Identification and Characterization of Antimicrobial Peptides with Therapeutic Potential

A special issue of Pharmaceuticals (ISSN 1424-8247).

Deadline for manuscript submissions: closed (30 December 2013) | Viewed by 170093

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor

Special Issue Information

Dear Colleagues,

Pharmaceuticals has initiated a collection on antimicrobial peptides (AMPs). The main theme is “Identification and Characterization of Antimicrobial Peptides with Therapeutic Potential. During 2013-2014, the journal published several articles that discuss AMPs from amphibians, birds, insects, fish, reptiles, humans, fungi (under review), and plants (ongoing). We thank authors for their contributions. The journal would like to continue this interesting topic and you are encouraged to submit review articles, original articles, and communications on AMPs. Review articles that summarize AMPs from other life domains (bacteria, protozoa, mollusca, worms, spiders, and so on) are especially welcome. In addition, original articles that report novel AMPs (natural or engineered) are also invited.

Dr. Guangshun Wang 
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Related Special Issues

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

1778 KiB  
Article
“Specificity Determinants” Improve Therapeutic Indices of Two Antimicrobial Peptides Piscidin 1 and Dermaseptin S4 Against the Gram-negative Pathogens Acinetobacter baumannii and Pseudomonas aeruginosa
by Ziqing Jiang, Adriana I. Vasil, Michael L. Vasil and Robert S. Hodges
Pharmaceuticals 2014, 7(4), 366-391; https://doi.org/10.3390/ph7040366 - 25 Mar 2014
Cited by 50 | Viewed by 9320
Abstract
A new class of antimicrobial agents with lower rates of resistance and different targets is urgently needed because of the rapidly increasing resistance to classical antibiotics. Amphipathic cationic α-helical antimicrobial peptides (AMPs) represent such a class of compounds. In our previous studies, using [...] Read more.
A new class of antimicrobial agents with lower rates of resistance and different targets is urgently needed because of the rapidly increasing resistance to classical antibiotics. Amphipathic cationic α-helical antimicrobial peptides (AMPs) represent such a class of compounds. In our previous studies, using a 26-residue de novo designed antimicrobial peptide, we proposed the concept of “specificity determinant(s)”: positively charged residue(s) in the center of the non-polar face of AMPs that could decrease hemolytic activity/toxicity but increase or maintain the same level of antimicrobial activity to increase dramatically the therapeutic index. In the current study, we used d-enantiomers of two AMPs, Piscidin 1 isolated from fish and dermaseptin S4 isolated from frog. We substituted different positions in the center of the hydrophobic face with one or two lysine residue(s) (one or two “specificity determinant(s)”). This simple modification not only maintained or improved antimicrobial activity against Gram-negative pathogens Acinetobacter baumannii (11 strains) and Pseudomonas aeruginosa (6 strains), but also dramatically decreased hemolytic activity of human red blood cells, as predicted. Therapeutic indices improved by 55-fold and 730-fold for piscidin 1 (I9K) and dermaseptin S4 (L7K, A14K), respectively, against A. baumannii. Similarly, the therapeutic indices improved 32-fold and 980-fold for piscidin 1 (I9K) and dermaseptin S4 (L7K, A14K), respectively, against P. aeruginosa. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

1845 KiB  
Review
Antimicrobial Peptides from Plants
by James P. Tam, Shujing Wang, Ka H. Wong and Wei Liang Tan
Pharmaceuticals 2015, 8(4), 711-757; https://doi.org/10.3390/ph8040711 - 16 Nov 2015
Cited by 330 | Viewed by 23050
Abstract
Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and [...] Read more.
Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. Full article
Show Figures

Graphical abstract

1283 KiB  
Review
Peptides and Peptidomimetics for Antimicrobial Drug Design
by Biljana Mojsoska and Håvard Jenssen
Pharmaceuticals 2015, 8(3), 366-415; https://doi.org/10.3390/ph8030366 - 13 Jul 2015
Cited by 166 | Viewed by 15171
Abstract
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions [...] Read more.
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics. Full article
Show Figures

Figure 1

4030 KiB  
Review
The Fungal Defensin Family Enlarged
by Jiajia Wu, Bin Gao and Shunyi Zhu
Pharmaceuticals 2014, 7(8), 866-880; https://doi.org/10.3390/ph7080866 - 18 Aug 2014
Cited by 35 | Viewed by 8367
Abstract
Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs) will be discovered by sequence similarity search. Here, we report a total [...] Read more.
Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs) will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8) according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential. Full article
Show Figures

Figure 1

3517 KiB  
Review
Antimicrobial Peptides in Reptiles
by Monique L. Van Hoek
Pharmaceuticals 2014, 7(6), 723-753; https://doi.org/10.3390/ph7060723 - 10 Jun 2014
Cited by 90 | Viewed by 17314
Abstract
Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in [...] Read more.
Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. Full article
Show Figures

Figure 1

1131 KiB  
Review
Human Antimicrobial Peptides and Proteins
by Guangshun Wang
Pharmaceuticals 2014, 7(5), 545-594; https://doi.org/10.3390/ph7050545 - 13 May 2014
Cited by 380 | Viewed by 33564
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article [...] Read more.
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs. Full article
Show Figures

Figure 1

299 KiB  
Review
Antimicrobial Peptides from Fish
by Jorge A. Masso-Silva and Gill Diamond
Pharmaceuticals 2014, 7(3), 265-310; https://doi.org/10.3390/ph7030265 - 03 Mar 2014
Cited by 247 | Viewed by 17736
Abstract
Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, [...] Read more.
Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. Full article
Show Figures

Figure 1

715 KiB  
Review
Lucifensins, the Insect Defensins of Biomedical Importance: The Story behind Maggot Therapy
by Václav Čeřovský and Robert Bém
Pharmaceuticals 2014, 7(3), 251-264; https://doi.org/10.3390/ph7030251 - 27 Feb 2014
Cited by 53 | Viewed by 12756
Abstract
Defensins are the most widespread antimicrobial peptides characterised in insects. These cyclic peptides, 4–6 kDa in size, are folded into α-helical/β-sheet mixed structures and have a common conserved motif of three intramolecular disulfide bridges with a Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6 connectivity. They have [...] Read more.
Defensins are the most widespread antimicrobial peptides characterised in insects. These cyclic peptides, 4–6 kDa in size, are folded into α-helical/β-sheet mixed structures and have a common conserved motif of three intramolecular disulfide bridges with a Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6 connectivity. They have the ability to kill especially Gram-positive bacteria and some fungi, but Gram-negative bacteria are more resistant against them. Among them are the medicinally important compounds lucifensin and lucifensin II, which have recently been identified in the medicinal larvae of the blowflies Lucilia sericata and Lucilia cuprina, respectively. These defensins contribute to wound healing during a procedure known as maggot debridement therapy (MDT) which is routinely used at hospitals worldwide. Here we discuss the decades-long story of the effort to isolate and characterise these two defensins from the bodies of medicinal larvae or from their secretions/excretions. Furthermore, our previous studies showed that the free-range larvae of L. sericata acutely eliminated most of the Gram-positive strains of bacteria and some Gram-negative strains in patients with infected diabetic foot ulcers, but MDT was ineffective during the healing of wounds infected with Pseudomonas sp. and Acinetobacter sp. The bactericidal role of lucifensins secreted into the infected wound by larvae during MDT and its ability to enhance host immunity by functioning as immunomodulator is also discussed. Full article
Show Figures

Figure 1

614 KiB  
Review
Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications
by Guolong Zhang and Lakshmi T. Sunkara
Pharmaceuticals 2014, 7(3), 220-247; https://doi.org/10.3390/ph7030220 - 27 Feb 2014
Cited by 95 | Viewed by 12585
Abstract
Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as [...] Read more.
Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens. Full article
Show Figures

Figure 1

1206 KiB  
Review
Mercury-Supported Biomimetic Membranes for the Investigation of Antimicrobial Peptides
by Lucia Becucci and Rolando Guidelli
Pharmaceuticals 2014, 7(2), 136-168; https://doi.org/10.3390/ph7020136 - 23 Jan 2014
Cited by 37 | Viewed by 6190
Abstract
Tethered bilayer lipid membranes (tBLMs) consist of a lipid bilayer interposed between an aqueous solution and a hydrophilic “spacer” anchored to a gold or mercury electrode. There is great potential for application of these biomimetic membranes for the elucidation of structure-function relationships of [...] Read more.
Tethered bilayer lipid membranes (tBLMs) consist of a lipid bilayer interposed between an aqueous solution and a hydrophilic “spacer” anchored to a gold or mercury electrode. There is great potential for application of these biomimetic membranes for the elucidation of structure-function relationships of membrane peptides and proteins. A drawback in the use of mercury-supported tBLMs with respect to gold-supported ones is represented by the difficulty in applying surface sensitive, spectroscopic and scanning probe microscopic techniques to gather information on the architecture of these biomimetic membranes. Nonetheless, mercury-supported tBLMs are definitely superior to gold-supported biomimetic membranes for the investigation of the function of membrane peptides and proteins, thanks to a fluidity and lipid lateral mobility comparable with those of bilayer lipid membranes interposed between two aqueous phases (BLMs), but with a much higher robustness and resistance to electric fields. The different features of mercury-supported tBLMs reconstituted with functionally active membrane proteins and peptides of bacteriological or pharmacological interest may be disclosed by a judicious choice of the most appropriate electrochemical techniques. We will describe the way in which electrochemical impedance spectroscopy, potential-step chronocoulometry, cyclic voltammetry and phase-sensitive AC voltammetry are conveniently employed to investigate the structure of mercury-supported tBLMs and the mode of interaction of antimicrobial peptides reconstituted into them. Full article
Show Figures

Figure 1

238 KiB  
Review
Host-Defense Peptides with Therapeutic Potential from Skin Secretions of Frogs from the Family Pipidae
by J. Michael Conlon and Milena Mechkarska
Pharmaceuticals 2014, 7(1), 58-77; https://doi.org/10.3390/ph7010058 - 15 Jan 2014
Cited by 77 | Viewed by 12776
Abstract
Skin secretions from frogs belonging to the genera Xenopus, Silurana, Hymenochirus, and Pseudhymenochirus in the family Pipidae are a rich source of host-defense peptides with varying degrees of antimicrobial activities and cytotoxicities to mammalian cells. Magainin, peptide glycine-leucine-amide (PGLa), caerulein-precursor [...] Read more.
Skin secretions from frogs belonging to the genera Xenopus, Silurana, Hymenochirus, and Pseudhymenochirus in the family Pipidae are a rich source of host-defense peptides with varying degrees of antimicrobial activities and cytotoxicities to mammalian cells. Magainin, peptide glycine-leucine-amide (PGLa), caerulein-precursor fragment (CPF), and xenopsin-precursor fragment (XPF) peptides have been isolated from norepinephrine-stimulated skin secretions from several species of Xenopus and Silurana. Hymenochirins and pseudhymenochirins have been isolated from Hymenochirus boettgeri and Pseudhymenochirus merlini. A major obstacle to the development of these peptides as anti-infective agents is their hemolytic activities against human erythrocytes. Analogs of the magainins, CPF peptides and hymenochirin-1B with increased antimicrobial potencies and low cytotoxicities have been developed that are active (MIC < 5 μM) against multidrug-resistant clinical isolates of Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Stenotrophomonas maltophilia and Klebsiella pneumoniae. Despite this, the therapeutic potential of frog skin peptides as anti-infective agents has not been realized so that alternative clinical applications as anti-cancer, anti-viral, anti-diabetic, or immunomodulatory drugs are being explored. Full article
Show Figures

Figure 1

Back to TopTop