E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Biomimetic Receptors and Sensors"

Quicklinks

A special issue of Sensors (ISSN 1424-8220).

Deadline for manuscript submissions: closed (31 March 2014)

Special Issue Editor

Guest Editor
Prof. Dr. Franz L. Dickert (Website1, Website2)

Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
Phone: +43-1-4277-52317
Fax: +431 4277 9520
Interests: chemical sensors; physical sensors; metrology; supramolecular chemistry; molecular imprinting; molecular recognition; intermolecular interactions; anisotropic phases; physicochemical basis of sensors

Special Issue Information

Dear Colleagues,

Molecular Recognition has been the dominant challenge of chemistry over the last decades. According to J.-M. Lehn, tackling this challenge can lead to biomimetic receptors realized by supramolecular chemistry—molecular systems based on interactions between molecules and ions. In this way, innovative receptors can be designed mimicking biological analogues, such as antibodies and enzymes. These phenomena can be understood according to host–guest chemistry. Synthetic crown ethers, e.g. as synthesized by C.J. Pedersen, show a high selectivity to potassium ions, in analogy to the cyclic antibiotic valinomycin. Template-directed syntheses are often used to create synthetic receptors using biomimetic strategies. These ideas are further developed by molecular imprinting, embedding these receptors created by template-directed synthesis into a robust polymer. Furthermore, these processes are based on self-organisation without time-consuming synthesis. These biomimetic coatings can selectively bind both ions and neutral molecules to complex bioanalytes. SPE leads to cleaning and selective enrichment of analytes. These materials are favourably used as sensitive layers for sensors combined with a variety of transducer principles such as optical, electrochemical and mass-sensitive detection. Analytes are widely available from the environment, and applications are obvious for environmental challenges, bio/medical and process engineering monitoring. The size of analytes cover a wide range, from sub-nano-metre for molecules to micro-metre for biological particles.

Prof. Dr. Franz Dickert
Guest Editor

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed Open Access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs).

Keywords

  • biomimetic receptors
  • supramolecular and host-guest chemistry
  • templating
  • imprinted polymers
  • SPE
  • sensors
  • molecule and ion detection
  • bioanalytes

Published Papers (13 papers)

View options order results:
result details:
Displaying articles 1-13
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial Biomimetic Receptors and Sensors
Sensors 2014, 14(12), 22525-22531; doi:10.3390/s141222525
Received: 25 November 2014 / Accepted: 25 November 2014 / Published: 27 November 2014
Cited by 4 | PDF Full-text (641 KB) | HTML Full-text | XML Full-text
Abstract
In biomimetics, living systems are imitated to develop receptors for ions, molecules and bioparticles. The most pertinent idea is self-organization in analogy to evolution in nature, which created the key-lock principle. Today, modern science has been developing host-guest chemistry, a strategy of [...] Read more.
In biomimetics, living systems are imitated to develop receptors for ions, molecules and bioparticles. The most pertinent idea is self-organization in analogy to evolution in nature, which created the key-lock principle. Today, modern science has been developing host-guest chemistry, a strategy of supramolecular chemistry for designing interactions of analytes with synthetic receptors. This can be realized, e.g., by self-assembled monolayers (SAMs) or molecular imprinting. The strategies are used for solid phase extraction (SPE), but preferably in developing recognition layers of chemical sensors. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)

Research

Jump to: Editorial, Review

Open AccessArticle A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes
Sensors 2014, 14(7), 11293-11307; doi:10.3390/s140711293
Received: 7 May 2014 / Revised: 16 June 2014 / Accepted: 18 June 2014 / Published: 25 June 2014
Cited by 3 | PDF Full-text (524 KB) | HTML Full-text | XML Full-text
Abstract
In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green [...] Read more.
In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green fluorescent protein (GFP) under the control of the stress-inducible HSP70B’ promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock protein HSP70B’. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B’ gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B’ promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (µTAS) that may be utilized in dermatology, toxicology, pharmacology and drug screenings. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Open AccessCommunication Array Formatting of the Heat-Transfer Method (HTM) for the Detection of Small Organic Molecules by Molecularly Imprinted Polymers
Sensors 2014, 14(6), 11016-11030; doi:10.3390/s140611016
Received: 8 April 2014 / Revised: 12 June 2014 / Accepted: 17 June 2014 / Published: 20 June 2014
Cited by 8 | PDF Full-text (900 KB) | HTML Full-text | XML Full-text
Abstract
In this work we present the first steps towards a molecularly imprinted polymer (MIP)-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM). HTM relies on the change in thermal resistance upon binding of the target [...] Read more.
In this work we present the first steps towards a molecularly imprinted polymer (MIP)-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM). HTM relies on the change in thermal resistance upon binding of the target molecule to the MIP-type receptor. A flow-through sensor cell was developed, which is segmented into four quadrants with a volume of 2.5 μL each, allowing four measurements to be done simultaneously on a single substrate. Verification measurements were conducted, in which all quadrants received a uniform treatment and all four channels exhibited a similar response. Subsequently, measurements were performed in quadrants, which were functionalized with different MIP particles. Each of these quadrants was exposed to the same buffer solution, spiked with different molecules, according to the MIP under analysis. With the flow cell design we could discriminate between similar small organic molecules and observed no significant cross-selectivity. Therefore, the MIP array sensor platform with HTM as a readout technique, has the potential to become a low-cost analysis tool for bioanalytical applications. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Figures

Open AccessArticle Analysis of Benzo[a]pyrene in Vegetable Oils Using Molecularly Imprinted Solid Phase Extraction (MISPE) Coupled with Enzyme-Linked Immunosorbent Assay (ELISA)
Sensors 2014, 14(6), 9720-9737; doi:10.3390/s140609720
Received: 13 May 2014 / Revised: 26 May 2014 / Accepted: 26 May 2014 / Published: 30 May 2014
Cited by 6 | PDF Full-text (333 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This paper describes the development of a molecularly imprinted polymer-based solid phase extraction (MISPE) method coupled with enzyme-linked immunosorbent assay (ELISA) for determination of the PAH benzo[a]pyrene (B[a]P) in vegetable oils. Different molecularly imprinted polymers (MIPs) were prepared using non-covalent 4-vinylpyridine/divinylbenzene co-polymerization [...] Read more.
This paper describes the development of a molecularly imprinted polymer-based solid phase extraction (MISPE) method coupled with enzyme-linked immunosorbent assay (ELISA) for determination of the PAH benzo[a]pyrene (B[a]P) in vegetable oils. Different molecularly imprinted polymers (MIPs) were prepared using non-covalent 4-vinylpyridine/divinylbenzene co-polymerization at different ratios and dichloromethane as porogen. Imprinting was done with a template mixture of phenanthrene and pyrene yielding a broad-specific polymer for PAHs with a maximum binding capacity (Q) of ~32 μg B[a]P per 50 mg of polymer. The vegetable oil/n-hexane mixture (1:1, (v/v)) was pre-extracted with acetonitrile, the solvent evaporated, the residue reconstituted in n-hexane and subjected to MISPE. The successive washing with n-hexane and isopropanol revealed most suitable to remove lipid matrix constituents. After elution of bound PAHs from MISPE column with dichloromethane, the solvent was evaporated, the residue reconstituted with dimethyl sulfoxide and diluted 100-fold with methanol/water (10:90, (v/v)) for analysis of B[a]P equivalents with an ELISA. The B[a]P recovery rates in spiked vegetable oil samples of different fatty acid composition were determined between 63% and 114%. The presence of multiple PAHs in the oil sample, because of MIP selectivity and cross-reactivity of the ELISA, could yield overestimated B[a]P values. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Figures

Open AccessArticle A SAW-Based Chemical Sensor for Detecting Sulfur-Containing Organophosphorus Compounds Using a Two-Step Self-Assembly and Molecular Imprinting Technology
Sensors 2014, 14(5), 8810-8820; doi:10.3390/s140508810
Received: 19 February 2014 / Revised: 28 April 2014 / Accepted: 13 May 2014 / Published: 19 May 2014
Cited by 3 | PDF Full-text (535 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology [...] Read more.
This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio]]-β-cyclodextrin is chosen as the sensitive material for VX detection, and a ~2 nm-thick monolayer is formed on the SAW delay line by the binding of Au-S. This material is then analyzed by atomic force microscopy (AFM). Second, the VX molecule is used as the template for molecular imprinting. The template is then removed by washing the delay line with ethanol and distilled water, thereby producing the sensitive and selective material for VX detection. The performance of the developed SAW sensor is evaluated, and results show high sensitivity, low detection limit, and good linearity within the VX concentration of 0.15–5.8 mg/m3. The possible interactions between the film and VX are further discussed. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Figures

Open AccessCommunication The First Electrochemical MIP Sensor for Tamoxifen
Sensors 2014, 14(5), 7647-7654; doi:10.3390/s140507647
Received: 28 February 2014 / Revised: 11 April 2014 / Accepted: 24 April 2014 / Published: 25 April 2014
Cited by 4 | PDF Full-text (195 KB) | HTML Full-text | XML Full-text
Abstract
We present an electrochemical MIP sensor for tamoxifen (TAM)—a nonsteroidal anti-estrogen—which is based on the electropolymerisation of an O-phenylenediamine‒resorcinol mixture directly on the electrode surface in the presence of the template molecule. Up to now only “bulk” MIPs for TAM have [...] Read more.
We present an electrochemical MIP sensor for tamoxifen (TAM)—a nonsteroidal anti-estrogen—which is based on the electropolymerisation of an O-phenylenediamine‒resorcinol mixture directly on the electrode surface in the presence of the template molecule. Up to now only “bulk” MIPs for TAM have been described in literature, which are applied for separation in chromatography columns. Electro-polymerisation of the monomers in the presence of TAM generated a film which completely suppressed the reduction of ferricyanide. Removal of the template gave a markedly increased ferricyanide signal, which was again suppressed after rebinding as expected for filling of the cavities by target binding. The decrease of the ferricyanide peak of the MIP electrode depended linearly on the TAM concentration between 1 and 100 nM. The TAM-imprinted electrode showed a 2.3 times higher recognition of the template molecule itself as compared to its metabolite 4-hydroxytamoxifen and no cross-reactivity with the anticancer drug doxorubucin was found. Measurements at +1.1 V caused a fouling of the electrode surface, whilst pretreatment of TAM with peroxide in presence of HRP generated an oxidation product which was reducible at 0 mV, thus circumventing the polymer formation and electrochemical interferences. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Open AccessArticle Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener
Sensors 2014, 14(4), 7359-7373; doi:10.3390/s140407359
Received: 12 March 2014 / Revised: 14 April 2014 / Accepted: 21 April 2014 / Published: 23 April 2014
Cited by 8 | PDF Full-text (415 KB) | HTML Full-text | XML Full-text
Abstract
Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult [...] Read more.
Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Open AccessCommunication Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor
Sensors 2013, 13(10), 12994-13004; doi:10.3390/s131012994
Received: 24 July 2013 / Revised: 5 August 2013 / Accepted: 16 August 2013 / Published: 26 September 2013
Cited by 4 | PDF Full-text (1509 KB) | HTML Full-text | XML Full-text
Abstract
A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC). The fluorescence of lysozyme-imprinted polymer (Lys-MIP) was quenched more strongly by Lys than that of nonimprinted polymer [...] Read more.
A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC). The fluorescence of lysozyme-imprinted polymer (Lys-MIP) was quenched more strongly by Lys than that of nonimprinted polymer (NIP), which indicated that the Lys-MIP could recognize Lys. The resulted imprinted material has the ability to selectively sense a target protein, and an imprinting factor of 3.34 was achieved. The Lys-MIP also showed selective detection for Lys among other proteins such as cytochrome C (Cyt C), hemoglobin (HB) and bovine serum albumin (BSA) due to the imprinted sites in the Lys-MIP. This approach combines the high selectivity of surface molecular imprinting technology and fluorescence, and converts binding events into detectable signals by monitoring fluorescence spectra. Therefore, it will have further applications for Lys sensing. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Open AccessArticle Stem Cell Enrichment with Selectin Receptors: Mimicking the pH Environment of Trauma
Sensors 2013, 13(9), 12516-12526; doi:10.3390/s130912516
Received: 16 July 2013 / Revised: 6 September 2013 / Accepted: 11 September 2013 / Published: 17 September 2013
Cited by 8 | PDF Full-text (543 KB) | HTML Full-text | XML Full-text
Abstract
The isolation of hematopoietic stem and progenitor cells (HSPCs) is critical for transplantation therapy and HSPC research, however current isolation techniques can be prohibitively expensive, time-consuming, and produce variable results. Selectin-coated microtubes have shown promise in rapidly isolating HSPCs from human bone [...] Read more.
The isolation of hematopoietic stem and progenitor cells (HSPCs) is critical for transplantation therapy and HSPC research, however current isolation techniques can be prohibitively expensive, time-consuming, and produce variable results. Selectin-coated microtubes have shown promise in rapidly isolating HSPCs from human bone marrow, but further purification of HSPCs remains a challenge. Herein, a biomimetic device for HSPC isolation is presented to mimic the acidic vascular microenvironment during trauma, which can enhance the binding frequency between L-selectin and its counter-receptor PSGL-1 and HSPCs. Under acidic pH conditions, L-selectin coated microtubes enhanced CD34+ HSPC adhesion, as evidenced by decreased cell rolling velocity and increased rolling flux. Dynamic light scattering was utilized as a novel sensor to confirm an L-selectin conformational change under acidic conditions, as previously predicted by molecular dynamics. These results suggest that mimicking the acidic conditions of trauma can induce a conformational extension of L-selectin, which can be utilized for flow-based, clinical isolation of HSPCs. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Open AccessCommunication Optimizing the Thermal Read-Out Technique for MIP-Based Biomimetic Sensors: Towards Nanomolar Detection Limits
Sensors 2013, 13(7), 9148-9159; doi:10.3390/s130709148
Received: 25 May 2013 / Revised: 27 June 2013 / Accepted: 10 July 2013 / Published: 16 July 2013
Cited by 9 | PDF Full-text (806 KB) | HTML Full-text | XML Full-text
Abstract
In previous work, the novel heat-transfer method (HTM) for the detection of small molecules with Molecularly Imprinted Polymers (MIP)-type receptors was presented. In this study we focus on optimization of this sensor performance, with as final aim to lower the detection limit [...] Read more.
In previous work, the novel heat-transfer method (HTM) for the detection of small molecules with Molecularly Imprinted Polymers (MIP)-type receptors was presented. In this study we focus on optimization of this sensor performance, with as final aim to lower the detection limit by reducing the noise level. It was determined that the noise originates foremost from the power supply, which can be controlled by varying the PID parameters. Therefore, the effect of the individual parameters was evaluated by tuning P, I and D separately at a temperature of 37 °C, giving a first indication of the optimal configuration. Next, a temperature profile was programmed and the standard deviation of the heat-transfer resistance over the entire regime was studied for a set of parameters. The optimal configuration, P1-I6-D0, reduced the noise level with nearly a factor of three compared to the original parameters of P10-I5-D0. With the optimized settings, the detection of L-nicotine in buffer solutions was studied and the detection limit improved significantly from 100 nM to 35 nM. Summarizing, optimization of the PID parameters and thereby improving the detection limit is a key parameter for first applications of the HTM-method for MIP receptors in analytical research. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Figures

Review

Jump to: Editorial, Research

Open AccessReview Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes
Sensors 2014, 14(8), 13863-13912; doi:10.3390/s140813863
Received: 18 April 2014 / Revised: 16 July 2014 / Accepted: 21 July 2014 / Published: 30 July 2014
Cited by 23 | PDF Full-text (1053 KB) | HTML Full-text | XML Full-text
Abstract
An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of [...] Read more.
An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Open AccessReview Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA
Sensors 2014, 14(7), 12437-12450; doi:10.3390/s140712437
Received: 14 April 2014 / Revised: 25 June 2014 / Accepted: 9 July 2014 / Published: 11 July 2014
Cited by 3 | PDF Full-text (427 KB) | HTML Full-text | XML Full-text
Abstract
Nucleolytic enzymes are associated with various diseases, and several methods have been developed for their detection. DNase expression is modulated in such diseases as acute myocardial infarction, transient myocardial ischemia, oral cancer, stomach cancer, and malignant lymphoma, and DNase I is used [...] Read more.
Nucleolytic enzymes are associated with various diseases, and several methods have been developed for their detection. DNase expression is modulated in such diseases as acute myocardial infarction, transient myocardial ischemia, oral cancer, stomach cancer, and malignant lymphoma, and DNase I is used in cystic fibroma therapy. RNase is used to treat mesothelial cancer because of its antiproliferative, cytotoxic, and antineoplastic activities. Angiogenin, an angiogenic factor, is a member of the RNase A family. Angiogenin inhibitors are being developed as anticancer drugs. In this review, we describe fluorometric and electrochemical techniques for detecting DNase and RNase in disease. Oligonucleotides having fluorescence resonance energy transfer (FRET)-causing chromophores are non-fluorescent by themselves, yet become fluorescent upon cleavage by DNase or RNase. These oligonucleotides serve as a powerful tool to detect activities of these enzymes and provide a basis for drug discovery. In electrochemical techniques, ferrocenyl oligonucleotides with or without a ribonucleoside unit are used for the detection of RNase or DNase. This technique has been used to monitor blood or serum samples in several diseases associated with DNase and RNase and is unaffected by interferents in these sample types. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Open AccessReview Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements
Sensors 2014, 14(5), 8605-8632; doi:10.3390/s140508605
Received: 20 February 2014 / Revised: 30 April 2014 / Accepted: 6 May 2014 / Published: 16 May 2014
Cited by 7 | PDF Full-text (1189 KB) | HTML Full-text | XML Full-text
Abstract
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic [...] Read more.
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Figures

Journal Contact

MDPI AG
Sensors Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
sensors@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Sensors
Back to Top