Next Issue
Previous Issue

Table of Contents

Pharmaceutics, Volume 3, Issue 3 (September 2011), Pages 338-664

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-18
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Fliposomes: pH-Sensitive Liposomes Containing a trans-2-morpholinocyclohexanol-Based Lipid That Performs a Conformational Flip and Triggers an Instant Cargo Release in Acidic Medium
Pharmaceutics 2011, 3(3), 379-405; doi:10.3390/pharmaceutics3030379
Received: 4 May 2011 / Revised: 7 June 2011 / Accepted: 30 June 2011 / Published: 11 July 2011
Cited by 15 | PDF Full-text (1489 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Incorporation of a pH-sensitive conformational switch into a lipid structure enables a drastic conformational flip upon protonation that disrupts the liposome membrane and causes rapid release of cargo specifically in areas of increased acidity. pH-sensitive liposomes containing the amphiphile (1) [...] Read more.
Incorporation of a pH-sensitive conformational switch into a lipid structure enables a drastic conformational flip upon protonation that disrupts the liposome membrane and causes rapid release of cargo specifically in areas of increased acidity. pH-sensitive liposomes containing the amphiphile (1) with trans-2-morpholinocyclohexanol conformational switch, a phospholipid, and a PEG-lipid conjugate were constructed and characterized. The optimized composition—1/POPC/PEG-ceramide (50/45/5)could be stored at 4 °C and pH 7.4 for up to 1.5 years, and was stable in blood serum in vitro after 48 h at 37 °C. Liposomes loaded with ANTS/DPX or methotrexate demonstrated an unusually quick content release (in a few seconds) at pH below 5.5, which was independent of inter-liposome contact. The pH-titration curve for the liposome leakage paralleled the curve for the acid-induced conformational flip of 1 studied by 1H-NMR. Freeze-fracture electron microscopy images showed budding and division of the bilayer at pH 5.5. A plausible mechanism of pH-sensitivity involves an acid-triggered conformational flip of 1, shortening of lipid tails, and membrane perturbations, which cause the content leakage. The methotrexate-loaded liposomes demonstrated much higher cytotoxicity in HeLa cells than the free drug indicating that they can serve as viable drug delivery systems. Full article
(This article belongs to the Special Issue Colloidal Drug Carrier Systems)
Figures

Open AccessArticle Self-Assembled Lipoplexes of Short Interfering RNA (siRNA) Using Spermine-Based Fatty Acid Amide Guanidines: Effect on Gene Silencing Efficiency
Pharmaceutics 2011, 3(3), 406-424; doi:10.3390/pharmaceutics3030406
Received: 13 May 2011 / Revised: 20 June 2011 / Accepted: 5 July 2011 / Published: 13 July 2011
Cited by 6 | PDF Full-text (420 KB) | HTML Full-text | XML Full-text
Abstract
Four guanidine derivatives of N4,N9-diacylated spermine have been designed, synthesized, and characterized. These guanidine-containing cationic lipids bound siRNA and formed nanoparticles. Two cationic lipids with C18 unsaturated chains, N1,N12-diamidino-N4, [...] Read more.
Four guanidine derivatives of N4,N9-diacylated spermine have been designed, synthesized, and characterized. These guanidine-containing cationic lipids bound siRNA and formed nanoparticles. Two cationic lipids with C18 unsaturated chains, N1,N12-diamidino-N4,N9-dioleoylspermine and N1,N12-diamidino-N4-linoleoyl-N9-oleoylspermine, were more efficient in terms of GFP expression reduction compared to the other cationic lipids with shorter C12 (12:0) and very long C22 (22:1) chains. N1,N12-Diamidino-N4-linoleoyl-N9-oleoylspermine siRNA lipoplexes resulted in GFP reduction (26%) in the presence of serum, and cell viability (64%). These data are comparable to those obtained with TransIT TKO. Thus, cationic lipid guanidines based on N4,N9-diacylated spermines are good candidates for non-viral delivery of siRNA to HeLa cells using self-assembled lipoplexes. Full article
(This article belongs to the Special Issue Gene Therapy)
Figures

Open AccessArticle Rapid Detection and Identification of Overdose Drugs in Saliva by Surface-Enhanced Raman Scattering Using Fused Gold Colloids
Pharmaceutics 2011, 3(3), 425-439; doi:10.3390/pharmaceutics3030425
Received: 5 May 2011 / Revised: 1 July 2011 / Accepted: 11 July 2011 / Published: 13 July 2011
Cited by 14 | PDF Full-text (629 KB) | HTML Full-text | XML Full-text
Abstract
The number of drug-related emergency room visits in the United States doubled from 2004 to 2009 to 4.6 million. Consequently there is a critical need to rapidly identify the offending drug(s), so that the appropriate medical care can be administered. In an [...] Read more.
The number of drug-related emergency room visits in the United States doubled from 2004 to 2009 to 4.6 million. Consequently there is a critical need to rapidly identify the offending drug(s), so that the appropriate medical care can be administered. In an effort to meet this need we have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect and identify numerous drugs in saliva at ng/mL concentrations within 10 minutes. Identification is provided by matching measured spectra to a SERS library comprised of over 150 different drugs, each of which possess a unique spectrum. Trace detection is provided by fused gold colloids trapped within a porous glass matrix that generate SERS. Speed is provided by a syringe-driven sample system that uses a solid-phase extraction capillary combined with a SERS-active capillary in series. Spectral collection is provided by a portable Raman analyzer. Here we describe successful measurement of representative illicit, prescribed, and over-the-counter drugs by SERS, and 50 ng/mL cocaine in saliva as part of a focused study. Full article
(This article belongs to the Special Issue Colloidal Drug Carrier Systems)
Open AccessArticle The Influence of Formulation and Manufacturing Process Parameters on the Characteristics of Lyophilized Orally Disintegrating Tablets
Pharmaceutics 2011, 3(3), 440-457; doi:10.3390/pharmaceutics3030440
Received: 20 June 2011 / Revised: 11 July 2011 / Accepted: 18 July 2011 / Published: 20 July 2011
Cited by 6 | PDF Full-text (1452 KB) | HTML Full-text | XML Full-text
Abstract
Gelatin is a principal excipient used as a binder in the formulation of lyophilized orally disintegrating tablets. The current study focuses on exploiting the physicochemical properties of gelatin by varying formulation parameters to determine their influence on orally disintegrating tablet (ODT) characteristics. [...] Read more.
Gelatin is a principal excipient used as a binder in the formulation of lyophilized orally disintegrating tablets. The current study focuses on exploiting the physicochemical properties of gelatin by varying formulation parameters to determine their influence on orally disintegrating tablet (ODT) characteristics. Process parameters, namely pH and ionic strength of the formulations, and ball milling were investigated to observe their effects on excipient characteristics and tablet formation. The properties and characteristics of the formulations and tablets which were investigated included: glass transition temperature, wettability, porosity, mechanical properties, disintegration time, morphology of the internal structure of the freeze-dried tablets, and drug dissolution. The results from the pH study revealed that adjusting the pH of the formulation away from the isoelectric point of gelatin, resulted in an improvement in tablet disintegration time possibly due to increase in gelatin swelling resulting in greater tablet porosity. The results from the ionic strength study revealed that the inclusion of sodium chloride influenced tablet porosity, tablet morphology and the glass transition temperature of the formulations. Data from the milling study showed that milling the excipients influenced formulation characteristics, namely wettability and powder porosity. The study concludes that alterations of simple parameters such as pH and salt concentration have a significant influence on formulation of ODT. Full article
Figures

Open AccessArticle Fourth Generation Phosphorus-Containing Dendrimers: Prospective Drug and Gene Delivery Carrier
Pharmaceutics 2011, 3(3), 458-473; doi:10.3390/pharmaceutics3030458
Received: 30 June 2011 / Revised: 25 July 2011 / Accepted: 3 August 2011 / Published: 5 August 2011
Cited by 14 | PDF Full-text (197 KB) | HTML Full-text | XML Full-text
Abstract
Research concerning new targeting delivery systems for pharmacologically active molecules and genetic material is of great importance. The aim of the present study was to investigate the potential of fourth generation (P4) cationic phosphorus-containing dendrimers to bind fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS), anti-neoplastic [...] Read more.
Research concerning new targeting delivery systems for pharmacologically active molecules and genetic material is of great importance. The aim of the present study was to investigate the potential of fourth generation (P4) cationic phosphorus-containing dendrimers to bind fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS), anti-neoplastic drug cisplatin, anti-HIV siRNA siP24 and its capability to deliver green fluorescent protein gene (pGFP) into cells. The interaction between P4 and ANS (as the model drug) was investigated. The binding constant and the number of binding centers per one molecule of P4 were determined. In addition, the dendriplex between P4 and anti-HIV siRNA siP24 was characterized using circular dichroism, fluorescence polarization and zeta-potential methods; the average hydrodynamic diameter of the dendriplex was calculated using zeta-size measurements. The efficiency of transfection of pGFP using P4 was determined in HEK293 cells and human mesenchymal stem cells, and the cytotoxicity of the P4-pGFP dendriplex was studied. Furthermore, enhancement of the toxic action of the anti-neoplastic drug cisplatin by P4 dendrimers was estimated. Based on the results, the fourth generation cationic phosphorus-containing dendrimers seem to be a good drug and gene delivery carrier candidate. Full article
(This article belongs to the Special Issue Gene Therapy)
Open AccessArticle Effects of Chemical and Physical Enhancement Techniques on Transdermal Delivery of Cyanocobalamin (Vitamin B12) In Vitro
Pharmaceutics 2011, 3(3), 474-484; doi:10.3390/pharmaceutics3030474
Received: 20 June 2011 / Revised: 3 August 2011 / Accepted: 8 August 2011 / Published: 10 August 2011
Cited by 2 | PDF Full-text (578 KB) | HTML Full-text | XML Full-text
Abstract
Vitamin B12 deficiency, which may result in anemia and nerve damage if left untreated, is currently treated by administration of cyanocobalamin via oral or intramuscular routes. However, these routes are associated with absorption and compliance issues which have prompted us to investigate [...] Read more.
Vitamin B12 deficiency, which may result in anemia and nerve damage if left untreated, is currently treated by administration of cyanocobalamin via oral or intramuscular routes. However, these routes are associated with absorption and compliance issues which have prompted us to investigate skin as an alternative site of administration. Delivery through skin, however, is restricted to small and moderately lipophilic molecules due to the outermost barrier, the stratum corneum (SC). In this study, we have investigated the effect of different enhancement techniques, chemical enhancers (ethanol, oleic acid, propylene glycol), iontophoresis (anodal iontophoresis) and microneedles (soluble maltose microneedles), which may overcome this barrier and improve cyanocobalamin delivery. Studies with different chemical enhancer formulations indicated that ethanol and oleic acid decreased the lag time while propylene glycol based formulations increased the lag time. The formulation with ethanol (50%), oleic acid (10%) and propylene glycol (40%) showed the maximum improvement in delivery. Iontophoresis and microneedle treatments resulted in enhanced permeation levels compared to passive controls. These enhancement approaches can be explored further to develop alternative treatment regimens. Full article
(This article belongs to the Special Issue Transdermal Drug Delivery)
Open AccessArticle A Computational Procedure for Assessing the Dynamic Performance of Diffusion-Controlled Transdermal Delivery Devices
Pharmaceutics 2011, 3(3), 485-496; doi:10.3390/pharmaceutics3030485
Received: 29 June 2011 / Revised: 8 August 2011 / Accepted: 10 August 2011 / Published: 11 August 2011
Cited by 7 | PDF Full-text (182 KB) | HTML Full-text | XML Full-text
Abstract
Abstract: The dynamic performances of two different controlled-release systems were analyzed. In a reservoir-type drug-delivery patch, the transdermal flux is influenced by the properties of the membrane. A constant thermodynamic drug activity is preserved in the donor compartment. Monolithic matrices are among [...] Read more.
Abstract: The dynamic performances of two different controlled-release systems were analyzed. In a reservoir-type drug-delivery patch, the transdermal flux is influenced by the properties of the membrane. A constant thermodynamic drug activity is preserved in the donor compartment. Monolithic matrices are among the most inexpensive systems used to direct drug delivery. In these structures, the active pharmaceutical ingredients are encapsulated within a polymeric material. Despite the popularity of these two devices, to tailor the properties of the polymer and additives to specific transient behaviors can be challenging and time-consuming. The heuristic approaches often considered to select the vehicle formulation provide limited insight into key permeation mechanisms making it difficult to predict the device performance. In this contribution, a method to calculate the flux response time in a system consisting of a reservoir and a polymeric membrane was proposed and confirmed. Nearly 8.60 h passed before the metoprolol delivery rate reached ninety-eight percent of its final value. An expression was derived for the time it took to transport the active pharmaceutical ingredient out of the polymer. Ninety-eight percent of alpha-tocopherol acetate was released in 461.4 h following application to the skin. The effective time constant can be computed to help develop optimum design strategies. Full article
(This article belongs to the Special Issue Transdermal Drug Delivery)
Open AccessArticle Effect of Penetration Enhancer Containing Vesicles on the Percutaneous Delivery of Quercetin through New Born Pig Skin
Pharmaceutics 2011, 3(3), 497-509; doi:10.3390/pharmaceutics3030497
Received: 1 July 2011 / Revised: 4 August 2011 / Accepted: 10 August 2011 / Published: 12 August 2011
Cited by 33 | PDF Full-text (1061 KB) | HTML Full-text | XML Full-text
Abstract
Quercetin (3,3′,4′,5,7-pentahydroxyflavone) exerts multiple pharmacological effects: anti-oxidant activity, induction of apoptosis, modulation of cell cycle, anti-mutagenesis, and anti-inflammatory effect. In topical formulations quercetin inhibits oxidative skin damage and the inflammatory processes induced by solar UV radiation. In this work, quercetin (2 mg/mL) [...] Read more.
Quercetin (3,3′,4′,5,7-pentahydroxyflavone) exerts multiple pharmacological effects: anti-oxidant activity, induction of apoptosis, modulation of cell cycle, anti-mutagenesis, and anti-inflammatory effect. In topical formulations quercetin inhibits oxidative skin damage and the inflammatory processes induced by solar UV radiation. In this work, quercetin (2 mg/mL) was loaded in vesicular Penetration Enhancer containing Vesicles (PEVs), prepared using a mixture of lipids (Phospholipon® 50, P50) and one of four selected hydrophilic penetration enhancers: Transcutol® P, propylene glycol, polyethylene glycol 400, and Labrasol® at the same concentration (40% of water phase). Photon Correlation Spectroscopy results showed a mean diameter of drug loaded vesicles in the range 80–220 nm. All formulations showed a negative surface charge and incorporation efficiency in the range 48–75%. Transmission Electron Microscopy confirmed that size and morphology varied as a function of the used penetration enhancer. The influence of PEVs on ex vivo quercetin (trans)dermal delivery was evaluated using Franz-type diffusion cells, new born pig skin and Confocal Laser Scanning Microscopy. Results showed that drug delivery is affected by the penetration enhancer used in the PEVs' formulation. Full article
(This article belongs to the Special Issue Transdermal Drug Delivery)
Open AccessArticle Effect of Microencapsulation Shear Stress on the Structural Integrity and Biological Activity of a Model Monoclonal Antibody, Trastuzumab
Pharmaceutics 2011, 3(3), 510-524; doi:10.3390/pharmaceutics3030510
Received: 4 July 2011 / Revised: 16 August 2011 / Accepted: 19 August 2011 / Published: 24 August 2011
Cited by 7 | PDF Full-text (402 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the present study was to investigate the influence of process shear stressors on the stability of a model monoclonal antibody, trastuzumab. Trastuzumab, at concentrations of 0.4–4.0 mg/mL, was subjected to sonication, freeze-thaw, lyophilisation, spray drying and was encapsulated into [...] Read more.
The aim of the present study was to investigate the influence of process shear stressors on the stability of a model monoclonal antibody, trastuzumab. Trastuzumab, at concentrations of 0.4–4.0 mg/mL, was subjected to sonication, freeze-thaw, lyophilisation, spray drying and was encapsulated into micro- and nanoparticles. The stressed samples were analysed for structural integrity by gel electrophoresis, SDS-PAGE, and size exclusion chromatography (SEC), while the conformational integrity was analysed by circular dichroism (CD). Biological activity of the stressed trastuzumab was investigated by measuring the inhibition of cell proliferation of HER-2 expressing cell lines. Results show that trastuzumab was resistant to the process shear stresses applied and to microencapsulation processes. At the lowest concentration of 0.4 mg/mL, a low percent ( 0.05). The results of this study conclude that trastuzumab may be resistant to various processing stresses. These findings have important implications with respect to pharmaceutical processing of monoclonal antibodies. Full article
(This article belongs to the Special Issue Microencapsulation Technology Applied to Pharmaceutics)
Open AccessArticle Investigation of the Atypical Glass Transition and Recrystallization Behavior of Amorphous Prazosin Salts
Pharmaceutics 2011, 3(3), 525-537; doi:10.3390/pharmaceutics3030525
Received: 25 May 2011 / Revised: 27 July 2011 / Accepted: 24 August 2011 / Published: 25 August 2011
Cited by 5 | PDF Full-text (206 KB) | HTML Full-text | XML Full-text
Abstract
This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, [...] Read more.
This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ~ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development. Full article
(This article belongs to the Special Issue Pharmaceutical Salts and Co-Crystals)
Open AccessArticle Development and Validation of a Microbiological Agar Assay for Determination of Orbifloxacin in Pharmaceutical Preparations
Pharmaceutics 2011, 3(3), 572-581; doi:10.3390/pharmaceutics3030572
Received: 23 June 2011 / Revised: 9 August 2011 / Accepted: 25 August 2011 / Published: 29 August 2011
Cited by 10 | PDF Full-text (165 KB) | HTML Full-text | XML Full-text
Abstract
Orbifloxacin is a fluoroquinolone with broad-spectrum antimicrobial activity, and belongs to the third generation of quinolones. Regarding the quality control of medicines, a validated microbiological assay for determination of orbifloxacin in pharmaceutical formulations has not as yet been reported. For this purpose, [...] Read more.
Orbifloxacin is a fluoroquinolone with broad-spectrum antimicrobial activity, and belongs to the third generation of quinolones. Regarding the quality control of medicines, a validated microbiological assay for determination of orbifloxacin in pharmaceutical formulations has not as yet been reported. For this purpose, this paper reports the development and validation of a simple, sensitive, accurate and reproducible agar diffusion method to quantify orbifloxacin in tablet formulations. The assay is based on the inhibitory effect of orbifloxacin upon the strain of Staphylococcus aureus ATCC 25923 used as test microorganism. The results were treated statistically by analysis of variance and were found to be linear (r = 0.9992) in the selected range of 16.0–64.0 μg/mL, precise with relative standard deviation (RSD) of repeatability intraday = 2.88%, intermediate precision RSD = 3.33%, and accurate (100.31%). The results demonstrated the validity of the proposed bioassay, which allows reliable orbifloxacin quantitation in pharmaceutical samples and therefore can be used as a useful alternative methodology for the routine quality control of this medicine. Full article
(This article belongs to the Special Issue Solid Dosage Forms)
Figures

Open AccessArticle Application of Twin Screw Extrusion in the Manufacture of Cocrystals, Part I: Four Case Studies
Pharmaceutics 2011, 3(3), 582-600; doi:10.3390/pharmaceutics3030582
Received: 1 July 2011 / Revised: 17 August 2011 / Accepted: 24 August 2011 / Published: 31 August 2011
Cited by 18 | PDF Full-text (1566 KB) | HTML Full-text | XML Full-text
Abstract
The application of twin screw extrusion (TSE) as a scalable and green process for the manufacture of cocrystals was investigated. Four model cocrystal forming systems, Caffeine-Oxalic acid, Nicotinamide-trans cinnamic acid, Carbamazepine-Saccharin, and Theophylline-Citric acid, were selected for the study. The parameters of [...] Read more.
The application of twin screw extrusion (TSE) as a scalable and green process for the manufacture of cocrystals was investigated. Four model cocrystal forming systems, Caffeine-Oxalic acid, Nicotinamide-trans cinnamic acid, Carbamazepine-Saccharin, and Theophylline-Citric acid, were selected for the study. The parameters of the extrusion process that influenced cocrystal formation were examined. TSE was found to be an effective method to make cocrystals for all four systems studied. It was demonstrated that temperature and extent of mixing in the extruder were the primary process parameters that influenced extent of conversion to the cocrystal in neat TSE experiments. In addition to neat extrusion, liquid-assisted TSE was also demonstrated for the first time as a viable process for making cocrystals. Notably, the use of catalytic amount of benign solvents led to a lowering of processing temperatures required to form the cocrystal in the extruder. TSE should be considered as an efficient, scalable, and environmentally friendly process for the manufacture of cocrystals with little to no solvent requirements. Full article
(This article belongs to the Special Issue Pharmaceutical Salts and Co-Crystals)
Open AccessArticle Co-Crystal Screening of Diclofenac
Pharmaceutics 2011, 3(3), 601-614; doi:10.3390/pharmaceutics3030601
Received: 28 June 2011 / Revised: 17 August 2011 / Accepted: 23 August 2011 / Published: 31 August 2011
Cited by 16 | PDF Full-text (477 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In the pharmaceutical industry, co-crystals are becoming increasingly valuable as crystalline solids that can offer altered/improved physical properties of an active pharmaceutical ingredient (API) without changing its chemical identity or biological activity. In order to identify new solid forms of diclofenac—an analgesic [...] Read more.
In the pharmaceutical industry, co-crystals are becoming increasingly valuable as crystalline solids that can offer altered/improved physical properties of an active pharmaceutical ingredient (API) without changing its chemical identity or biological activity. In order to identify new solid forms of diclofenac—an analgesic with extremely poor aqueous solubility for which few co-crystal structures have been determined—a range of pyrazoles, pyridines, and pyrimidines were screened for co-crystal formation using solvent assisted grinding and infrared spectroscopy with an overall success rate of 50%. The crystal structures of three new diclofenac co-crystals are reported herein: (diclofenac)∙(2-aminopyrimidine), (diclofenac)∙(2-amino-4,6-dimethylpyrimidine), and (diclofenac)∙(2-amino-4-chloro-6-methylpyrimidine). Full article
(This article belongs to the Special Issue Pharmaceutical Salts and Co-Crystals)
Figures

Review

Jump to: Research

Open AccessReview Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses
Pharmaceutics 2011, 3(3), 338-353; doi:10.3390/pharmaceutics3030338
Received: 19 May 2011 / Revised: 27 June 2011 / Accepted: 5 July 2011 / Published: 11 July 2011
Cited by 7 | PDF Full-text (2839 KB) | HTML Full-text | XML Full-text
Abstract
The major limitation of the clinical use of replication-incompetent adenovirus (Ad) vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN), following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs [...] Read more.
The major limitation of the clinical use of replication-incompetent adenovirus (Ad) vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN), following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs). In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88) and toll-like receptor 9 (TLR9) play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs), which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1)-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs. Full article
(This article belongs to the Special Issue Gene Therapy)
Open AccessReview Advances in Bio-Optical Imaging for the Diagnosis of Early Oral Cancer
Pharmaceutics 2011, 3(3), 354-378; doi:10.3390/pharmaceutics3030354
Received: 4 May 2011 / Accepted: 27 June 2011 / Published: 11 July 2011
Cited by 12 | PDF Full-text (882 KB) | HTML Full-text | XML Full-text
Abstract
Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact [...] Read more.
Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact that most of the oral cancers, despite the general accessibility of the oral cavity, are not diagnosed until the advanced stage. Early detection of the oral tumors and its precursor lesions may be the most effective means to improve clinical outcome and cure most patients. One of the emerging technologies is the use of non-invasive in vivo tissue imaging to capture the molecular changes at high-resolution to improve the detection capability of early stage disease. This review will discuss the use of optical probes and highlight the role of optical imaging such as autofluorescence, fluorescence diagnosis (FD), laser confocal endomicroscopy (LCE), surface enhanced Raman spectroscopy (SERS), optical coherence tomography (OCT) and confocal reflectance microscopy (CRM) in early oral cancer detection. FD is a promising method to differentiate cancerous lesions from benign, thus helping in the determination of adequate resolution of surgical resection margin. LCE offers in vivo cellular imaging of tissue structures from surface to subsurface layers and has demonstrated the potential to be used as a minimally invasive optical biopsy technique for early diagnosis of oral cancer lesions. SERS was able to differentiate between normal and oral cancer patients based on the spectra acquired from saliva of patients. OCT has been used to visualize the detailed histological features of the oral lesions with an imaging depth down to 2–3 mm. CRM is an optical tool to noninvasively image tissue with near histological resolution. These comprehensive diagnostic modalities can also be used to define surgical margin and to provide a direct assessment of the therapeutic effectiveness. Full article
(This article belongs to the Special Issue Molecular Imaging)
Open AccessReview The Application of Microencapsulation Techniques in the Treatment of Endodontic and Periodontal Diseases
Pharmaceutics 2011, 3(3), 538-571; doi:10.3390/pharmaceutics3030538
Received: 5 July 2011 / Revised: 9 August 2011 / Accepted: 24 August 2011 / Published: 26 August 2011
Cited by 5 | PDF Full-text (451 KB) | HTML Full-text | XML Full-text
Abstract
In the treatment of intracanal and periodontal infections, the local application of antibiotics and other therapeutic agents in the root canal or in periodontal pockets may be a promising approach to achieve sustained drug release, high antimicrobial activity and low systemic side [...] Read more.
In the treatment of intracanal and periodontal infections, the local application of antibiotics and other therapeutic agents in the root canal or in periodontal pockets may be a promising approach to achieve sustained drug release, high antimicrobial activity and low systemic side effects. Microparticles made from biodegradable polymers have been reported to be an effective means of delivering antibacterial drugs in endodontic and periodontal therapy. The aim of this review article is to assess recent therapeutic strategies in which biocompatible microparticles are used for effective management of periodontal and endodontic diseases. In vitro and in vivo studies that have investigated the biocompatibility or efficacy of certain microparticle formulations and devices are presented. Future directions in the application of microencapsulation techniques in endodontic and periodontal therapies are discussed. Full article
(This article belongs to the Special Issue Microencapsulation Technology Applied to Pharmaceutics)
Open AccessReview Transporter-Mediated Drug Interaction Strategy for 5-Aminolevulinic Acid (ALA)-Based Photodynamic Diagnosis of Malignant Brain Tumor: Molecular Design of ABCG2 Inhibitors
Pharmaceutics 2011, 3(3), 615-635; doi:10.3390/pharmaceutics3030615
Received: 19 July 2011 / Revised: 16 August 2011 / Accepted: 9 September 2011 / Published: 14 September 2011
Cited by 4 | PDF Full-text (1076 KB) | HTML Full-text | XML Full-text
Abstract
Photodynamic diagnosis (PDD) is a practical tool currently used in surgical operation of aggressive brain tumors, such as glioblastoma. PDD is achieved by a photon-induced physicochemical reaction which is induced by excitation of protoporphyrin IX (PpIX) exposed to light. Fluorescence-guided gross-total resection [...] Read more.
Photodynamic diagnosis (PDD) is a practical tool currently used in surgical operation of aggressive brain tumors, such as glioblastoma. PDD is achieved by a photon-induced physicochemical reaction which is induced by excitation of protoporphyrin IX (PpIX) exposed to light. Fluorescence-guided gross-total resection has recently been developed in PDD, where 5-aminolevulinic acid (ALA) or its ester is administered as the precursor of PpIX. ALA induces the accumulation of PpIX, a natural photo-sensitizer, in cancer cells. Recent studies provide evidence that adenosine triphosphate (ATP)-binding cassette (ABC) transporter ABCG2 plays a pivotal role in regulating the cellular accumulation of porphyrins in cancer cells and thereby affects the efficacy of PDD. Protein kinase inhibitors are suggested to potentially enhance the PDD efficacy by blocking ABCG2-mediated porphyrin efflux from cancer cells. It is of great interest to develop potent ABCG2-inhibitors that can be applied to PDD for brain tumor therapy. This review article addresses a pivotal role of human ABC transporter ABCG2 in PDD as well as a new approach of quantitative structure-activity relationship (QSAR) analysis to design potent ABCG2-inhibitors. Full article
Open AccessReview Structural Versatility of Bicellar Systems and Their Possibilities as Colloidal Carriers
Pharmaceutics 2011, 3(3), 636-664; doi:10.3390/pharmaceutics3030636
Received: 3 June 2011 / Revised: 21 July 2011 / Accepted: 5 September 2011 / Published: 14 September 2011
Cited by 6 | PDF Full-text (5127 KB) | HTML Full-text | XML Full-text
Abstract
Bicellar systems are lipid nanostructures formed by long- and short-chained phospholipids dispersed in aqueous solution. The morphological transitions of bicellar aggregates due to temperature, composition and time variations have been revised in this work. To this end, two bicellar systems have been [...] Read more.
Bicellar systems are lipid nanostructures formed by long- and short-chained phospholipids dispersed in aqueous solution. The morphological transitions of bicellar aggregates due to temperature, composition and time variations have been revised in this work. To this end, two bicellar systems have been considered; one formed by dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl- phosphatidylcholine (DHPC) and another formed by dipalmitoyl-phosphatidylcholine (DPPC) and DHPC. The relationship between the magnetic alignment, the morphology of the aggregates and the phase transition temperature (Tm) of lipids is discussed. In general terms, the non-alignable samples present rounded objects at temperature below the Tm. Above this temperature, an increase of viscosity is followed by the formation of large elongated aggregates. Alignable samples presented discoidal objects below the Tm. The best alignment was achieved above this temperature with large areas of lamellar stacked bilayers and some multilamellar vesicles. The effect of the inclusion of ceramides with different chain lengths in the structure of bicelles is also revised in the present article. A number of physical techniques show that the bicellar structures are affected by both the concentration and the type of ceramide. Systems are able to incorporate 10% mol of ceramides that probably are organized forming domains. The addition of 20% mol of ceramides promotes destabilization of bicelles, promoting the formation of mixed systems that include large structures. Bicellar systems have demonstrated to be morphologically stable with time, able to encapsulate different actives and to induce specific effects on the skin. These facts make bicellar systems good candidates as colloidal carriers for dermal delivery. However, water dilution induces structural changes and formation of vesicular structures in the systems; stabilization strategies have been been explored in recent works and are also updated here. Full article
(This article belongs to the Special Issue Colloidal Drug Carrier Systems)
Figures

Journal Contact

MDPI AG
Pharmaceutics Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
pharmaceutics@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Pharmaceutics
Back to Top