E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Natural Products and Drug Discovery"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 30 April 2019

Special Issue Editor

Guest Editor
Prof. Dr. Pinarosa Avato

Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro Via Orabona 4, 70125 Bari, Italy
Website | E-Mail
Phone: +390805442785
Fax: +390805442230
Interests: phytochemicals; natural products; plant biodiversity; medicinal plants; food plants; bioactivity; polyphenols; glucosinolates; biocides

Special Issue Information

Dear Colleagues,

Natural products hold a prominent position in the discovery and development of many drugs used nowadays, with diverse indications for human and animal health. Especially, plants have played a leading role as a source of specialized metabolites with medical effects; other organisms such as marine and terrestrial animals and microorganisms produce very important drug candidate molecules. Specialized metabolites from all these natural sources can be used directly as bioactive compounds, or as drug precursors. Due to their wide chemical diversity they can act as drug prototypes and/or be used as pharmacological tools for different targets. Some examples of natural metabolites which have been developed into useful medical drugs are the cardiotonic digoxin from Digitalis sp., the antimalarial artemisinin from Artemisia annua, the anti-cancer taxol, from Taxus sp., or the podophyllotoxin from Podophyllum peltatum, which served as synthetic model for the anti-cancer etoposide. The study of natural products is still attracting a great scientific attention and their current importance as valuable leads for drug discovery is undebatable. I cordially invite authors to contribute original articles, as well as survey articles, that will give the readers of Molecules updated and new perspective about natural products in drug discovery including, but not limited to natural sources, identification and separation of bioactive phytochemicals, standardization, new biological targets, pre-clinical and clinical trials, pharmacological effects/side effects, and bioassays.

Prof. Dr. Pinarosa Avato
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • drug discovery
  • phytochemicals
  • biocidal compounds
  • human and animal health
  • natural sources

Published Papers (3 papers)

View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Open AccessArticle Antinociceptive Effects of Cardamonin in Mice: Possible Involvement of TRPV1, Glutamate, and Opioid Receptors
Molecules 2018, 23(9), 2237; https://doi.org/10.3390/molecules23092237
Received: 3 July 2018 / Revised: 29 July 2018 / Accepted: 30 July 2018 / Published: 3 September 2018
PDF Full-text (1685 KB) | HTML Full-text | XML Full-text
Abstract
Pain is one of the most common cause for hospital visits. It plays an important role in inflammation and serves as a warning sign to avoid further injury. Analgesics are used to manage pain and provide comfort to patients. However, prolonged usage of
[...] Read more.
Pain is one of the most common cause for hospital visits. It plays an important role in inflammation and serves as a warning sign to avoid further injury. Analgesics are used to manage pain and provide comfort to patients. However, prolonged usage of pain treatments like opioids and NSAIDs are accompanied with undesirable side effects. Therefore, research to identify novel compounds that produce analgesia with lesser side effects are necessary. The present study investigated the antinociceptive potentials of a natural compound, cardamonin, isolated from Boesenbergia rotunda (L) Mansf. using chemical and thermal models of nociception. Our findings showed that intraperitoneal and oral administration of cardamonin (0.3, 1, 3, and 10 mg/kg) produced significant and dose-dependent inhibition of pain in abdominal writhing responses induced by acetic acid. The present study also demonstrated that cardamonin produced significant analgesia in formalin-, capsaicin-, and glutamate-induced paw licking tests. In the thermal-induced nociception model, cardamonin exhibited significant increase in response latency time of animals subjected to hot-plate thermal stimuli. The rota-rod assessment confirmed that the antinociceptive activities elicited by cardamonin was not related to muscle relaxant or sedative effects of the compound. In conclusion, the present findings showed that cardamonin exerted significant peripheral and central antinociception through chemical- and thermal-induced nociception in mice through the involvement of TRPV1, glutamate, and opioid receptors. Full article
(This article belongs to the Special Issue Natural Products and Drug Discovery)
Figures

Figure 1

Open AccessArticle Identification and Growth Inhibitory Activity of the Chemical Constituents from Imperata Cylindrica Aerial Part Ethyl Acetate Extract
Molecules 2018, 23(7), 1807; https://doi.org/10.3390/molecules23071807
Received: 27 June 2018 / Revised: 16 July 2018 / Accepted: 16 July 2018 / Published: 21 July 2018
PDF Full-text (2647 KB) | HTML Full-text | XML Full-text
Abstract
Imperata cylindrica (L.) Raeusch. (IMP) aerial part ethyl acetate extract has anti-proliferative, pro-apoptotic, and pro-oxidative effects towards colorectal cancer in vitro. The chemical constituents of IMP aerial part ethyl acetate extract were isolated using high-performance liquid chromatography (HPLC) and identified with tandem mass
[...] Read more.
Imperata cylindrica (L.) Raeusch. (IMP) aerial part ethyl acetate extract has anti-proliferative, pro-apoptotic, and pro-oxidative effects towards colorectal cancer in vitro. The chemical constituents of IMP aerial part ethyl acetate extract were isolated using high-performance liquid chromatography (HPLC) and identified with tandem mass spectrometry (ESI-MS/MS) in combination with ultraviolet-visible spectrophotometry and 400 MHz NMR. The growth inhibitory effects of each identified component on BT-549 (breast) and HT-29 (colon) cancer cell lines were evaluated after 48/72 h treatment by MTT assay. Four isolated compounds were identified as trans-p-Coumaric acid (1); 2-Methoxyestrone (2); 11, 16-Dihydroxypregn-4-ene-3, 20-dione (3); and Tricin (4). Compounds (2), (3), and (4) exhibited considerable growth inhibitory activities against BT-549 and HT-29 cancer cell lines. Compounds (2), (3), and (4) are potential candidates for novel anti-cancer agents against breast and colorectal cancers. Full article
(This article belongs to the Special Issue Natural Products and Drug Discovery)
Figures

Graphical abstract

Open AccessArticle Cytotoxicity-Guided Isolation of Two New Phenolic Derivatives from Dryopteris fragrans (L.) Schott
Molecules 2018, 23(7), 1652; https://doi.org/10.3390/molecules23071652
Received: 29 May 2018 / Revised: 21 June 2018 / Accepted: 1 July 2018 / Published: 6 July 2018
PDF Full-text (2065 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Dryopteris fragrans is a valuable medicinal plant resource with extensive biological activities including anti-cancer, anti-oxidation, and anti-inflammation activities. This work aims to study further the cytotoxic constituents from Dryopteris fragrans. In this work, two new phenolic derivatives known as dryofragone (1
[...] Read more.
Dryopteris fragrans is a valuable medicinal plant resource with extensive biological activities including anti-cancer, anti-oxidation, and anti-inflammation activities. This work aims to study further the cytotoxic constituents from Dryopteris fragrans. In this work, two new phenolic derivatives known as dryofragone (1) and dryofracoumarin B (2) with six known compounds (38) were isolated from the petroleum ether fraction of the methanol extract of the aerial parts of Dryopteris fragrans (L.) Schott by two round cytotoxicity-guided tracking with the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and cell counting kit-8 (CCK-8) assay. Their structures were elucidated by the extensive spectroscopic analysis (1H-NMR, 13C-NMR, and two dimensions NMR), chemical derivatization, and comparison with data reported in the literature. All the isolates were evaluated for their cytotoxicity against nine cancer cell lines as well as their in vitro immunomodulatory activity. The results showed that compounds have a modest cytotoxicity toward human HeLa cell line with IC50 value below 30 μM and compounds 4 and 5 may modulate immunity to affect the growth of tumor cells. Full article
(This article belongs to the Special Issue Natural Products and Drug Discovery)
Figures

Graphical abstract

Back to Top