed in the crystal structure by eight intermolecular hydrogen bond interactions. A comprehensive spectral analysis of the title molecule 4 has been performed based on the scaled quantum mechanical (SQM) force field obtained by density-functional theory (DFT) calculations. A molecular docking study illustrated the binding mode of the title compound 4 into its target protein. The preliminary antifungal activity of the title compound 4 was determined using a broth microdilution assay. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Influence of Indole-3-Acetic Acid and Gibberellic Acid on Phenylpropanoid Accumulation in Common Buckwheat (Fagopyrum esculentum Moench) Sprouts
Molecules 2017, 22(3), 374; doi:10.3390/molecules22030374
Received: 21 January 2017 / Revised: 15 February 2017 / Accepted: 22 February 2017 / Published: 28 February 2017
PDF Full-text (462 KB) | HTML Full-text | XML Full-text
Abstract
We investigated the effects of natural plant hormones, indole-3-acetic (IAA) acid and gibberellic acid (GA), on the growth parameters and production of flavonoids and other phenolic compounds in common buckwheat sprouts. A total of 17 phenolic compounds were identified using liquid chromatography-mass spectrometry
[...] Read more.
We investigated the effects of natural plant hormones, indole-3-acetic (IAA) acid and gibberellic acid (GA), on the growth parameters and production of flavonoids and other phenolic compounds in common buckwheat sprouts. A total of 17 phenolic compounds were identified using liquid chromatography-mass spectrometry (LC-MS) analysis. Among these, seven compounds (4-hydroxybenzoic acid, catechin, chlorogenic acid, caffeic acid, epicatechin, rutin, and quercetin) were quantified by high-performance liquid chromatography (HPLC) after treating the common buckwheat sprouts with different concentrations of the hormones IAA and GA. At a concentration of 0.5 mg/L, both IAA and GA exhibited the highest levels of growth parameters (shoot length, root length, and fresh weight). The HPLC analysis showed that the treatment of sprouts with IAA at concentrations ranging from 0.1 to 1.0 mg/L produced higher or comparable levels of the total phenolic compounds than the control sprout and enhanced the production of rutin. Similarly, the supplementation with 0.1 and 0.5 mg/L GA increased the content of rutin in buckwheat sprouts. Our results suggested that the treatment with optimal concentrations of IAA and GA enhanced the growth parameters and accumulation of flavonoids and other phenolic compounds in buckwheat sprouts. Full article
(This article belongs to the Special Issue Green Production of Bioactive Natural Products)
Figures

Figure 1

Open AccessArticle A Kinetic Approach in the Evaluation of Radical-Scavenging Efficiency of Sinapic Acid and Its Derivatives
Molecules 2017, 22(3), 375; doi:10.3390/molecules22030375
Received: 19 January 2017 / Revised: 21 February 2017 / Accepted: 22 February 2017 / Published: 28 February 2017
PDF Full-text (1707 KB) | HTML Full-text | XML Full-text
Abstract
A kinetic approach was used to determine the radical scavenging activities of sinapic acid and its derivatives: sinapine, 4-vinylsyringol, syringic acid, syringaldehyde, and ethyl, propyl and butyl sinapate. The responses were expressed as rates of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) scavenging (RS),
[...] Read more.
A kinetic approach was used to determine the radical scavenging activities of sinapic acid and its derivatives: sinapine, 4-vinylsyringol, syringic acid, syringaldehyde, and ethyl, propyl and butyl sinapate. The responses were expressed as rates of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) scavenging (RS), superoxide radical (O2˙) scavenging (RFF), and β-carotene bleaching in the emulsion system (RB). For RS and RB, the esters of sinapic acid showed the highest responses while, for RFF, this was seen for syringic acid. The effectiveness of the selected compounds for scavenging these free radicals was also determined at a fixed endpoint. The early response parameters were demonstrated to be good discriminators in assessing differences for antioxidants with comparable fixed endpoint activity. The primary feature that ranks the kinetic data and the endpoint determinations is interpreted in terms of the mechanisms of the reactions involved in each of the assays conducted. Full article
(This article belongs to the Section Molecular Diversity)
Figures

Open AccessArticle Prevention of Bacterial Contamination of a Silica Matrix Containing Entrapped β-Galactosidase through the Action of Covalently Bound Lysozymes
Molecules 2017, 22(3), 377; doi:10.3390/molecules22030377
Received: 15 January 2017 / Revised: 24 February 2017 / Accepted: 25 February 2017 / Published: 28 February 2017
Cited by 1 | PDF Full-text (9298 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
β-galactosidase was successfully encapsulated within an amino-functionalised silica matrix using a “fish-in-net” approach and molecular imprinting technique followed by covalent binding of lysozyme via a glutaraldehyde-based method. Transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR)
[...] Read more.
β-galactosidase was successfully encapsulated within an amino-functionalised silica matrix using a “fish-in-net” approach and molecular imprinting technique followed by covalent binding of lysozyme via a glutaraldehyde-based method. Transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy were used to characterise the silica matrix hosting the two enzymes. Both encapsulated β-galactosidase and bound lysozyme exhibited high enzymatic activities and outstanding operational stability in model reactions. Moreover, enzyme activities of the co-immobilised enzymes did not obviously change relative to enzymes immobilised separately. In antibacterial tests, bound lysozyme exhibited 95.5% and 89.6% growth inhibition of Staphylococcus aureus ATCC (American type culture collection) 653 and Escherichia coli ATCC 1122, respectively. In milk treated with co-immobilised enzymes, favourable results were obtained regarding reduction of cell viability and high lactose hydrolysis rate. In addition, when both co-immobilised enzymes were employed to treat milk, high operational and storage stabilities were observed. The results demonstrate that the use of co-immobilised enzymes holds promise as an industrial strategy for producing low lactose milk to benefit people with lactose intolerance. Full article
(This article belongs to the Special Issue Enzyme Immobilization 2016)
Figures

Figure 1

Open AccessCommunication Excited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?
Molecules 2017, 22(3), 379; doi:10.3390/molecules22030379
Received: 17 January 2017 / Revised: 15 February 2017 / Accepted: 24 February 2017 / Published: 28 February 2017
Cited by 6 | PDF Full-text (1514 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug’s overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA
[...] Read more.
6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug’s overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studied in aqueous solution following UVA excitation at 345 nm in order to provide mechanistic insight regarding its photochemical reactivity and to scrutinize whether N9-glycosylation modulates its phototoxicity in solution. The experimental results are complemented with time-dependent density functional calculations that include solvent dielectric effects by means of a reaction-field solvation model. UVA excitation results in the initial population of the S2(ππ*) state, which is followed by ultrafast internal conversion to the S1(nπ*) state and then intersystem crossing to the triplet manifold within 560 ± 60 fs. A small fraction (ca. 25%) of the population that reaches the S1(nπ*) state repopulates the ground state. The T1(ππ*) state decays to the ground state in 1.4 ± 0.2 μs under N2-purged conditions, using a 0.2 mM concentration of 6-thioguanine, or it can sensitize singlet oxygen in 0.21 ± 0.02 and 0.23 ± 0.02 yields in air- and O2-saturated solution, respectively. This demonstrates the efficacy of 6-thioguanine to act as a Type II photosensitizer. N9-glycosylation increases the rate of intersystem crossing from the singlet to triplet manifold, as well as from the T1(ππ*) state to the ground state, which lead to a ca. 40% decrease in the singlet oxygen yield under air-saturated conditions. Enhanced vibronic coupling between the singlet and triplet manifolds due to a higher density of vibrational states is proposed to be responsible for the observed increase in the rates of intersystem crossing in 6-thioguanine upon N9-glycosylation. Full article
(This article belongs to the Special Issue Experimental and Computational Photochemistry of Bioorganic Molecules)
Figures

Figure 1

Open AccessArticle Peripheral and Cerebral Resistance Arteries in the Spontaneously Hypertensive Heart Failure Rat: Effects of Stilbenoid Polyphenols
Molecules 2017, 22(3), 380; doi:10.3390/molecules22030380
Received: 16 December 2016 / Revised: 8 February 2017 / Accepted: 24 February 2017 / Published: 28 February 2017
PDF Full-text (2073 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hypertension is associated with aberrant structure and mechanical properties of resistance arteries. We determined the effects of resveratrol, a non-flavonoid polyphenol found in foods such as red grapes, and structurally-similar analogues (pterostilbene and gnetol) on systolic blood pressure (SBP) and resistance arteries from
[...] Read more.
Hypertension is associated with aberrant structure and mechanical properties of resistance arteries. We determined the effects of resveratrol, a non-flavonoid polyphenol found in foods such as red grapes, and structurally-similar analogues (pterostilbene and gnetol) on systolic blood pressure (SBP) and resistance arteries from the spontaneously hypertensive heart failure (SHHF) rat. SBP was elevated in 17-week-old SHHF vs. Sprague-Dawley rats (normotensive control; 194 ± 3 vs. 142 ± 6 mmHg, p < 0.01) and was unaffected by resveratrol, pterostilbene, or gnetol (2.5 mg/kg/d). Geometry and mechanical properties of pressurized mesenteric resistance arteries and middle cerebral arteries were calculated from media and lumen dimensions measured at incremental intraluminal pressures. SHHF arteries exhibited remodeling which consisted of augmented media-to-lumen ratios, and this was attenuated by stilbenoid treatment. Compliance was significantly reduced in SHHF middle cerebral arteries but not mesenteric arteries vis-à-vis increased wall component stiffness; stilbenoid treatment failed to normalize compliance and wall component stiffness. Our data suggest that neither AMPK nor ERK mediate stilbenoid effects. In conclusion, we observed arterial bed-specific abnormalities, where mesenteric resistance arteries exhibited remodeling and cerebral arteries exhibited remodeling and stiffening. Resveratrol, pterostilbene, and gnetol exhibited similar abilities to attenuate vascular alterations. Full article
(This article belongs to the Special Issue Polyphenols and Cardiovascular Disease)
Figures

Figure 1

Open AccessArticle Chemical Composition, Antioxidant, Antimicrobial and Cytotoxic Activities of Essential Oil from Premna microphylla Turczaninow
Molecules 2017, 22(3), 381; doi:10.3390/molecules22030381
Received: 31 January 2017 / Accepted: 26 February 2017 / Published: 28 February 2017
Cited by 1 | PDF Full-text (231 KB) | HTML Full-text | XML Full-text
Abstract
Premna microphylla Turczaninow, an erect shrub, was widely used in Chinese traditional medicine to treat dysentery, appendicitis, and infections. In this study, the essential oil from P. microphylla Turcz. was obtained by hydrodistillation and analyzed by GC (Gas Chromatography) and GC-MS (Gas Chromatography-Mass
[...] Read more.
Premna microphylla Turczaninow, an erect shrub, was widely used in Chinese traditional medicine to treat dysentery, appendicitis, and infections. In this study, the essential oil from P. microphylla Turcz. was obtained by hydrodistillation and analyzed by GC (Gas Chromatography) and GC-MS (Gas Chromatography-Mass Spectrometer). Fifty-six compounds were identified in the oil which comprised about 97.2% of the total composition of the oil. Major components of the oil were blumenol C (49.7%), β-cedrene (6.1%), limonene (3.8%), α-guaiene (3.3%), cryptone (3.1%), and α-cyperone (2.7%). Furthermore, we assessed the in vitro biological activities displayed by the oil obtained from the aerial parts of P. microphylla, namely the antioxidant, antimicrobial, and cytotoxic activities. The antioxidant activity of the essential oil was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. For this, the IC50 value was estimated to be 0.451 mg/mL. The essential oil of P. microphylla exhibited considerable antibacterial capacity against Escherichia coli with an MIC (Minimum Inhibitory Concentration) value of 0.15 mg/mL, along with noticeable antibacterial ability against Bacillus subtilis and Staphylococcus aureus with an MIC value of 0.27 mg/mL. However, the essential oil did not show significant activity against fungus. The oil was tested for its cytotoxic activity towards HepG2 (liver hepatocellular cells) and MCF-7 Cells (human breast adenocarcinoma cell line) using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay, and exerted cytotoxic activity with an IC50 of 0.072 and 0.188 mg/mL for 72 h. In conclusion, the essential oil from P. microphylla is an inexpensive but favorable resource with strong antibacterial capacity as well as cytotoxic activity. Thus, it has the potential for utilization in the cosmetics and pharmaceutical industries. Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Bioactivity)
Open AccessCommunication In Vitro Selection of DNA Aptamers that Binds Geniposide
Molecules 2017, 22(3), 383; doi:10.3390/molecules22030383
Received: 26 January 2017 / Accepted: 21 February 2017 / Published: 28 February 2017
PDF Full-text (5184 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Geniposide is a key iridoid glycoside from Gardenia jasminoides fructus widely used in traditional Chinese herbal medicine. However, detection of this small molecule represents a significant challenge mostly due to the lack of specific molecular recognition elements. In this study, we have performed
[...] Read more.
Geniposide is a key iridoid glycoside from Gardenia jasminoides fructus widely used in traditional Chinese herbal medicine. However, detection of this small molecule represents a significant challenge mostly due to the lack of specific molecular recognition elements. In this study, we have performed in vitro selection experiments to isolate DNA aptamers that can specifically bind geniposide. Using a stringent selection procedure, we have isolated DNA aptamers that can distinguish geniposide from genipin and glucose, two structural analogs of geniposide. Two top aptamers exhibit low micromolar binding affinity towards geniposide, but show significantly reduced affinity to genipin and glucose. These aptamers have the potential to be further developed into analytical tools for the detection of geniposide. Full article
(This article belongs to the Special Issue Nucleic Acid Aptamers)
Figures

Figure 1

Open AccessArticle A Novel Polysaccharide Conjugate from Bullacta exarata Induces G1-Phase Arrest and Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells
Molecules 2017, 22(3), 384; doi:10.3390/molecules22030384
Received: 25 January 2017 / Revised: 24 February 2017 / Accepted: 25 February 2017 / Published: 1 March 2017
PDF Full-text (3951 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Bullacta exarata has been consumed in Asia, not only as a part of the normal diet, but also as a traditional Chinese medicine with liver- and kidney-benefitting functions. Several scientific investigations involving extraction of biomolecules from this mollusk and pharmacological studies on their
[...] Read more.
Bullacta exarata has been consumed in Asia, not only as a part of the normal diet, but also as a traditional Chinese medicine with liver- and kidney-benefitting functions. Several scientific investigations involving extraction of biomolecules from this mollusk and pharmacological studies on their biological activities have been carried out. However, little is known regarding the antitumor properties of polysaccharides from B. exarata, hence the polysaccharides from B. exarata have been investigated here. One polysaccharide conjugate BEPS-IA was isolated and purified from B. exarata. It mainly consisted of mannose and glucose in a molar ratio of 1:2, with an average molecular weight of 127 kDa. Thirteen general amino acids were identified to be components of the protein-bound polysaccharide. Methylation and NMR studies revealed that BEPS-IA is a heteropolysaccharide consisting of 1,4-linked-α-d-Glc, 1,6-linked-α-d-Man, 1,3,6-linked-α-d-Man, and 1-linked-α-d-Man residue, in a molar ratio of 6:1:1:1. In order to test the antitumor activity of BEPS-IA, we investigated its effect against the growth of human hepatocellular carcinoma cells HepG2 in vitro. The result showed that BEPS-IA dose-dependently exhibited an effective HepG2 cells growth inhibition with an IC50 of 112.4 μg/mL. Flow cytometry analysis showed that BEPS-IA increased the populations of both apoptotic sub-G1 and G1 phase. The result obtained from TUNEL assay corroborated apoptosis which was shown in flow cytometry. Western blot analysis suggested that BEPS-IA induced apoptosis and growth inhibition were associated with up-regulation of p53, p21 and Bax, down-regulation of Bcl-2. These findings suggest that BEPS-IA may serve as a potential novel dietary agent for hepatocellular carcinoma. Full article
(This article belongs to the Special Issue Natural Polysaccharides)
Figures

Open AccessArticle Effects and Mechanism of Blue Light on Monascus in Liquid Fermentation
Molecules 2017, 22(3), 385; doi:10.3390/molecules22030385
Received: 9 September 2016 / Revised: 23 February 2017 / Accepted: 23 February 2017 / Published: 1 March 2017
Cited by 1 | PDF Full-text (3520 KB) | HTML Full-text | XML Full-text
Abstract
The effect of light on Monascus and the underlying mechanism have received a great deal of interest for the industrial application of Monascus pigments. In this study, we have examined the effects of blue light on the culture morphology, mycelium growth, pigments, and
[...] Read more.
The effect of light on Monascus and the underlying mechanism have received a great deal of interest for the industrial application of Monascus pigments. In this study, we have examined the effects of blue light on the culture morphology, mycelium growth, pigments, and citrinin yield of Monascus in liquid-state and oscillation fermentation, and explored the mechanism at a physiological level. It was found that blue light affected the colony morphology, the composition (chitin content), and permeability of the Monascus mycelium cell wall in static liquid culture, which indicates blue light benefits pigments secreting from aerial mycelium to culture medium. In liquid oscillation fermentation, the yields of Monascus pigments in fermentation broth (darkness 1741 U/g, blue light 2206 U/g) and mycelium (darkness 2442 U/g, blue light 1900 U/g) cultured under blue light and darkness are different. The total pigments produced per gram of Monascus mycelium under blue light was also higher (4663 U/g) than that in darkness (4352 U/g). However, the production of citrinin (88 μg/g) under blue light was evidently lower than that in darkness (150 μg/g). According to the degradation of citrinin caused by blue light and hydrogen peroxide, it can be concluded that blue light could degrade citrinin and inhibit the catalase activity of Monascus mycelium, subsequently suppressing the decomposition of hydrogen peroxide, which is the active species that degrades citrinin. Full article
(This article belongs to the Special Issue Nanozymes and Beyond)
Figures

Open AccessCommunication Functional Analysis of a Wheat AGPase Plastidial Small Subunit with a Truncated Transit Peptide
Molecules 2017, 22(3), 386; doi:10.3390/molecules22030386
Received: 18 January 2017 / Revised: 17 February 2017 / Accepted: 25 February 2017 / Published: 1 March 2017
PDF Full-text (3537 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
ADP-glucose pyrophosphorylase (AGPase), the key enzyme in starch synthesis, consists of two small subunits and two large subunits with cytosolic and plastidial isoforms. In our previous study, a cDNA sequence encoding the plastidial small subunit (TaAGPS1b) of AGPase in grains of bread wheat
[...] Read more.
ADP-glucose pyrophosphorylase (AGPase), the key enzyme in starch synthesis, consists of two small subunits and two large subunits with cytosolic and plastidial isoforms. In our previous study, a cDNA sequence encoding the plastidial small subunit (TaAGPS1b) of AGPase in grains of bread wheat (Triticum aestivum L.) was isolated and the protein subunit encoded by this gene was characterized as a truncated transit peptide (about 50% shorter than those of other plant AGPS1bs). In the present study, TaAGPS1b was fused with green fluorescent protein (GFP) in rice protoplast cells, and confocal fluorescence microscopy observations revealed that like other AGPS1b containing the normal transit peptide, TaAGPS1b-GFP was localized in chloroplasts. TaAGPS1b was further overexpressed in a Chinese bread wheat cultivar, and the transgenic wheat lines exhibited a significant increase in endosperm AGPase activities, starch contents, and grain weights. These suggested that TaAGPS1b subunit was targeted into plastids by its truncated transit peptide and it could play an important role in starch synthesis in bread wheat grains. Full article
Figures

Figure 1

Open AccessArticle Lipoic Acid as a Possible Pharmacological Source of Hydrogen Sulfide/Sulfane Sulfur
Molecules 2017, 22(3), 388; doi:10.3390/molecules22030388
Received: 16 January 2017 / Revised: 24 February 2017 / Accepted: 27 February 2017 / Published: 2 March 2017
Cited by 1 | PDF Full-text (1808 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the present study was to verify whether lipoic acid (LA) itself is a source of H2S and sulfane sulfur. It was investigated in vitro non-enzymatically and enzymatically (in the presence of rat tissue homogenate). The results indicate that
[...] Read more.
The aim of the present study was to verify whether lipoic acid (LA) itself is a source of H2S and sulfane sulfur. It was investigated in vitro non-enzymatically and enzymatically (in the presence of rat tissue homogenate). The results indicate that both H2S and sulfane sulfur are formed from LA non-enzymatically in the presence of environmental light. These results suggest that H2S is the first product of non-enzymatic light-dependent decomposition of LA that is, probably, next oxidized to sulfane sulfur-containing compound(s). The study performed in the presence of rat liver and kidney homogenate revealed an increase of H2S level in samples containing LA and its reduced form dihydrolipoic acid (DHLA). It was accompanied by a decrease in sulfane sulfur level. It seems that, in these conditions, DHLA acts as a reducing agent that releases H2S from an endogenous pool of sulfane sulfur compounds present in tissues. Simultaneously, it means that exogenous LA cannot be a direct donor of H2S/sulfane sulfur in animal tissues. The present study is an initial approach to the question whether LA itself is a donor of H2S/sulfane sulfur. Full article
(This article belongs to the Special Issue Sulfur Atom: Element for Adaptation to an Oxidative Environment 2016)
Figures

Open AccessArticle New Cytotoxic Seco-Type Triterpene and Labdane-Type Diterpenes from Nuxia oppositifolia
Molecules 2017, 22(3), 389; doi:10.3390/molecules22030389
Received: 26 January 2017 / Revised: 26 February 2017 / Accepted: 27 February 2017 / Published: 2 March 2017
PDF Full-text (762 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chromatographic purification of the n-hexane and dichloromethane extracts of Nuxia oppositifolia aerial parts, growing in Saudi Arabia, resulted in the isolation and characterization of three new labdane-type diterpene acids, 2β-acetoxy-labda-7-en-15-oic acid (1), 2β-acetoxy-7-oxolabda-8-en-15-oic acid (2), 2β-acetoxy-6-oxolabda-7-en-15-oic acid (
[...] Read more.
Chromatographic purification of the n-hexane and dichloromethane extracts of Nuxia oppositifolia aerial parts, growing in Saudi Arabia, resulted in the isolation and characterization of three new labdane-type diterpene acids, 2β-acetoxy-labda-7-en-15-oic acid (1), 2β-acetoxy-7-oxolabda-8-en-15-oic acid (2), 2β-acetoxy-6-oxolabda-7-en-15-oic acid (3), and one new seco-triterpene, 3,4-seco olean-12-en-3,30 dioic acid (4), together with 10 known lupane, oleanane and ursane-type triterpenes, as well as the common phytosterols, β-sitosterol and stigmasterol (516). Their structures have been assigned on the basis of different spectroscopic techniques including 1D and 2D NMR. Moreover, 13 of the isolated compounds were tested on the human cancer cell lines HeLa (cervical), A549 (lung) and MDA (breast), and most of the compounds showed potent cytotoxic activities in vitro. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Open AccessArticle Polysaccharide-Based Edible Coatings Containing Cellulase for Improved Preservation of Meat Quality during Storage
Molecules 2017, 22(3), 390; doi:10.3390/molecules22030390
Received: 19 January 2017 / Revised: 21 February 2017 / Accepted: 28 February 2017 / Published: 2 March 2017
PDF Full-text (910 KB) | HTML Full-text | XML Full-text
Abstract
The objectives of this study were to optimize the composition of edible food coatings and to extend the shelf-life of pork meat. Initially, nine meat samples were coated with solutions containing chitosan and hydroxypropyl methylcellulose at various cellulase concentrations: 0%, 0.05%, and 0.1%,
[...] Read more.
The objectives of this study were to optimize the composition of edible food coatings and to extend the shelf-life of pork meat. Initially, nine meat samples were coated with solutions containing chitosan and hydroxypropyl methylcellulose at various cellulase concentrations: 0%, 0.05%, and 0.1%, stored for 0, 7, and 14 days. Uncoated meat served as the controls. The samples were tested for pH, water activity (aw), total number of microorganisms (TNM), psychrotrophs (P), number of yeast and molds (NYM), colour, and thiobarbituric acid-reactive substances (TBARS). The pH and aw values varied from 5.42 to 5.54 and 0.919 to 0.926, respectively. The reductions in the TNM, P, and NYM after 14 days of storage were approximately 2.71 log cycles, 1.46 log cycles, and 0.78 log cycles, respectively. The enzyme addition improved the stability of the red colour. Significant reduction in TBARS was noted with the inclusion of cellulase in the coating material. Overall, this study provides a promising alternative method for the preservation of pork meat in industry. Full article
(This article belongs to the Special Issue Antibacterial Materials and Coatings)
Figures

Figure 1

Open AccessCommunication Glycerol as Precursor of Organoselanyl and Organotellanyl Alkynes
Molecules 2017, 22(3), 391; doi:10.3390/molecules22030391
Received: 24 January 2017 / Revised: 22 February 2017 / Accepted: 28 February 2017 / Published: 2 March 2017
PDF Full-text (5237 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Herein we describe the synthesis of organoselanyl and organotellanyl alkynes by the addition of lithium alkynylchalcogenolate (Se and Te) to tosyl solketal, easily obtained from glycerol. The alkynylchalcogenolate anions were generated in situ and added to tosyl solketal in short reaction times, furnishing
[...] Read more.
Herein we describe the synthesis of organoselanyl and organotellanyl alkynes by the addition of lithium alkynylchalcogenolate (Se and Te) to tosyl solketal, easily obtained from glycerol. The alkynylchalcogenolate anions were generated in situ and added to tosyl solketal in short reaction times, furnishing in all cases the respective products of substitution in good yields. Some of the prepared compounds were deprotected using an acidic resin to afford new water-soluble 3-organotellanylpropane-1,2-diols. The synthetic versatility of the new chalcogenyl alkynes was demonstrated in the iodocyclization of 2,2-dimethyl-1,3-dioxolanylmethyl(2-methoxyphenylethynyl)selane 3f, which afforded 3-iodo-2-(2,2-dimethyl-1,3-dioxolanylmethyl) selenanylbenzo[b]furan in 85% yield, opening a new way to access water-soluble Se-functionalized benzo[b]furanes. Full article
Figures

Open AccessArticle Electrochemical Detecting Lung Cancer-Associated Antigen Based on Graphene-Gold Nanocomposite
Molecules 2017, 22(3), 392; doi:10.3390/molecules22030392
Received: 26 January 2017 / Revised: 21 February 2017 / Accepted: 28 February 2017 / Published: 2 March 2017
Cited by 2 | PDF Full-text (2291 KB) | HTML Full-text | XML Full-text
Abstract
Using a Au nanoparticle/reduced graphene oxide composite (AuNP-RGO), a signal-enhanced electrochemical immunosensor without label was created to detect neuron-specific enolase (NSE). Furthermore, an environmentally-friendly method was developed to prepare AuNP-RGO by employing chitosan (CS), which served as reducing and stabilizing agent. We showed
[...] Read more.
Using a Au nanoparticle/reduced graphene oxide composite (AuNP-RGO), a signal-enhanced electrochemical immunosensor without label was created to detect neuron-specific enolase (NSE). Furthermore, an environmentally-friendly method was developed to prepare AuNP-RGO by employing chitosan (CS), which served as reducing and stabilizing agent. We showed that the sensitivity of the immunosensor designed in this report was remarkably enhanced because of the numerous active sites in the sensor provided by the AuNP-RGO nanostructure. For the quantification of NSE, the immunosensor exhibited a positive linear relationship with the concentration in the range of 0.1 to 2000 ng/mL, where the limit of the detection was 0.05 ng/mL. Full article
Figures

Figure 1

Open AccessArticle New Marine Sterols from a Gorgonian Pinnigorgia sp.
Molecules 2017, 22(3), 393; doi:10.3390/molecules22030393
Received: 19 January 2017 / Revised: 27 February 2017 / Accepted: 28 February 2017 / Published: 3 March 2017
PDF Full-text (854 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Continuous chemical investigation of the gorgonian coral Pinnigorgia sp. resulted in the isolation of two new sterols, 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9-one (1) and (22R)-acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2). The structures of sterols 1 and 2 were elucidated
[...] Read more.
Continuous chemical investigation of the gorgonian coral Pinnigorgia sp. resulted in the isolation of two new sterols, 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9-one (1) and (22R)-acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2). The structures of sterols 1 and 2 were elucidated using spectroscopic methods. Sterol 1 displayed inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils with IC50 values of 8.65 and 5.86 μM, respectively. The structure of a known metabolite, pubinernoid A (3), is revised as (+)-loliolide (4). Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle In Vitro Activities of LCB 01-0648, a Novel Oxazolidinone, against Gram-Positive Bacteria
Molecules 2017, 22(3), 394; doi:10.3390/molecules22030394
Received: 31 January 2017 / Revised: 21 February 2017 / Accepted: 2 March 2017 / Published: 3 March 2017
PDF Full-text (1152 KB) | HTML Full-text | XML Full-text
Abstract
Oxazolidinones are a novel class of synthetic antibacterial agents that inhibit bacterial protein synthesis. Here, we synthesized and tested a series of oxazolidinone compounds containing cyclic amidrazone. Among these compounds, we further investigated the antibacterial activities of LCB01-0648 against drug-susceptible or resistant Gram-positive
[...] Read more.
Oxazolidinones are a novel class of synthetic antibacterial agents that inhibit bacterial protein synthesis. Here, we synthesized and tested a series of oxazolidinone compounds containing cyclic amidrazone. Among these compounds, we further investigated the antibacterial activities of LCB01-0648 against drug-susceptible or resistant Gram-positive cocci in comparison with those of six reference compounds. LCB01-0648 showed the most potent antimicrobial activities against clinically isolated Gram-positive bacteria. Against the methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCNS) isolates, LCB01-0648 showed the lowest MIC90s (0.5 mg/L) among the tested compounds. In addition, LCB01-0648 had the lowest minimum inhibitory concentrations (MICs) against the four linezolid-resistant S. aureus (LRSA) strains (range 2–4 mg/L). The results of the time–kill studies demonstrated that LCB01-0648 at a concentration 8× the (MIC) showed bactericidal activity against methicillin-susceptible Staphylococcus aureus MSSA or MRSA, but showed a bacteriostatic effect against LRSA. These results indicate that LCB01-0648 could be a good antibacterial candidate against multidrug-resistant (MDR) Gram-positive cocci. Full article
Figures

Figure 1

Open AccessArticle Optimization of Ultrasonic-Assisted Enzymatic Extraction Conditions for Improving Total Phenolic Content, Antioxidant and Antitumor Activities In Vitro from Trapa quadrispinosa Roxb. Residues
Molecules 2017, 22(3), 396; doi:10.3390/molecules22030396
Received: 2 February 2017 / Revised: 24 February 2017 / Accepted: 1 March 2017 / Published: 6 March 2017
Cited by 1 | PDF Full-text (2085 KB) | HTML Full-text | XML Full-text
Abstract
Stems are the important residues of Trapa quadrispinosa Roxb., which are abundant in phenolic compounds. Ultrasonic-assisted enzymatic extraction (UAEE) is confirmed as a novel extraction technology with main advantages of enhancing extraction yield and physiological activities of the extracts from various plants. In
[...] Read more.
Stems are the important residues of Trapa quadrispinosa Roxb., which are abundant in phenolic compounds. Ultrasonic-assisted enzymatic extraction (UAEE) is confirmed as a novel extraction technology with main advantages of enhancing extraction yield and physiological activities of the extracts from various plants. In this study, UAEE was applied to obtain the highest yield of phenolic content, strongest antioxidant, and antitumor activities and to optimize the extraction conditions using response surface methodology (RSM). The extracts from the stems of T. quadrispinosa were characterized by determination of their antioxidant activities through 2,2-azinobis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS), 1,1-Diphenyl-2-picrylhydrazxyl (DPPH) radical scavenging, total antioxidant capacity (TAC), ferric reducing antioxidant capacity (FRAC) methods and of their antitumor activity by MTT method. The selected key independent variables were cellulase concentration (X1: 1.5%–2.5%), extraction time (X2: 20–30 min) and extraction temperature (X3: 40–60 °C). The optimal extraction conditions for total phenolic content (TPC) value of the extracts were determined as 1.74% cellulase concentration, 25.5 min ultrasonic extraction time and 49.0 °C ultrasonic temperature. Under these conditions, the highest TPC value of 53.6 ± 2.2 mg Gallic acid equivalent (GAE)/g dry weight (DW) was obtained, which agreed well with the predicted value (52.596 mg GAE/g·DW. Furthermore, the extracts obtained from UAEE presented highest antioxidant activities through ABTS, DPPH, TAC and FRAC methods were of 1.54 ± 0.09 mmol Trolox equivalent (TE)/g·DW; 1.45 ± 0.07 mmol·TE/g·DW; 45.2 ± 2.2 mg·GAE/g·DW; 50.4 ± 2.6 μmol FeSO4 equivalent/g·DW and lowest IC50 values of 160.4 ± 11.6 μg/mL, 126.1 ± 10.8 μg/mL, and 178.3 ± 13.1 μg/mL against Hela, HepG-2 and U251 tumor cells, respectively. The results indicated that the UAEE was an efficient alternative to improve extraction yield and enhance the antioxidant and antitumor activities of the extracts. The phenolic extracts from the stems of T. quadrispinosa had significant antioxidant and antitumor activities, which could be used as a source of potential antioxidant and antitumor agents. Full article
(This article belongs to the Special Issue Green Production of Bioactive Natural Products)
Figures

Figure 1

Open AccessCommunication Identifying Natural syNergist from Pongamia pinnata Using High-Speed Counter-Current Chromatography Combined with Isobolographic Analysis
Molecules 2017, 22(3), 397; doi:10.3390/molecules22030397
Received: 27 December 2016 / Accepted: 28 February 2017 / Published: 3 March 2017
PDF Full-text (1877 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
For identifying the synergistic compounds from Pongamia pinnata, an approach based on high-speed counter-current chromatography (HSCCC) combined with isobolographic analysis was designed to detect the synergistic effects in the complex mixture [...] Full article
Figures

Figure 1

Open AccessArticle Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities
Molecules 2017, 22(3), 401; doi:10.3390/molecules22030401
Received: 17 January 2017 / Revised: 27 February 2017 / Accepted: 2 March 2017 / Published: 4 March 2017
Cited by 2 | PDF Full-text (2712 KB) | HTML Full-text | XML Full-text
Abstract
The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE) (Camellia sinensis L.). The antioxidant capacity was investigated using three different methods at different temperatures.
[...] Read more.
The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE) (Camellia sinensis L.). The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl4-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA) oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE’s principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl4-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl4 intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins. Full article
(This article belongs to the Special Issue Polyphenols and Antioxidants–The Chemistry of Tea)
Figures

Figure 1

Open AccessArticle Screening of Peruvian Medicinal Plants for Tyrosinase Inhibitory Properties: Identification of Tyrosinase Inhibitors in Hypericum laricifolium Juss
Molecules 2017, 22(3), 402; doi:10.3390/molecules22030402
Received: 31 January 2017 / Revised: 27 February 2017 / Accepted: 28 February 2017 / Published: 4 March 2017
PDF Full-text (1393 KB) | HTML Full-text | XML Full-text
Abstract
Tyrosinase inhibitors are of far-ranging importance in cosmetics, medicinal products, and food industries. Peru is a diverse country with a wide variety of plants that may contain excellent anti-tyrosinase inhibitors. In the present study, the tyrosinase inhibitory properties of 50 medicinal plant extracts
[...] Read more.
Tyrosinase inhibitors are of far-ranging importance in cosmetics, medicinal products, and food industries. Peru is a diverse country with a wide variety of plants that may contain excellent anti-tyrosinase inhibitors. In the present study, the tyrosinase inhibitory properties of 50 medicinal plant extracts from Peru were investigated using tyrosinase assay. Among plant extracts, those that showed an inhibition rate >50% were Hypericum laricifolium Juss., Taraxacum officinaleF.H.Wigg., and Muehlenbeckia vulcanicaMeisn., with H. laricifolium Juss. showing the greatest anti-tyrosinase activity. Although H. laricifolium Juss. has been widely used as a medicinal plant by Peruvians, little is known regarding its bioactive components and effects on tyrosinase activity. For this reason, we attempted to discover tyrosinase inhibitors in H. laricifolium Juss. for the first time. The bioactive components were separated by Sephadex LH-20 chromatography and eluted with 100% methanol. Eight compounds were discovered and characterized by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD): protocatechuic acid, p-hydroxybenzoic acid, chlorogenic acid, vanilic acid, caffeic acid, kaempferol 3-O-glucuronide, quercetin, and kaempferol. In addition, the concentration of these compounds required for 50% inhibition (IC50) of tyrosinase activity were evaluated. Quercetin exhibited the strongest tyrosinase inhibition (IC50 14.29 ± 0.3 μM). Therefore, the Peruvian plant H. laricifolium Juss. could be a novel source for anti-tyrosinase activity. Full article
(This article belongs to the Special Issue Natural Product: A Continuing Source of Novel Drug Leads)
Figures

Figure 1

Open AccessArticle 2D-QSAR and 3D-QSAR/CoMSIA Studies on a Series of (R)-2-((2-(1H-Indol-2-yl)ethyl)amino)-1-Phenylethan-1-ol with Human β3-Adrenergic Activity
Molecules 2017, 22(3), 404; doi:10.3390/molecules22030404
Received: 27 January 2017 / Revised: 28 February 2017 / Accepted: 2 March 2017 / Published: 5 March 2017
Cited by 1 | PDF Full-text (12860 KB) | HTML Full-text | XML Full-text
Abstract
The β3 adrenergic receptor is raising as an important drug target for the treatment of pathologies such as diabetes, obesity, depression, and cardiac diseases among others. Several attempts to obtain selective and high affinity ligands have been made. Currently, Mirabegron is the
[...] Read more.
The β3 adrenergic receptor is raising as an important drug target for the treatment of pathologies such as diabetes, obesity, depression, and cardiac diseases among others. Several attempts to obtain selective and high affinity ligands have been made. Currently, Mirabegron is the only available drug on the market that targets this receptor approved for the treatment of overactive bladder. However, the FDA (Food and Drug Administration) in USA and the MHRA (Medicines and Healthcare products Regulatory Agency) in UK have made reports of potentially life-threatening side effects associated with the administration of Mirabegron, casting doubts on the continuity of this compound. Therefore, it is of utmost importance to gather information for the rational design and synthesis of new β3 adrenergic ligands. Herein, we present the first combined 2D-QSAR (two-dimensional Quantitative Structure-Activity Relationship) and 3D-QSAR/CoMSIA (three-dimensional Quantitative Structure-Activity Relationship/Comparative Molecular Similarity Index Analysis) study on a series of potent β3 adrenergic agonists of indole-alkylamine structure. We found a series of changes that can be made in the steric, hydrogen-bond donor and acceptor, lipophilicity and molar refractivity properties of the compounds to generate new promising molecules. Finally, based on our analysis, a summary and a regiospecific description of the requirements for improving β3 adrenergic activity is given. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Iridoids, Phenolic Compounds and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea var. kamtschatica Sevast.)
Molecules 2017, 22(3), 405; doi:10.3390/molecules22030405
Received: 27 December 2016 / Revised: 22 February 2017 / Accepted: 28 February 2017 / Published: 5 March 2017
Cited by 2 | PDF Full-text (844 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Iridoid and polyphenol profiles of 30 different honeysuckle berry cultivars and genotypes were studied. Compounds were identified by ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC-ESI-qTOF-MS/MS) in positive and negative ion modes and quantified by HPLC-PDA. The 50 identified compounds included
[...] Read more.
Iridoid and polyphenol profiles of 30 different honeysuckle berry cultivars and genotypes were studied. Compounds were identified by ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC-ESI-qTOF-MS/MS) in positive and negative ion modes and quantified by HPLC-PDA. The 50 identified compounds included 15 iridoids, 6 anthocyanins, 9 flavonols, 2 flavanonols (dihydroflavonols), 5 flavones, 6 flavan-3-ols, and 7 phenolic acids. 8-epi-Loganic acid, pentosyl-loganic acid, taxifolin 7-O-dihexoside, and taxifolin 7-O-hexoside were identified in honeysuckle berries for the first time. Iridoids and anthocyanins were the major groups of bioactive compounds of honeysuckle constituents. The total content of quantified iridoids and anthocyanins was between 128.42 mg/100 g fresh weight (fw) (‘Dlinnoplodnaya’) and 372 mg/100 g fw (‘Kuvshinovidnaya’) and between 150.04 mg/100 g fw (‘Karina’) and 653.95 mg/100 g fw (‘Amur’), respectively. Among iridoids, loganic acid was the dominant compound, and it represented between 22% and 73% of the total amount of quantified iridoids in honeysuckle berry. A very strong correlation was observed between the antioxidant potential and the quantity of anthocyanins. High content of iridoids in honeysuckle berries can complement antioxidant properties of phenolic compounds. Full article
Figures

Figure 1

Open AccessArticle Evaluation of Maltose-Based Cationic Liposomes with Different Hydrophobic Tails for Plasmid DNA Delivery
Molecules 2017, 22(3), 406; doi:10.3390/molecules22030406
Received: 20 January 2017 / Revised: 24 February 2017 / Accepted: 27 February 2017 / Published: 12 March 2017
PDF Full-text (3843 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this paper, three cationic glycolipids with different hydrophobic chains Malt-DiC12MA (IX a), Malt-DiC14MA (IX b) and Malt-DiC16MA (IX c) were constructed by using maltose as starting material via peracetylation, selective 1-O-deacetylation, trichloroacetimidation, glycosylation, azidation,
[...] Read more.
In this paper, three cationic glycolipids with different hydrophobic chains Malt-DiC12MA (IX a), Malt-DiC14MA (IX b) and Malt-DiC16MA (IX c) were constructed by using maltose as starting material via peracetylation, selective 1-O-deacetylation, trichloroacetimidation, glycosylation, azidation, deacetylation, Staudinger reaction, tertiary amination and quaternization. Target compounds and some intermediates were characterized by 1H-NMR, 13C-NMR, 1H-1H COSY and 1H-13C HSQC. The results of gel electrophoresis assay, atomic force microscopy images (AFM) and dynamic light scattering (DLS) demonstrate that all the liposomes could efficiently bind and compact DNA (N/P ratio less than 2) into nanoparticles with proper size (88 nm–146 nm, PDI < 0.4) and zeta potential (+15 mV–+26 mV). The transfection efficiency and cellular uptake of glycolipids in HEK293 cell were evaluated through the enhanced green fluorescent protein (EGFP) expression and Cy3-labeled pEGFP-C1 (Enhanced Green Fluorescent Protein plasmid) images, respectively. Importantly, it indicated that Malt-DiC14MA exhibited high gene transfer efficiency and better uptake capability at N/P ratios of 8:1. Additionally, the result of cell viability showed glycolipids exhibited low biotoxicity and good biocompatibility by thiazolyl blue tetrazolium bromide (MTT) assay. Full article
(This article belongs to the Special Issue Synthesis and Biological Applications of Glycoconjugates)
Figures

Figure 1

Open AccessArticle Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part I: Theoretical Considerations
Molecules 2017, 22(3), 407; doi:10.3390/molecules22030407
Received: 15 December 2016 / Revised: 15 February 2017 / Accepted: 2 March 2017 / Published: 6 March 2017
Cited by 1 | PDF Full-text (1179 KB) | HTML Full-text | XML Full-text
Abstract
This study demonstrated that a laboratory-scale recirculation closed-loop reactor can be an efficient technique for the determination of the Clean Air Delivery Rate (CADR) of PhotoCatalytic Oxidation (PCO) air purification devices. The recirculation closed-loop reactor was modeled by associating equations related to two
[...] Read more.
This study demonstrated that a laboratory-scale recirculation closed-loop reactor can be an efficient technique for the determination of the Clean Air Delivery Rate (CADR) of PhotoCatalytic Oxidation (PCO) air purification devices. The recirculation closed-loop reactor was modeled by associating equations related to two ideal reactors: one is a perfectly mixed reservoir and the other is a plug flow system corresponding to the PCO device itself. Based on the assumption that the ratio between the residence time in the PCO device and the residence time in the reservoir τPR tends to 0, the model highlights that a lab closed-loop reactor can be a suitable technique for the determination of the efficiency of PCO devices. Moreover, if the single-pass removal efficiency is lower than 5% of the treated flow rate, the decrease in the pollutant concentration over time can be characterized by a first-order decay model in which the time constant is proportional to the CADR. The limits of the model are examined and reported in terms of operating conditions (experiment duration, ratio of residence times, and flow rate ranges). Full article
(This article belongs to the Special Issue Photon-involving Purification of Water and Air)
Figures

Open AccessArticle Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results
Molecules 2017, 22(3), 408; doi:10.3390/molecules22030408
Received: 16 December 2016 / Revised: 15 February 2017 / Accepted: 2 March 2017 / Published: 6 March 2017
Cited by 1 | PDF Full-text (3455 KB) | HTML Full-text | XML Full-text
Abstract
The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m
[...] Read more.
The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m3 and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10−3 m3. The PCO device was composed of a pleated photocatalytic filter (1100 cm2) and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR) of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i) light irradiance I from 0.10 to 2.0 mW·cm−2; (ii) air velocity v from 0.2 to 1.9 m·s−1; and (iii) initial toluene concentration C0 (200, 600, 1000 and 4700 ppbv). The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I) were fulfilled. The CADR values, ranging from 0.35 to 3.95 m3·h−1, were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I), the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices. Full article
(This article belongs to the Special Issue Photon-involving Purification of Water and Air)
Figures

Open AccessArticle Synthesis and Biological Activities of Ethyl 2-(2-pyridylacetate) Derivatives Containing Thiourea, 1,2,4-triazole, Thiadiazole and Oxadiazole Moieties
Molecules 2017, 22(3), 409; doi:10.3390/molecules22030409
Received: 14 January 2017 / Revised: 16 February 2017 / Accepted: 1 March 2017 / Published: 6 March 2017
PDF Full-text (819 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Thirty six novel heterocyclic derivatives of ethyl 2-(2-pyridylacetate) were efficiently synthesized. The new compounds involve the linkage of a 2-pyridyl ring with thiosemicarbazide (compounds 17), 1,2,4-triazole (compounds 1a7a), 1,3,4-thiadiazole (compounds 1b7b), and 1,3,4-oxadiazole (compounds
[...] Read more.
Thirty six novel heterocyclic derivatives of ethyl 2-(2-pyridylacetate) were efficiently synthesized. The new compounds involve the linkage of a 2-pyridyl ring with thiosemicarbazide (compounds 17), 1,2,4-triazole (compounds 1a7a), 1,3,4-thiadiazole (compounds 1b7b), and 1,3,4-oxadiazole (compounds 1f7f) moieties. The last group of compounds 1e7e involves the connection of a 2-pyridyl ring with 1,2,4-triazole and thiourea. 1H-NMR, 13C-NMR and MS methods were used to confirm the structures of the obtained derivatives. The molecular structures of 3, 3b, 7a and 7f were further confirmed by X-ray crystallography. All obtained compounds were tested in vitro against a number of microorganisms, including Gram-positive cocci, Gram-negative rods and Candida albicans. In addition, the obtained compounds were tested for cytotoxicity and antiviral activity against HIV-1. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle DL0410 Ameliorates Memory and Cognitive Impairments Induced by Scopolamine via Increasing Cholinergic Neurotransmission in Mice
Molecules 2017, 22(3), 410; doi:10.3390/molecules22030410
Received: 19 December 2016 / Accepted: 3 March 2017 / Published: 6 March 2017
Cited by 3 | PDF Full-text (3300 KB) | HTML Full-text | XML Full-text
Abstract
Deficiency of the cholinergic system is thought to play a vital role in cognitive impairment of dementia. DL0410 was discovered as a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinestease (BuChE), with potent efficiency in in-vitro experiments, but its in vivo effect on the
[...] Read more.
Deficiency of the cholinergic system is thought to play a vital role in cognitive impairment of dementia. DL0410 was discovered as a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinestease (BuChE), with potent efficiency in in-vitro experiments, but its in vivo effect on the cholinergic model has not been evaluated, and its action mechanism has also not been illustrated. In the present study, the capability of DL0410 in ameliorating the amnesia induced by scopolamine was investigated, and its effect on the cholinergic system in the hippocampus and its binding mode in the active site of AChE was also explored. Mice were administrated DL0410 (3 mg/kg, 10 mg/kg, and 30 mg/kg), and mice treated with donepezil were used as a positive control. The Morris water maze, escape learning task, and passive avoidance task were used as behavioral tests. The test results indicated that DL0410 could significantly improve the learning and memory impairments induced by scopolamine, with 10 mg/kg performing best. Further, DL0410 inhibited the AChE activity and increased acetylcholine (ACh) levels in a dose-dependent manner, and interacted with the active site of AChE in a similar manner as donepezil. However, no difference in the activity of BuChE was found in this study. All of the evidence indicated that its AChE inhibition is an important mechanism in the anti-amnesia effect. In conclusion, DL0410 could be an effective therapeutic drug for the treatment of dementia, especially Alzheimer’s disease. Full article
Figures

Figure 1

Open AccessArticle Facilitated Visual Interpretation of Scores in Principal Component Analysis by Bioactivity-Labeling of 1H-NMR Spectra—Metabolomics Investigation and Identification of a New α-Glucosidase Inhibitor in Radix Astragali
Molecules 2017, 22(3), 411; doi:10.3390/molecules22030411
Received: 2 February 2017 / Accepted: 1 March 2017 / Published: 6 March 2017
Cited by 2 | PDF Full-text (3163 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Radix Astragali is a component of several traditional medicines used for the treatment of type 2 diabetes in China. Radix Astragali is known to contain isoflavones, which inhibit α-glucosidase in the small intestines, and thus lowers the blood glucose levels. In this study,
[...] Read more.
Radix Astragali is a component of several traditional medicines used for the treatment of type 2 diabetes in China. Radix Astragali is known to contain isoflavones, which inhibit α-glucosidase in the small intestines, and thus lowers the blood glucose levels. In this study, 21 samples obtained from different regions of China were extracted with ethyl acetate, then the IC50-values were determined, and the crude extracts were analyzed by 1H-NMR spectroscopy. A principal component analysis of the 1H-NMR spectra labeled with their IC50-values, that is, bioactivity-labeled 1H-NMR spectra, showed a clear correlation between spectral profiles and the α-glucosidase inhibitory activity. The loading plot and LC-HRMS/NMR of microfractions indicated that previously unknown long chain ferulates could be partly responsible for the observed antidiabetic activity of Radix Astragali. Subsequent preparative scale isolation revealed a compound not previously reported, linoleyl ferulate (1), showing α-glucosidase inhibitory activity (IC50 0.5 mM) at a level comparable to the previously studied isoflavones. A closely related analogue, hexadecyl ferulate (2), did not show significant inhibitory activity, and the double bonds in the alcohol part of 1 seem to be important structural features for the α-glucosidase inhibitory activity. This proof of concept study demonstrates that bioactivity-labeling of the 1H-NMR spectral data of crude extracts allows global and nonselective identification of individual constituents contributing to the crude extract’s bioactivity. Full article
(This article belongs to the Special Issue Natural Product: A Continuing Source of Novel Drug Leads)
Figures

Open AccessArticle Metabolite Profiling of Eastern Teaberry (Gaultheria procumbens L.) Lipophilic Leaf Extracts with Hyaluronidase and Lipoxygenase Inhibitory Activity
Molecules 2017, 22(3), 412; doi:10.3390/molecules22030412
Received: 25 January 2017 / Accepted: 2 March 2017 / Published: 6 March 2017
Cited by 1 | PDF Full-text (1209 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The phytochemical profile and anti-inflammatory activity of Gaultheria procumbens dry lipophilic leaf extracts were evaluated. Forty compounds were identified by GC-MS, representing 86.36% and 81.97% of the petroleum ether (PE) and chloroform (CHE) extracts, respectively, with ursolic acid (28.82%), oleanolic acid (10.11%), methyl
[...] Read more.
The phytochemical profile and anti-inflammatory activity of Gaultheria procumbens dry lipophilic leaf extracts were evaluated. Forty compounds were identified by GC-MS, representing 86.36% and 81.97% of the petroleum ether (PE) and chloroform (CHE) extracts, respectively, with ursolic acid (28.82%), oleanolic acid (10.11%), methyl benzoate (10.03%), and methyl salicylate (6.88%) dominating in CHE, and methyl benzoate (21.59%), docosane (18.86%), and octacosane (11.72%) prevailing in PE. Three components of CHE were fully identified after flash chromatography isolation and spectroscopic studies as (6S,9R)-vomifoliol (4.35%), 8-demethyl-latifolin (1.13%), and 8-demethylsideroxylin (2.25%). Hyaluronidase and lipoxygenase inhibitory activity was tested for CHE (IC50 = 282.15 ± 10.38 μg/mL and 899.97 ± 31.17 μg/mL, respectively), PE (IC50 = 401.82 ± 16.12 μg/mL and 738.49 ± 15.92 μg/mL), and nine of the main constituents versus heparin (IC50 = 366.24 ± 14.72 μg/mL) and indomethacin (IC50 = 92.60 ± 3.71 μg/mL) as positive controls. With the best activity/concentration relationships, ursolic and oleanolic acids were recommended as analytical markers for the extracts and plant material. Seasonal variation of both markers following foliar development was investigated by UHPLC-PDA. The highest levels of ursolic (5.36–5.87 mg/g DW of the leaves) and oleanolic (1.14–1.26 mg/g DW) acids were observed between August and October, indicating the optimal season for harvesting. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Cathodic Aromatic C,C Cross-Coupling Reaction via Single Electron Transfer Pathway
Molecules 2017, 22(3), 413; doi:10.3390/molecules22030413
Received: 26 January 2017 / Revised: 20 February 2017 / Accepted: 2 March 2017 / Published: 7 March 2017
PDF Full-text (4463 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We have successfully developed a novel cathodic cross-coupling reaction of aryl halides with arenes. Utilization of the cathodic single electron transfer (SET) mechanism for activation of aryl halides enables the cross-coupling reaction to proceed without the need for any transition metal catalysts or
[...] Read more.
We have successfully developed a novel cathodic cross-coupling reaction of aryl halides with arenes. Utilization of the cathodic single electron transfer (SET) mechanism for activation of aryl halides enables the cross-coupling reaction to proceed without the need for any transition metal catalysts or single electron donors in a mild condition. The SET from a cathode to an aryl halide initiates a radical chain by giving an anion radical of the aryl halide. The following propagation cycle also consists entirely of anion radical intermediates. Full article
(This article belongs to the Special Issue Organic Electrochemistry)
Figures

Open AccessArticle Influence of Se/N Codoping on the Structural, Optical, Electronic and Photocatalytic Properties of TiO2
Molecules 2017, 22(3), 414; doi:10.3390/molecules22030414
Received: 9 January 2017 / Revised: 13 February 2017 / Accepted: 27 February 2017 / Published: 7 March 2017
PDF Full-text (3066 KB) | HTML Full-text | XML Full-text
Abstract
Se4+ and N3− ions were used as codopants to enhance the photocatalytic activity of TiO2 under sunlight irradiation. The Se/N codoped photocatalysts were prepared through a simple wet-impregnation method followed by heat treatment using SeCl4 and urea as the
[...] Read more.
Se4+ and N3− ions were used as codopants to enhance the photocatalytic activity of TiO2 under sunlight irradiation. The Se/N codoped photocatalysts were prepared through a simple wet-impregnation method followed by heat treatment using SeCl4 and urea as the dopant sources. The prepared photocatalysts were well characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-diffuse reflectance spectroscopy (UV-DRS), scanning electron microscopy (SEM) and Raman spectroscopy. The codoped samples showed photoabsorption in the visible light range from 430 nm extending up to 580 nm. The photocatalytic activity of the Se/N codoped photocatalysts was evaluated by degradation of 4-nitrophenol (4-NP). The degradation of 4-NP was highly increased for the Se/N codoped samples compared to the undoped and single doped samples under both UV-A and sunlight irradiation. Aiming to determine the electronic structure and dopant locations, quantum chemical modeling of the undoped and Se/N codoped anatase clusters was performed using Density Functional Theory (DFT) calculations with the hybrid functional (B3LYP) and double-zeta (LanL2DZ) basis set. The results revealed that Se/N codoping of TiO2 reduces the band gap due to mixing of N2p with O2p orbitals in the valence band and also introduces additional electronic states originating from Se3p orbitals in the band gap. Full article
(This article belongs to the Special Issue Photon-involving Purification of Water and Air)
Figures

Open AccessArticle Simultaneous Determination of Three Furanocoumarins by UPLC/MS/MS: Application to Pharmacokinetic Study of Angelica dahurica Radix after Oral Administration to Normal and Experimental Colitis-Induced Rats
Molecules 2017, 22(3), 416; doi:10.3390/molecules22030416
Received: 9 January 2017 / Revised: 21 February 2017 / Accepted: 27 February 2017 / Published: 7 March 2017
PDF Full-text (1905 KB) | HTML Full-text | XML Full-text
Abstract
In traditional oriental medicine, Angelica dahurica Radix (ADR) is used in the treatment of gastrointestinal, respiratory, neuromuscular, and dermal disorders. We evaluated the pharmacokinetic profiles of oxypeucedanin, imperatorin, and isoimperatorin, major active ingredients of ADR, in normal and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis
[...] Read more.
In traditional oriental medicine, Angelica dahurica Radix (ADR) is used in the treatment of gastrointestinal, respiratory, neuromuscular, and dermal disorders. We evaluated the pharmacokinetic profiles of oxypeucedanin, imperatorin, and isoimperatorin, major active ingredients of ADR, in normal and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rats. A rapid, sensitive, and validated UPLC/MS/MS method was established for evaluating the pharmacokinetics of three furanocoumarins. After oral administration of ADR (0.5 and 1.0 g/kg), blood samples were collected periodically from the tail vein. In colitis rats, the time to reach the peak concentration (Tmax) of imperatorin and isoimperatorin was significantly delayed (p < 0.05). Lower peak plasma concentrations (Cmax) and longer mean residence times for all furanocoumarins were also observed (p < 0.05) compared with normal rats. There was no significant difference in the area under the plasma concentration–time curve or elimination half-lives. Thus, the delayed Tmax and decreased Cmax, with no influence on the elimination half-life, could be colitis-related changes in the drug-absorption phase. Therefore, the prescription and use of ADR in colitis patients should receive more attention. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle A Focused Multiple Reaction Monitoring (MRM) Quantitative Method for Bioactive Grapevine Stilbenes by Ultra-High-Performance Liquid Chromatography Coupled to Triple-Quadrupole Mass Spectrometry (UHPLC-QqQ)
Molecules 2017, 22(3), 418; doi:10.3390/molecules22030418
Received: 23 January 2017 / Revised: 1 March 2017 / Accepted: 1 March 2017 / Published: 7 March 2017
PDF Full-text (3908 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Grapevine stilbenes are a family of polyphenols which derive from trans-resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion.
[...] Read more.
Grapevine stilbenes are a family of polyphenols which derive from trans-resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion. Due to this relevance, highly-specific qualitative and quantitative methods of analysis are necessary to accurately analyze stilbenes in different matrices derived from grapevine. Here, we developed a rapid, sensitive, and specific analysis method using ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QqQ) in MRM mode to detect and quantify five grapevine stilbenes, trans-resveratrol, trans-piceid, trans-piceatannol, trans-pterostilbene, and trans-ε-viniferin, whose interest in relation to human health is continuously growing. The method was optimized to minimize in-source fragmentation of piceid and to avoid co-elution of cis-piceid and trans-resveratrol, as both are detected with resveratrol transitions. The applicability of the developed method of stilbene analysis was tested successfully in different complex matrices including cellular extracts of Vitis vinifera cell cultures, reaction media of biotransformation assays, and red wine. Full article
Figures

Figure 1

Open AccessArticle A Palladium Catalyst System for the Efficient Cross-Coupling Reaction of Aryl Bromides and Chlorides with Phenylboronic Acid: Synthesis and Biological Activity Evaluation
Molecules 2017, 22(3), 420; doi:10.3390/molecules22030420
Received: 9 February 2017 / Accepted: 28 February 2017 / Published: 7 March 2017
PDF Full-text (4150 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
New benzimidazolium salts 1a–c and their palladium bis-N-heterocyclic carbene complexes 2a–c and palladium PEPPSI-type complexes 3a–c were designed, synthesized and structurally characterized by NMR (1H and 13C), IR, DART-TOF mass spectrometry and elemental analysis. Then these complexes 2–3 were employed in the Suzuki-Miyaura
[...] Read more.
New benzimidazolium salts 1a–c and their palladium bis-N-heterocyclic carbene complexes 2a–c and palladium PEPPSI-type complexes 3a–c were designed, synthesized and structurally characterized by NMR (1H and 13C), IR, DART-TOF mass spectrometry and elemental analysis. Then these complexes 2–3 were employed in the Suzuki-Miyaura cross-coupling reaction of substituted arenes with phenylboronic acid under mild conditions in toluene and DMF/H2O (1/1) to afford functionalized biaryl derivatives in good to excellent yields. The antibacterial activity of palladium bis-N-heterocyclic carbene complexes 2a–c and palladium PEPPSI-type complexes 3a–c was measured by disc diffusion method against Gram positive and Gram negative bacteria. Compounds 2a, 2c and 3a–c exhibited potential antibacterial activity against four bacterial species among the five used indicator cells. The product 2b inhibits the growth of the all five tested microorganisms. Moreover, the antioxidant activity determination of these complexes 2–3, using 2.2-diphenyl-1-picrylhydrazyl (DPPH) as a reagent, showed that compounds 2a–c and 3b possess DPPH antiradical activity. The higher antioxidant activity was obtained from the product 2b which has radical scavenging activity comparable to that of the two used positive controls (gallic acid “GA“ and tutylatedhydroxytoluene “BHT“). Investigation of the anti-acetylcholinesterase activity of the studied complexes showed that compounds 2b, 3a, and 3b exhibited moderate activity at 100 μg/mL and product 2b is the most active. Full article
(This article belongs to the Section Organometallic Chemistry)
Figures

Figure 1

Open AccessArticle Comparison of the Sulfonamide Inhibition Profiles of the β- and γ-Carbonic Anhydrases from the Pathogenic Bacterium Burkholderia pseudomallei
Molecules 2017, 22(3), 421; doi:10.3390/molecules22030421
Received: 6 February 2017 / Revised: 16 February 2017 / Accepted: 3 March 2017 / Published: 7 March 2017
Cited by 3 | PDF Full-text (882 KB) | HTML Full-text | XML Full-text
Abstract
We have cloned, purified, and characterized a β-carbonic anhydrase (CA, EC 4.2.1.1), BpsCAβ, from the pathogenic bacterium Burkholderia pseudomallei, responsible for the tropical disease melioidosis. The enzyme showed high catalytic activity for the physiologic CO2 hydration reaction to bicarbonate and protons,
[...] Read more.
We have cloned, purified, and characterized a β-carbonic anhydrase (CA, EC 4.2.1.1), BpsCAβ, from the pathogenic bacterium Burkholderia pseudomallei, responsible for the tropical disease melioidosis. The enzyme showed high catalytic activity for the physiologic CO2 hydration reaction to bicarbonate and protons, with the following kinetic parameters: kcat of 1.6 × 105 s−1 and kcat/KM of 3.4 × 107 M−1 s−1. An inhibition study with a panel of 38 sulfonamides and one sulfamate—including 15 compounds that are used clinically—revealed an interesting structure–activity relationship for the interaction of this enzyme with these inhibitors. Many simple sulfonamides and clinically used agents such as topiramate, sulpiride, celecoxib, valdecoxib, and sulthiame were ineffective BpsCAβ inhibitors (KI > 50 µM). Other drugs, such as ethoxzolamide, dorzolamide, brinzolamide, zonisamide, indisulam, and hydrochlorothiazide were moderately potent micromolar inhibitors. The best inhibition was observed with benzene-1,3-disulfonamides—benzolamide and its analogs acetazolamide and methazolamide—which showed KI in the range of 185–745 nM. The inhibition profile of BpsCAβ is very different from that of the γ-class enzyme from the same pathogen, BpsCAγ. Thus, identifying compounds that would effectively interact with both enzymes is relatively challenging. However, benzolamide was one of the best inhibitors of both of these CAs with KI of 653 and 185 nM, respectively, making it an interesting lead compound for the design of more effective agents, which may be useful tools for understanding the pathogenicity of this bacterium. Full article
(This article belongs to the Special Issue Sulfonamides)
Figures

Open AccessArticle Which Specialized Metabolites Does the Native Subantarctic Gastropod Notodiscus hookeri Extract from the Consumption of the Lichens Usnea taylorii and Pseudocyphellaria crocata?
Molecules 2017, 22(3), 425; doi:10.3390/molecules22030425
Received: 26 January 2017 / Revised: 23 February 2017 / Accepted: 1 March 2017 / Published: 8 March 2017
PDF Full-text (2549 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Notodiscus hookeri is the only representative of terrestrial gastropods on Possession Island and exclusively feeds on lichens. The known toxicity of various lichen metabolites to plant-eating invertebrates led us to propose that N. hookeri evolved means to protect itself from their adverse effects.
[...] Read more.
Notodiscus hookeri is the only representative of terrestrial gastropods on Possession Island and exclusively feeds on lichens. The known toxicity of various lichen metabolites to plant-eating invertebrates led us to propose that N. hookeri evolved means to protect itself from their adverse effects. To validate this assumption, the current study focused on the consumption of two lichen species: Usnea taylorii and Pseudocyphellaria crocata. A controlled feeding experiment was designed to understand how the snail copes with the unpalatable and/or toxic compounds produced by these lichen species. The occurrence of two snail ecophenotypes, represented by a mineral shell and an organic shell, led to address the question of a metabolic response specific to the phenotype. Snails were fed for two months with one of these lichens and the chemical profiles of biological samples of N. hookeri (i.e., crop, digestive gland, intestine, and feces) were established by HPLC-DAD-MS and compared to that of the lichens. N. hookeri appears as a generalist lichen feeder able to consume toxic metabolite-containing lichens, independently of the ecophenotype. The digestive gland did not sequester lichen metabolites. The snail metabolism might be based on four non-exclusive processes according to the concerned metabolites (avoidance, passive transport, hydrolysis, and excretion). Full article
(This article belongs to the Special Issue Lichens: Chemistry, Ecological and Biological Activities)
Figures

Figure 1

Open AccessArticle Chroman-4-One Derivatives Targeting Pteridine Reductase 1 and Showing Anti-Parasitic Activity
Molecules 2017, 22(3), 426; doi:10.3390/molecules22030426
Received: 7 February 2017 / Revised: 1 March 2017 / Accepted: 3 March 2017 / Published: 8 March 2017
PDF Full-text (2968 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues (13) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic
[...] Read more.
Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues (13) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic enzymes (Trypanosoma brucei PTR1–TbPTR1 and Leishmania major–LmPTR1) and parasites (Trypanosoma brucei and Leishmania infantum). A crystal structure of TbPTR1 in complex with compound 1 and the first crystal structures of LmPTR1-flavanone complexes (compounds 1 and 3) were solved. The inhibitory activity of the chroman-4-one and chromen-4-one derivatives was explained by comparison of observed and predicted binding modes of the compounds. Compound 1 showed activity both against the targeted enzymes and the parasites with a selectivity index greater than 7 and a low toxicity. Our results provide a basis for further scaffold optimization and structure-based drug design aimed at the identification of potent anti-trypanosomatidic compounds targeting multiple PTR1 variants. Full article
Figures

Open AccessArticle Theoretical Reactivity Study of Indol-4-Ones and Their Correlation with Antifungal Activity
Molecules 2017, 22(3), 427; doi:10.3390/molecules22030427
Received: 1 January 2017 / Accepted: 2 March 2017 / Published: 8 March 2017
PDF Full-text (3211 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chemical reactivity descriptors of indol-4-ones obtained via density functional theory (DFT) and hard–soft acid–base (HSAB) principle were calculated to prove their contribution in antifungal activity [...] Full article
Figures

Open AccessArticle New Insights in Thrombin Inhibition Structure–Activity Relationships by Characterization of Octadecasaccharides from Low Molecular Weight Heparin
Molecules 2017, 22(3), 428; doi:10.3390/molecules22030428
Received: 13 February 2017 / Revised: 13 February 2017 / Accepted: 3 March 2017 / Published: 8 March 2017
PDF Full-text (2951 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Low Molecular Weight Heparins (LMWH) are complex anticoagulant drugs that mainly inhibit the blood coagulation cascade through indirect interaction with antithrombin. While inhibition of the factor Xa is well described, little is known about the polysaccharide structure inhibiting thrombin. In fact, a minimal
[...] Read more.
Low Molecular Weight Heparins (LMWH) are complex anticoagulant drugs that mainly inhibit the blood coagulation cascade through indirect interaction with antithrombin. While inhibition of the factor Xa is well described, little is known about the polysaccharide structure inhibiting thrombin. In fact, a minimal chain length of 18 saccharides units, including an antithrombin (AT) binding pentasaccharide, is mandatory to form the active ternary complex for LMWH obtained by alkaline β-elimination (e.g., enoxaparin). However, the relationship between structure of octadecasaccharides and their thrombin inhibition has not been yet assessed on natural compounds due to technical hurdles to isolate sufficiently pure material. We report the preparation of five octadecasaccharides by using orthogonal separation methods including size exclusion, AT affinity, ion pairing and strong anion exchange chromatography. Each of these octadecasaccharides possesses two AT binding pentasaccharide sequences located at various positions. After structural elucidation using enzymatic sequencing and NMR, in vitro aFXa and aFIIa were determined. The biological activities reveal the critical role of each pentasaccharide sequence position within the octadecasaccharides and structural requirements to inhibit thrombin. Significant differences in potency, such as the twenty-fold magnitude difference observed between two regioisomers, further highlights the importance of depolymerisation process conditions on LMWH biological activity. Full article
Figures

Figure 1

Open AccessCommunication A Direct Method for β-Selective Glycosylation with an N-Acetylglucosamine Donor Armed by a 4-O-TBDMS Protecting Group
Molecules 2017, 22(3), 429; doi:10.3390/molecules22030429
Received: 6 January 2017 / Revised: 27 February 2017 / Accepted: 3 March 2017 / Published: 8 March 2017
PDF Full-text (1174 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A new direct method for β-selective glycosylation with an N-acetylglucosamine (GlcNAc) donor was developed. This substrate, which can be readily prepared from commercially available GlcNAc in two steps, contains a 4-O-tert-butyldimethylsilyl (TBDMS) protecting group as a key component.
[...] Read more.
A new direct method for β-selective glycosylation with an N-acetylglucosamine (GlcNAc) donor was developed. This substrate, which can be readily prepared from commercially available GlcNAc in two steps, contains a 4-O-tert-butyldimethylsilyl (TBDMS) protecting group as a key component. We found that this functionality could have a favorable effect on the reactivity of the GlcNAc donor. Glycosylation with the armed donor using primary alcohols in the presence of a catalytic amount of trimethylsilyl trifluoromethanesulfonate (TMSOTf) in 1,2-dichloroethane smoothly gave the desired coupling products in good yields with complete β-selectivity, while sterically hindered acceptors were less efficient. Full article
(This article belongs to the Special Issue Cutting-Edge Organic Chemistry in Japan)
Figures

Open AccessArticle The Emission of the Floral Scent of Four Osmanthus fragrans Cultivars in Response to Different Temperatures
Molecules 2017, 22(3), 430; doi:10.3390/molecules22030430
Received: 19 January 2017 / Revised: 5 March 2017 / Accepted: 6 March 2017 / Published: 8 March 2017
Cited by 1 | PDF Full-text (1366 KB) | HTML Full-text | XML Full-text
Abstract
Floral scent is an important part of volatile organic compounds (VOCs) emitted from plants, and is influenced by many environmental and endogenous factors. To investigate the influence of temperature on the emission of the floral scent of Osmanthus fragrans, the number of
[...] Read more.
Floral scent is an important part of volatile organic compounds (VOCs) emitted from plants, and is influenced by many environmental and endogenous factors. To investigate the influence of temperature on the emission of the floral scent of Osmanthus fragrans, the number of chemical compounds and their relative release amounts from four cultivars of O. fragrans under different temperature treatments, were identified using the solid-phase microextraction (SPME) technique and gas chromatography-mass spectrometry (GC-MS) in this study. Results revealed that the numbers and release amounts of floral scent components were significantly influenced by different temperatures, and depend on different cultivars and different types of compounds. Overall, most cultivars had the largest number of chemical compounds in 19 °C and the numbers of chemical compounds decreased with the increase or decrease in the temperature. Alcohols and ketones were the two main kinds of compounds responding to temperature change. The response of a specific chemical compound to temperature change was different in four cultivars. Generally, linalool, α-ionone, β-ionone, and γ-decalactone accounted for the highest proportion in the nine main compounds, and changes of these four chemical compounds to different temperatures had obvious contributions to the floral scent of O. fragrans. The results obtained provide evidence that temperatures can greatly influence the emission of floral scent. Full article
(This article belongs to the collection Recent Advances in Flavors and Fragrances)
Figures

Figure 1

Open AccessArticle Anti-Influenza Virus (H5N1) Activity Screening on the Phloroglucinols from Rhizomes of Dryopteris crassirhizoma
Molecules 2017, 22(3), 431; doi:10.3390/molecules22030431
Received: 6 December 2016 / Revised: 28 February 2017 / Accepted: 2 March 2017 / Published: 8 March 2017
PDF Full-text (4866 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
For screening the active phloroglucinols on influenza virus (H5N1) from Dryopteris crassirhizoma NaKai, a database was established including twenty-three phloroglucinols that had been isolated from Dryopteris crassirhizoma. Their inhibitory effect on the neuraminidase (NA) of influenza virus H5N1 was screened by molecular
[...] Read more.
For screening the active phloroglucinols on influenza virus (H5N1) from Dryopteris crassirhizoma NaKai, a database was established including twenty-three phloroglucinols that had been isolated from Dryopteris crassirhizoma. Their inhibitory effect on the neuraminidase (NA) of influenza virus H5N1 was screened by molecular docking. As a result, three candidates were selected. The rhizomes of D. crassirhizoma were subjected to isolation and purification processes to obtain the inhibitor candidates. Thirteen phloroglucinols were obtained, including three selected candidates and two new phloroglucinols. The five phloroglucinols were investigated for their inhibitory activity on NA in vitro. The results showed that dryocrassin ABBA and filixic acid ABA exhibited inhibitory effects on NA with IC50 as 18.59 ± 4.53 and 29.57 ± 2.48 μM, respectively, and the other three phloroglucinols showed moderate inhibitory activity. Moreover, the anti-influenza virus (H5N1) activity and cytotoxicity of dryocrassin ABBA and filixic acid ABA were tested on Madin-Darby canine kidney (MDCK) cells with the cell counting kit-8 (CCK8) method. The results confirmed that dryocrassin ABBA exhibited an inhibitory activity with low cytotoxicity (TC50 > 400 μM) against influenza virus (H5N1) which will have to be investigated in further detail. In conclusion, phloroglucinols from D. crassirhizoma were shown to have anti-influenza virus activity, and especially dryocrassin ABBA, one of the phloroglucinols, may have the potential to control influenza virus (H5N1) infection. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle The Novel Property of Heptapeptide of Microcin C7 in Affecting the Cell Growth of Escherichia coli
Molecules 2017, 22(3), 432; doi:10.3390/molecules22030432
Received: 15 December 2016 / Accepted: 6 March 2017 / Published: 8 March 2017
Cited by 1 | PDF Full-text (12366 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Microcin C7 (McC), widely distributed in enterobacteria, is a promising antibiotic against antibiotic resistance [...] Full article
(This article belongs to the Special Issue Frontiers in Antimicrobial Drug Discovery and Design)
Figures

Open AccessArticle Low-Dose Endotoxin Induces Late Preconditioning, Increases Peroxynitrite Formation, and Activates STAT3 in the Rat Heart
Molecules 2017, 22(3), 433; doi:10.3390/molecules22030433
Received: 19 December 2016 / Accepted: 1 March 2017 / Published: 8 March 2017
PDF Full-text (1765 KB) | HTML Full-text | XML Full-text
Abstract
Administration of low-dose endotoxin (lipopolysaccharide, LPS) 24 h before a lethal ischemia induces pharmacological late preconditioning. The exact mechanism of this phenomenon is not clear. Here we aimed to investigate whether low-dose LPS exerts late effects on peroxynitrite formation and activation of Akt,
[...] Read more.
Administration of low-dose endotoxin (lipopolysaccharide, LPS) 24 h before a lethal ischemia induces pharmacological late preconditioning. The exact mechanism of this phenomenon is not clear. Here we aimed to investigate whether low-dose LPS exerts late effects on peroxynitrite formation and activation of Akt, Erk, and STAT3 in the heart. Male Wistar rats were injected with LPS (S. typhimurium; 0.5 mg/kg i.p.) or saline. Twenty-four hours later, hearts were isolated, perfused for 10 min, and then used for biochemical analyses. LPS pretreatment enhanced cardiac formation of the peroxynitrite marker 3-nitrotyrosine. LPS pretreatment also increased cardiac levels of the peroxynitrite precursor nitric oxide (NO) and superoxide. The activities of Ca2+-independent NO synthase and xanthine oxidoreductase increased in LPS-pretreated hearts. LPS pretreatment resulted in significantly enhanced phosphorylation of STAT3 and non-significantly increased phosphorylation of Akt without affecting the activation of Erk. In separate experiments, isolated working hearts were subjected to 30 min global ischemia and 20 min reperfusion. LPS pretreatment significantly improved ischemia-reperfusion-induced deterioration of cardiac function. We conclude that LPS pretreatment enhances cardiac peroxynitrite formation and activates STAT3 24 h later, which may contribute to LPS-induced late preconditioning. Full article
(This article belongs to the Special Issue Chemistry and Pharmacology of Modulators of Oxidative Stress)
Figures

Figure 1

Open AccessArticle The Influence of pH on the Scleroglucan and Scleroglucan/Borax Systems
Molecules 2017, 22(3), 435; doi:10.3390/molecules22030435
Received: 9 January 2017 / Revised: 3 March 2017 / Accepted: 6 March 2017 / Published: 9 March 2017
Cited by 1 | PDF Full-text (3859 KB) | HTML Full-text | XML Full-text
Abstract
The effects that an increase of environmental pH has on the triple helix of scleroglucan (Sclg) and on the Sclg/borax hydrogel are reported. Rheological experiments show that the hydrogel is less sensitive to pH increase than Sclg alone, while at pH = 14
[...] Read more.
The effects that an increase of environmental pH has on the triple helix of scleroglucan (Sclg) and on the Sclg/borax hydrogel are reported. Rheological experiments show that the hydrogel is less sensitive to pH increase than Sclg alone, while at pH = 14 a dramatic viscosity decrease takes place for both systems. This effect is evidenced also by the reduced water uptake and anisotropic elongation detected, at pH = 14, by the swelling behaviour of tablets prepared with the Sclg/borax system. On the opposite, a different behaviour was observed with guar gum and locust bean gum tablets, tested as reference polysaccharides. The effect of pH on the structure of Sclg and Sclg/borax was investigated also by means of spectroscopic approaches based on the interaction between Congo red (CR) and the Sclg triple helix. Obtained results indicated that the CR absorbance maximum is shifted as a function of pH and by the presence of borax. Principal component analysis allowed very precise identification of the pH value at which the Sclg helix collapses. Molecular dynamics simulations of the Sclg/borax–CR complex indicated that, at physiological pH, only a few ordered configurations are populated, according to the induced circular dichroism (CD) spectrum evidence. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Bufalin Induces Apoptosis of Human Osteosarcoma U-2 OS Cells through Endoplasmic Reticulum Stress, Caspase- and Mitochondria-Dependent Signaling Pathways
Molecules 2017, 22(3), 437; doi:10.3390/molecules22030437
Received: 22 December 2016 / Revised: 6 March 2017 / Accepted: 6 March 2017 / Published: 10 March 2017
Cited by 1 | PDF Full-text (5868 KB) | HTML Full-text | XML Full-text
Abstract
Bone cancer is one of the cancer-related diseases, and there are increased numbers of patients with bone cancer worldwide. Therefore the efficacy of treatment of bone cancer is considered extremely vital. Bufalin has been showed to have biological activities including anticancer activities in
[...] Read more.
Bone cancer is one of the cancer-related diseases, and there are increased numbers of patients with bone cancer worldwide. Therefore the efficacy of treatment of bone cancer is considered extremely vital. Bufalin has been showed to have biological activities including anticancer activities in vitro and in vivo. However, the exact associated mechanisms for bufalin induced apoptosis in human bone cancer cells are still unclear. In the present study, we investigated the effect of bufalin on the cytotoxic effects in U-2 OS human osteosarcoma cells. For examining apoptotic cell deaths, we used flow cytometry assay, Annexin V/PI double staining, and TUNNEL assay. Reactive oxygen species (ROS), Ca2+, mitochondrial membrane potential (ΔΨm), and caspase-8, -9 and -3 activities were measured by flow cytometry assay. Furthermore, western blotting and a confocal laser microscopy examination were used for measuring the alterations of apoptotic associated protein expression and translocation, respectively. The results indicated that bufalin induced cell morphological changes, decreased the viable cell number, induced apoptotic cell death, and increased the apoptotic cell number, and affected apoptotic associated protein expression in U-2 OS cells. Bufalin increased apoptotic proteins such as Bak, and decreased anti-apoptotic proteins such as Bcl-2 and Bcl-x in U-2 OS cells. Furthermore, bufalin increased the protein levels of cytochrome c (Cyto c), AIF (Apoptosis inducing factor) and Endo G (Endonuclease G) in cytoplasm that were also confirmed by confocal microscopy examination. Based on those findings, bufalin induced apoptotic cell death in U-2 OS cells may be via endoplasmic reticulum (ER) stress, caspase-, and mitochondria-dependent pathways; thus, we may suggest that bufalin could be used as an anti-cancer agent for the treatment of osteosarcoma in the future, and further in vivo studies are needed. Full article
Figures

Figure 1

Open AccessArticle High Hydrostatic Pressure (HHP)-Induced Structural Modification of Patatin and Its Antioxidant Activities
Molecules 2017, 22(3), 438; doi:10.3390/molecules22030438
Received: 7 January 2017 / Revised: 23 February 2017 / Accepted: 6 March 2017 / Published: 10 March 2017
Cited by 1 | PDF Full-text (3252 KB) | HTML Full-text | XML Full-text
Abstract
Patatin represents a group of homologous primary storage proteins (with molecular weights ranging from 40 kDa to 45 kDa) found in Solanum tuberosum L. This group comprises 40% of the total soluble proteins in potato tubers. Here, patatin (40 kDa) was extracted from
[...] Read more.
Patatin represents a group of homologous primary storage proteins (with molecular weights ranging from 40 kDa to 45 kDa) found in Solanum tuberosum L. This group comprises 40% of the total soluble proteins in potato tubers. Here, patatin (40 kDa) was extracted from potato fruit juice using ammonium sulfate precipitation (ASP) and exposed to high hydrostatic pressure (HHP) treatment (250, 350, 450, and 550 MPa). We investigated the effect of HHP treatment on the structure, composition, heat profile, and antioxidant potential, observing prominent changes in HHP-induced patatin secondary structure as compared with native patatin (NP). Additionally, significant (p < 0.05) increases in β-sheet content along with decreases in α-helix content were observed following HHP treatment. Thermal changes observed by differential scanning calorimetry (DSC) also showed a similar trend following HHP treatment; however, the enthalpy of patatin was also negatively affected by pressurization, and free sulfhydryl content and surface hydrophobicity significantly increased with pressurization up to 450 MPa, although both interactions progressively decreased at 550 MPa. The observed physicochemical changes suggested conformational modifications in patatin induced by HHP treatment. Moreover, our results indicated marked enhancement of antioxidant potential, as well as iron chelation activities, in HHP-treated patatin as compared with NP. These results suggested that HHP treatment offers an effective and green process for inducing structural modifications and improving patatin functionality. Full article
(This article belongs to the Special Issue Bioactive Natural Peptides As A Pipeline For Therapeutics)
Figures

Figure 1

Open AccessArticle Four Pentasaccharide Resin Glycosides from Argyreia acuta
Molecules 2017, 22(3), 440; doi:10.3390/molecules22030440
Received: 7 January 2017 / Revised: 27 February 2017 / Accepted: 2 March 2017 / Published: 11 March 2017
PDF Full-text (387 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Four pentasaccharide resin glycosides, acutacoside F–I (14), were isolated from the aerial parts of Argyreia acuta. These compounds were characterized as a group of macrolactones of operculinic acid A, and their lactonization site of 11S-hydroxyhexadecanoic acid
[...] Read more.
Four pentasaccharide resin glycosides, acutacoside F–I (14), were isolated from the aerial parts of Argyreia acuta. These compounds were characterized as a group of macrolactones of operculinic acid A, and their lactonization site of 11S-hydroxyhexadecanoic acid was esterified at the second saccharide moiety (Rhamnose) at C-2. The absolute configuration of the aglycone was S. Their structures were elucidated by established spectroscopic and chemical methods. Full article
Figures

Open AccessArticle Solventless Synthesis of Poly(pyrazolyl)phenyl-methane Ligands and Thermal Transformation of Tris(3,5-dimethylpyrazol-1-yl)phenylmethane
Molecules 2017, 22(3), 441; doi:10.3390/molecules22030441
Received: 8 February 2017 / Revised: 1 March 2017 / Accepted: 6 March 2017 / Published: 11 March 2017
PDF Full-text (2810 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The solventless synthesis of tris(pyrazolyl)phenylmethane ligands of formula C6H5C(PzR2)3 (R = H, Me), starting from PhCCl3 and 3,5-dimethylpyrazole (PzMe2) or pyrazole (Pz) was performed. The sterically crowded C6H5C(PzMe2
[...] Read more.
The solventless synthesis of tris(pyrazolyl)phenylmethane ligands of formula C6H5C(PzR2)3 (R = H, Me), starting from PhCCl3 and 3,5-dimethylpyrazole (PzMe2) or pyrazole (Pz) was performed. The sterically crowded C6H5C(PzMe2)3 is thermally transformed into the bis(pyrazolyl)(p-pyrazolyl)phenylmethane ligand PzMe2-C6H4CH(PzMe2)2. In this compound both PzMe2 rings are linked through the N-atom to the methine C-atom. At higher temperatures, the binding mode of PzMe2 changes from N1 to C4. All transformations occurred via quinonoid carbocation intermediates that undergo an aromatic electrophilic substitution on the 4-position of PzMe2. Reaction conditions were established to obtain five tris(pyrazolyl)phenylmethane ligands in moderate to good yields. 1H- and 13C-NMR spectroscopy and X-ray diffraction of single crystals support the proposed structures. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Open AccessArticle A Strategy for Simultaneous Isolation of Less Polar Ginsenosides, Including a Pair of New 20-Methoxyl Isomers, from Flower Buds of Panax ginseng
Molecules 2017, 22(3), 442; doi:10.3390/molecules22030442
Received: 25 January 2017 / Accepted: 9 March 2017 / Published: 10 March 2017
PDF Full-text (1609 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The present study was designed to simultaneously isolate the less polar ginsenosides from the flower buds of Panax ginseng (FBPG). Five ginsenosides, including a pair of new 20-methoxyl isomers, were extracted from FBPG and purified through a five-step integrated strategy, by combining ultrasonic
[...] Read more.
The present study was designed to simultaneously isolate the less polar ginsenosides from the flower buds of Panax ginseng (FBPG). Five ginsenosides, including a pair of new 20-methoxyl isomers, were extracted from FBPG and purified through a five-step integrated strategy, by combining ultrasonic extraction, Diaion Hp-20 macroporous resin column enrichment, solid phase extraction (SPE), reversed-phase high-performance liquid chromatography (RP-HPLC) analysis and preparation, and nuclear magnetic resonance (NMR) analysis. The quantification of the five ginsenosides was also discussed by a developed method with validations within acceptable limits. Ginsenoside Rg5 showed content of about 1% in FBPG. The results indicated that FBPG might have many different ginsenosides with diverse chemical structures, and the less polar ginsenosides were also important to the quality control and standardization of FBPG. Full article
(This article belongs to the Special Issue Current Trends in Ginseng Research)
Figures

Open AccessArticle AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5′-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes
Molecules 2017, 22(3), 443; doi:10.3390/molecules22030443
Received: 22 February 2017 / Accepted: 8 March 2017 / Published: 10 March 2017
Cited by 2 | PDF Full-text (2132 KB) | HTML Full-text | XML Full-text
Abstract
AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP) or uridine 5′-diphospho-glucuronosyltransferase (UGT) enzymes. We evaluated the
[...] Read more.
AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP) or uridine 5′-diphospho-glucuronosyltransferase (UGT) enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) enzymes in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Secondary Metabolites from the Marine-Derived Fungus Dichotomomyces sp. L-8 and Their Cytotoxic Activity
Molecules 2017, 22(3), 444; doi:10.3390/molecules22030444
Received: 8 February 2017 / Revised: 3 March 2017 / Accepted: 7 March 2017 / Published: 11 March 2017
PDF Full-text (525 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Bioassay-guided isolation of the secondary metabolites from the fungus Dichotomomyces sp. L-8 associated with the soft coral Lobophytum crassum led to the discovery of two new compounds, dichotones A and B (1 and 2), together with four known compounds including
[...] Read more.
Bioassay-guided isolation of the secondary metabolites from the fungus Dichotomomyces sp. L-8 associated with the soft coral Lobophytum crassum led to the discovery of two new compounds, dichotones A and B (1 and 2), together with four known compounds including dichotocejpin C (3), bis-N-norgliovictin (4), bassiatin (5) and (3R,6R)-bassiatin (6). The structures of these compounds were determined by 1D, 2D NMR and mass spectrometry. (3R,6R)-bassiatin (6) displayed significant cytotoxic activities against the human breast cancer cell line MDA-MB-435 and the human lung cancer cell line Calu3 with IC50 values of 7.34 ± 0.20 and 14.54 ± 0.01 μM, respectively, while bassiatin (5), the diastereomer of compound 6, was not cytotoxic. Full article
Figures

Open AccessFeature PaperArticle A Model Study of the Photochemical Fate of As(III) in Paddy-Water
Molecules 2017, 22(3), 445; doi:10.3390/molecules22030445
Received: 27 January 2017 / Revised: 3 March 2017 / Accepted: 6 March 2017 / Published: 11 March 2017
PDF Full-text (4780 KB) | HTML Full-text | XML Full-text
Abstract
The APEX (Aqueous Photochemistry of Environmentally-occurring Xenobiotics) software previously developed by one of us was used to model the photochemistry of As(III) in paddy-field water, allowing a comparison with biotic processes. The model included key paddy-water variables, such as the shielding effect of
[...] Read more.
The APEX (Aqueous Photochemistry of Environmentally-occurring Xenobiotics) software previously developed by one of us was used to model the photochemistry of As(III) in paddy-field water, allowing a comparison with biotic processes. The model included key paddy-water variables, such as the shielding effect of the rice canopy on incident sunlight and its monthly variations, water pH, and the photochemical parameters of the chromophoric dissolved organic matter (CDOM) occurring in paddy fields. The half-life times (t1/2) of As(III) photooxidation to As(V) would be ~20–30 days in May. In contrast, the photochemical oxidation of As(III) would be much slower in June and July due to rice-canopy shading of radiation because of plant growth, despite higher sunlight irradiance. At pH < 8 the photooxidation of As(III) would mainly be accounted for by reaction with transient species produced by irradiated CDOM (here represented by the excited triplet states 3CDOM*, neglecting the possibly more important reactions with poorly known species such as the phenoxy radicals) and, to a lesser extent, with the hydroxyl radicals (HO). However, the carbonate radicals (CO3•−) could be key photooxidants at pH > 8.5 provided that the paddy-water 3CDOM* is sufficiently reactive toward the oxidation of CO32−. In particular, if paddy-water 3CDOM* oxidizes the carbonate anion with a second-order reaction rate constant near (or higher than) 106 M−1·s−1, the photooxidation of As(III) could be quite fast at pH > 8.5. Such pH conditions can be produced by elevated photosynthetic activity that consumes dissolved CO2. Full article
(This article belongs to the Special Issue Photon-involving Purification of Water and Air)
Figures

Figure 1

Open AccessArticle CDC25 Inhibition in Acute Myeloid Leukemia–A Study of Patient Heterogeneity and the Effects of Different Inhibitors
Molecules 2017, 22(3), 446; doi:10.3390/molecules22030446
Received: 25 January 2017 / Revised: 1 March 2017 / Accepted: 6 March 2017 / Published: 11 March 2017
Cited by 2 | PDF Full-text (11700 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cell division cycle 25 (CDC25) protein phosphatases regulate cell cycle progression through the activation of cyclin-dependent kinases (CDKs), but they are also involved in chromatin modulation and transcriptional regulation. CDC25 inhibition is regarded as a possible therapeutic strategy for the treatment of human
[...] Read more.
Cell division cycle 25 (CDC25) protein phosphatases regulate cell cycle progression through the activation of cyclin-dependent kinases (CDKs), but they are also involved in chromatin modulation and transcriptional regulation. CDC25 inhibition is regarded as a possible therapeutic strategy for the treatment of human malignancies, including acute myeloid leukemia (AML). We investigated the in vitro effects of CDC25 inhibitors on primary human AML cells derived from 79 unselected patients in suspension cultures. Both the previously well-characterized CDC25 inhibitor NSC95397, as well as five other inhibitors (BN82002 and the novel small molecular compounds ALX1, ALX2, ALX3, and ALX4), only exhibited antiproliferative effects for a subset of patients when tested alone. These antiproliferative effects showed associations with differences in genetic abnormalities and/or AML cell differentiation. However, the responders to CDC25 inhibition could be identified by analysis of global gene expression profiles. The differentially expressed genes were associated with the cytoskeleton, microtubules, and cell signaling. The constitutive release of 28 soluble mediators showed a wide variation among patients and this variation was maintained in the presence of CDC25 inhibition. Finally, NSC95397 had no or only minimal effects on AML cell viability. In conclusion, CDC25 inhibition has antiproliferative effects on primary human AML cells for a subset of patients, and these patients can be identified by gene expression profiling. Full article
(This article belongs to the Special Issue Kinase Inhibitors)
Figures

Figure 1

Open AccessArticle Alkoxy and Enediyne Derivatives Containing 1,4-Benzoquinone Subunits—Synthesis and Antitumor Activity
Molecules 2017, 22(3), 447; doi:10.3390/molecules22030447
Received: 21 January 2017 / Revised: 5 March 2017 / Accepted: 8 March 2017 / Published: 11 March 2017
Cited by 1 | PDF Full-text (725 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The compounds produced by a living organism are most commonly as medicinal agents and starting materials for the preparation of new semi-synthetic derivatives. One of the largest groups of natural compounds consists of products containing a 1,4-benzoquinone subunit. This fragment occurs in three
[...] Read more.
The compounds produced by a living organism are most commonly as medicinal agents and starting materials for the preparation of new semi-synthetic derivatives. One of the largest groups of natural compounds consists of products containing a 1,4-benzoquinone subunit. This fragment occurs in three enediyne antibiotics, dynemicin A, deoxydynemicin A, and uncilamicin, which exhibit high biological activity. A series of alkoxy derivatives containing 1,4-naphthoquinone, 5,8-quinolinedione, and 2-methyl-5,8-quinolinedione moieties was synthesized. Moreover, the 1,4-benzoquinone subunit was contacted with an enediyne fragment. All obtained compounds were characterized by spectroscopy and spectrometry methods. The resulting alkane, alkene, alkyne and enediyne derivatives were tested as antitumor agents. They showed high cytotoxic activity depending on the type of 1,4-benzoquinone subunit and the employed tumor cell lines. The synthesized derivatives fulfill the Lipinski Rule of Five and have low permeability through the blood–brain barrier. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Chemical Composition and Biological Activity of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) Methanolic Extracts
Molecules 2017, 22(3), 448; doi:10.3390/molecules22030448
Received: 12 January 2017 / Revised: 1 March 2017 / Accepted: 6 March 2017 / Published: 11 March 2017
PDF Full-text (1970 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Here, we report a comparative study of the phytochemical profile and the biological activity of two onion extracts, namely Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842), members of the family Amaryllidaceae. The identification of flavonoids and anthocyanins, and their
[...] Read more.
Here, we report a comparative study of the phytochemical profile and the biological activity of two onion extracts, namely Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842), members of the family Amaryllidaceae. The identification of flavonoids and anthocyanins, and their individual quantities, was determined by high-performance liquid chromatography (HPLC). The potency of both extracts to scavenge free radicals was determined by the DPPH (2,2′-diphenyl-1-picrylhydrazyl) radical-scavenging activity and oxygen radical absorbance capacity (ORAC) methods. The DNA protective role was further tested by the single-cell gel electrophoresis (COMET) assay and by Fenton’s reagent causing double-strand breaks on the closed circular high copy pUC19 plasmid isolated from Escherichia coli. In the presence of both extracts, a significant decrease in DNA damage was observed, which indicates a protective role of Allium cepa and Allium × cornutum on DNA strand breaks. Additionally, cytotoxicity was tested on glioblastoma and breast cancer cell lines. The results showed that both extracts had antiproliferative effects, but the most prominent decrease in cellular growth was observed in glioblastoma cells. Full article
Figures

Figure 1

Open AccessArticle Three-Component Reaction of Benzylamines, Diethyl Phosphite and Triethyl Orthoformate: Dependence of the Reaction Course on the Structural Features of the Substrates and Reaction Conditions
Molecules 2017, 22(3), 450; doi:10.3390/molecules22030450
Received: 23 February 2017 / Revised: 8 March 2017 / Accepted: 9 March 2017 / Published: 11 March 2017
PDF Full-text (2247 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The reaction between benzyl amines, triethyl orthoformate, and diethyl phosphite affords either bisphosphonic (compound 1) or N-benzylaminobenzylphosphonic (compound 2) acid depending on the reaction conditions. The final output of the reaction can be manipulated by the choice of reaction conditions,
[...] Read more.
The reaction between benzyl amines, triethyl orthoformate, and diethyl phosphite affords either bisphosphonic (compound 1) or N-benzylaminobenzylphosphonic (compound 2) acid depending on the reaction conditions. The final output of the reaction can be manipulated by the choice of reaction conditions, particularly the molar ratio of substrates. Full article
(This article belongs to the Special Issue Women in Organic Chemistry)
Figures

Open AccessArticle Chemical Constituents of Smilax china L. Stems and Their Inhibitory Activities against Glycation, Aldose Reductase, α-Glucosidase, and Lipase
Molecules 2017, 22(3), 451; doi:10.3390/molecules22030451
Received: 13 December 2016 / Revised: 7 March 2017 / Accepted: 9 March 2017 / Published: 11 March 2017
PDF Full-text (1146 KB) | HTML Full-text | XML Full-text
Abstract
The search for natural inhibitors with anti-diabetes properties has gained increasing attention. Among four selected Smilacaceae family plants, Smilax china L. stems (SCS) showed significant in vitro anti-glycation and rat lens aldose reductase inhibitory activities. Bioactivity-guided isolation was performed with SCS and four
[...] Read more.
The search for natural inhibitors with anti-diabetes properties has gained increasing attention. Among four selected Smilacaceae family plants, Smilax china L. stems (SCS) showed significant in vitro anti-glycation and rat lens aldose reductase inhibitory activities. Bioactivity-guided isolation was performed with SCS and four solvent fractions were obtained, which in turn yielded 10 compounds, including one phenolic acid, three chlorogenic acids, four flavonoids, one stilbene, and one phenylpropanoid glycoside; their structures were elucidated using nuclear magnetic resonance and mass spectrometry. All solvent fractions, isolated compounds, and stem extracts from plants sourced from six different provinces of South Korea were next tested for their inhibitory effects against advanced glycation end products, as well as aldose reductase. α-Glucosidase, and lipase assays were also performed on the fractions and compounds. Since compounds 3, 4, 6, and 8 appeared to be the superior inhibitors among the tested compounds, a comparative study was performed via high-performance liquid chromatography with photodiode array detection using a self-developed analysis method to confirm the relationship between the quantity and bioactivity of the compounds in each extract. The findings of this study demonstrate the potent therapeutic efficacy of SCS and its potential use as a cost-effective natural alternative medicine against type 2 diabetes and its complications. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076
Molecules 2017, 22(3), 452; doi:10.3390/molecules22030452
Received: 7 February 2017 / Revised: 1 March 2017 / Accepted: 8 March 2017 / Published: 12 March 2017
Cited by 3 | PDF Full-text (1181 KB) | HTML Full-text | XML Full-text
Abstract
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B–containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC
[...] Read more.
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B–containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)2K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli. Full article
(This article belongs to the Special Issue Peptide-Based Drugs and Drug Delivery Systems)
Figures

Figure 1

Open AccessArticle 2-Hydroxymelatonin, a Predominant Hydroxylated Melatonin Metabolite in Plants, Shows Antitumor Activity against Human Colorectal Cancer Cells
Molecules 2017, 22(3), 453; doi:10.3390/molecules22030453
Received: 3 February 2017 / Revised: 7 March 2017 / Accepted: 11 March 2017 / Published: 14 March 2017
PDF Full-text (2134 KB) | HTML Full-text | XML Full-text
Abstract
2-Hydroxymelatonin is a predominant hydroxylated melatonin metabolite in plants. To investigate whether it has potent cytotoxic effects on colorectal cancer cells, four colorectal cancer cell lines, Caco2, HCT116, DLD1, and CT26, were treated with 2-hydroxymelatonin and melatonin. 2-Hydroxymelatonin had a much lower IC
[...] Read more.
2-Hydroxymelatonin is a predominant hydroxylated melatonin metabolite in plants. To investigate whether it has potent cytotoxic effects on colorectal cancer cells, four colorectal cancer cell lines, Caco2, HCT116, DLD1, and CT26, were treated with 2-hydroxymelatonin and melatonin. 2-Hydroxymelatonin had a much lower IC50 value than melatonin in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cytotoxic effect of 2-hydroxymelatonin was much stronger than that of melatonin at high concentrations (1000 or 2000 μM) in HCT116, DLD1, and CT26 cells, but only at intermediate concentrations (250 or 500 μM) in Caco2 cells. The cytotoxicity of 2-hydroxymelatonin was induced through activation of the apoptotic signaling pathway, as confirmed by Hoechst staining and Annexin V-FITC/propidium iodide double labeling of cells treated with a lethal dose (1 mM). However, sub-lethal doses of 2-hydroxymelatonin inhibited the invasive ability of Caco2 cells. Epithelial-mesenchymal transition (EMT) markers were significantly regulated by 2-hydroxymelatonin. Overall, the anti-cancer activity of 2-hydroxymelatonin is more potent than that of melatonin. Taken together, 2-hydroxymelatonin exhibits potent anti-cancer activity against human colorectal cancer cells via induction of apoptosis and inhibition of EMT. Full article
Figures

Figure 1a

Open AccessArticle The Vital Dye CDr10b Labels the Zebrafish Mid-Intestine and Lumen
Molecules 2017, 22(3), 454; doi:10.3390/molecules22030454
Received: 23 January 2017 / Revised: 9 March 2017 / Accepted: 11 March 2017 / Published: 13 March 2017
PDF Full-text (5649 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We describe the use of the fluorescent reporter compound CDr10b to label mid-intestinal structures in zebrafish larvae after simple immersion. CDr10b is deposited into the gut where it initially fills the lumen and is excreted. Using laser-mediated injury of the intestine, we show
[...] Read more.
We describe the use of the fluorescent reporter compound CDr10b to label mid-intestinal structures in zebrafish larvae after simple immersion. CDr10b is deposited into the gut where it initially fills the lumen and is excreted. Using laser-mediated injury of the intestine, we show that CDr10b provides a useful readout of the integrity and repair of the epithelial cell barrier. In addition, CDr10b specifically labels the absorptive mid-intestine segment that is analogous to the mammalian small intestine. By perturbing retinoic acid signaling, which regulates the size of the mid-intestine segment, we show that CDr10b is a valuable tool to rapidly assess developmental malformations of the intestine in live animals. Full article
(This article belongs to the Section Molecular Diversity)
Figures

Open AccessArticle Bovine Colostrum Whey Protein Hydrolysate Inhibits Cell DNA Damage and LDL Oxidation In Vitro
Molecules 2017, 22(3), 456; doi:10.3390/molecules22030456
Received: 24 January 2017 / Accepted: 10 March 2017 / Published: 13 March 2017
PDF Full-text (1318 KB) | HTML Full-text | XML Full-text
Abstract
Whey protein isolated from bovine colostrums collected on the second day postpartum was two-stage hydrolyzed by alcalase and flavourzyme [...] Full article
Figures

Open AccessArticle Optimization of Conditions for Cyanidin-3-OGlucoside (C3G) Nanoliposome Production by Response Surface Methodology and Cellular Uptake Studies in Caco-2 Cells
Molecules 2017, 22(3), 457; doi:10.3390/molecules22030457
Received: 18 January 2017 / Accepted: 8 March 2017 / Published: 13 March 2017
Cited by 1 | PDF Full-text (4398 KB) | HTML Full-text | XML Full-text
Abstract
We aimed to optimize the formulation of C3G nanoliposomes using response surface methodology. Additionally, we evaluated the stability, particle change, and encapsulation efficiency (EE) of C3G nanoliposomes under different temperatures and storage durations, as well as in simulated gastrointestinal juice (SGF) and simulated
[...] Read more.
We aimed to optimize the formulation of C3G nanoliposomes using response surface methodology. Additionally, we evaluated the stability, particle change, and encapsulation efficiency (EE) of C3G nanoliposomes under different temperatures and storage durations, as well as in simulated gastrointestinal juice (SGF) and simulated intestinal fluid. The morphology of C3G nanoliposomes was observed by transmission electron microscope. The ability of C3G nanoliposomes to affect cancer cell morphology and inhibit cancer cell proliferation was studied with Caco-2 cells. Reverse-phase evaporation method is a simple and efficient method for liposome preparation. The optimal preparation conditions for this method were as follows: C3G concentration of 0.17 mg/mL, phosphatidylcholine/cholesterol ratio of 2.87, and rotary evaporation temperature of 41.41 °C. At optimal conditions, the particle size and EE of the C3G nanoliposomes were 165.78 ± 4.3 nm and 70.43% ± 1.95%, respectively. The C3G nanoliposomes showed an acceptable stability in SGF at 37 °C for 4 h, but were unstable under extended storage durations and high temperatures. Moreover, our results showed that different concentrations of C3G nanoliposomes affected the morphology and inhibited the proliferation of Caco-2 cells. Full article
Figures

Figure 1

Open AccessArticle Computational Prediction of the Protonation Sites of Ac-Lys-(Ala)n-Lys-NH2 Peptides through Conceptual DFT Descriptors
Molecules 2017, 22(3), 458; doi:10.3390/molecules22030458
Received: 6 February 2017 / Accepted: 10 March 2017 / Published: 13 March 2017
PDF Full-text (303 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Six density functionals (M11, M11L, MN12L, MN12SX, N12, and N12SX) in connection with the Def2TZVP basis set and the SMD solvation model (water as a solvent) have been assessed for the calculation of the molecular structure and properties of several peptides with the
[...] Read more.
Six density functionals (M11, M11L, MN12L, MN12SX, N12, and N12SX) in connection with the Def2TZVP basis set and the SMD solvation model (water as a solvent) have been assessed for the calculation of the molecular structure and properties of several peptides with the general formulaAc-Lys-(Ala)n-Lys-NH2,withn=0to5  [...] Full article
Figures

Open AccessArticle Essential Oil Composition and Bioactivities of Waldheimia glabra (Asteraceae) from Qinghai-Tibet Plateau
Molecules 2017, 22(3), 460; doi:10.3390/molecules22030460
Received: 26 December 2016 / Accepted: 11 March 2017 / Published: 13 March 2017
PDF Full-text (475 KB) | HTML Full-text | XML Full-text
Abstract
Waldheimia glabra is traditionally used as incense and as an anti-influenza drug by Tibetans in China. Here, we collected W. glabra from the Gangs Rinpoche mountain at an altitude of 5200 m, and analyzed its essential oil by gas chromatography-mass spectrometry (GC-MS) combined
[...] Read more.
Waldheimia glabra is traditionally used as incense and as an anti-influenza drug by Tibetans in China. Here, we collected W. glabra from the Gangs Rinpoche mountain at an altitude of 5200 m, and analyzed its essential oil by gas chromatography-mass spectrometry (GC-MS) combined with the retention indices (RI). Twenty-seven compounds, representing 72.4% of the total essential oil, were identified, including α-bisabolol (20.2%), valeranone (11.8%), chamazulene (9.9%), spathulenol (8.2%), β-caryophyllene (6.1%), and caryophyllene oxide (5.2%). Bioactivity evaluation of the essential oil revealed that it exhibited potent anti-influenza effect on viruses H3N2 and anti-inflammatory effect by inhibiting the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages, but no anti-complementary activity. Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Bioactivity)
Figures

Figure 1

Open AccessArticle Pyrrole and Fused Pyrrole Compounds with Bioactivity against Inflammatory Mediators
Molecules 2017, 22(3), 461; doi:10.3390/molecules22030461
Received: 9 February 2017 / Revised: 3 March 2017 / Accepted: 11 March 2017 / Published: 17 March 2017
PDF Full-text (1717 KB) | HTML Full-text | XML Full-text
Abstract
A new series of pyrrolopyridines and pyrrolopyridopyrimidines have been synthesized from aminocyanopyrroles. The synthesized compounds have been characterized by FTIR, 1H-NMR and mass spectroscopy. The final compounds have been screened for in vitro pro-inflammatory cytokine inhibitory and in vivo anti-inflammatory activity. The
[...] Read more.
A new series of pyrrolopyridines and pyrrolopyridopyrimidines have been synthesized from aminocyanopyrroles. The synthesized compounds have been characterized by FTIR, 1H-NMR and mass spectroscopy. The final compounds have been screened for in vitro pro-inflammatory cytokine inhibitory and in vivo anti-inflammatory activity. The biological results revealed that among all tested compounds some fused pyrroles, namely the pyrrolopyridines 3i and 3l, show promising activity. A docking study of the active synthesized molecules confirmed the biological results and revealed a new binding pose in the COX-2 binding site. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures