Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5326 KiB  
Article
Piperacillin/Tazobactam Co-Delivery by Micellar Ionic Conjugate Systems Carrying Pharmaceutical Anions and Encapsulated Drug
by Katarzyna Niesyto, Aleksy Mazur and Dorota Neugebauer
Pharmaceutics 2024, 16(2), 198; https://doi.org/10.3390/pharmaceutics16020198 - 30 Jan 2024
Viewed by 825
Abstract
Previously obtained amphiphilic graft copolymers based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA) ionic liquid were used as the matrices of three types of nanocarriers, i.e., conjugates with ionic piperacillin (PIP) and micelles with tazobactam (TAZ), which represented single systems, and dual systems bearing PIP anions [...] Read more.
Previously obtained amphiphilic graft copolymers based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA) ionic liquid were used as the matrices of three types of nanocarriers, i.e., conjugates with ionic piperacillin (PIP) and micelles with tazobactam (TAZ), which represented single systems, and dual systems bearing PIP anions and encapsulated TAZ for co-delivery. The exchange of Cl anions in TMAMA units with PIP ones resulted in a yield of 45.6–72.7 mol.%. The self-assembling properties were confirmed by the critical micelle concentration (CMC), which, after ion exchange, increased significantly (from 0.011–0.020 mg/mL to 0.041–0.073 mg/mL). The amphiphilic properties were beneficial for TAZ encapsulation to reach drug loading contents (DLCs) in the ranges of 37.2–69.5 mol.% and 50.4–80.4 mol.% and to form particles with sizes of 97–319 nm and 24–192 nm in the single and dual systems, respectively. In vitro studies indicated that the ionically conjugated drug (PIP) was released in quantities of 66–81% (7.8–15.0 μg/mL) from single-drug systems and 21–25% (2.6–3.9 μg/mL) from dual-drug systems. The release of encapsulated TAZ was more efficient, achieving 47–98% (7.5–9.0 μg/mL) release from the single systems and 47–69% (9.6–10.4 μg/mL) release from the dual ones. Basic cytotoxicity studies showed non-toxicity of the polymer matrices, while the introduction of the selected drugs induced cytotoxicity against normal human bronchial epithelial cells (BEAS-2B) with the increase in concentration. Full article
Show Figures

Figure 1

34 pages, 2610 KiB  
Review
Exploring Amino Acid Transporters as Therapeutic Targets for Cancer: An Examination of Inhibitor Structures, Selectivity Issues, and Discovery Approaches
by Sebastian Jakobsen and Carsten Uhd Nielsen
Pharmaceutics 2024, 16(2), 197; https://doi.org/10.3390/pharmaceutics16020197 - 30 Jan 2024
Cited by 1 | Viewed by 1383
Abstract
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the [...] Read more.
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the growth and development of cancer. Naturally, this has made amino acid transporters a novel target of interest for the development of new anticancer drugs. Many attempts have been made to develop inhibitors of amino acid transporters to slow down cancer cell growth, and some have even reached clinical trials. The purpose of this review is to help organize the available information on the efforts to discover amino acid transporter inhibitors by focusing on the amino acid transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), xCT (SLC7A11), SNAT1 (SLC38A1), SNAT2 (SLC38A2), and PAT1 (SLC36A1). We discuss the function of the transporters, their implication in cancer, their known inhibitors, issues regarding selective inhibitors, and the efforts and strategies of discovering inhibitors. The goal is to encourage researchers to continue the search and development within the field of cancer treatment research targeting amino acid transporters. Full article
Show Figures

Figure 1

13 pages, 2160 KiB  
Article
Designing Advanced Drug Delivery Systems: Core-Shell Alginate Particles through Electro-Fluid Dynamic Atomization
by Iriczalli Cruz-Maya, Carmine Schiavone, Rosalia Ferraro, Nergis Zeynep Renkler, Sergio Caserta and Vincenzo Guarino
Pharmaceutics 2024, 16(2), 193; https://doi.org/10.3390/pharmaceutics16020193 - 29 Jan 2024
Viewed by 873
Abstract
Innovations in drug delivery systems are crucial for enhancing therapeutic efficiency. Our research presents a novel approach based on using electro-fluid dynamic atomization (EFDA) to fabricate core-shell monophasic particles (CSMp) from sodium alginate blends of varying molecular weights. This study explores the morphological [...] Read more.
Innovations in drug delivery systems are crucial for enhancing therapeutic efficiency. Our research presents a novel approach based on using electro-fluid dynamic atomization (EFDA) to fabricate core-shell monophasic particles (CSMp) from sodium alginate blends of varying molecular weights. This study explores the morphological characteristics of these particles in relation to material properties and process conditions, highlighting their potential in drug delivery applications. A key aspect of our work is the development of a mathematical model that simulates the release kinetics of small molecules, specifically sodium diclofenac. By assessing the diffusion properties of different molecules and gel formulations through transport and rheological models, we have created a predictive tool for evaluating the efficiency of these particles in drug delivery. Our findings underscore two critical, independent parameters for optimizing drug release: the external shell thickness and the diffusivity ratios within the dual layers. This allows for precise control over the timing and intensity of the release profile. This study advances our understanding of EFDA in the fabrication of CSMp and offers promising avenues for enhancing drug delivery systems by tailoring release profiles through particle characteristic manipulation. Full article
(This article belongs to the Special Issue Pharmaceutics and Drug Delivery in Italy, 2nd Edition)
Show Figures

Figure 1

42 pages, 6282 KiB  
Review
Polymer Delivery Systems for Long-Acting Antiretroviral Drugs
by Mohammad Ullah Nayan, Sudipta Panja, Ashrafi Sultana, Lubaba A. Zaman, Lalitkumar K. Vora, Brady Sillman, Howard E. Gendelman and Benson Edagwa
Pharmaceutics 2024, 16(2), 183; https://doi.org/10.3390/pharmaceutics16020183 - 28 Jan 2024
Viewed by 1085
Abstract
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence [...] Read more.
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients’ needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence. Full article
Show Figures

Figure 1

10 pages, 1221 KiB  
Article
In Vivo Deposition of High-Flow Nasal Aerosols Using Breath-Enhanced Nebulization
by Jeyanthan Jayakumaran and Gerald C. Smaldone
Pharmaceutics 2024, 16(2), 182; https://doi.org/10.3390/pharmaceutics16020182 - 28 Jan 2024
Viewed by 680
Abstract
Aerosol delivery using conventional nebulizers with fixed maximal output rates is limited and unpredictable under high-flow conditions. This study measured regulated aerosol delivery to the lungs of normal volunteers using a nebulizer designed to overcome the limitations of HFNC therapy (i-AIRE (InspiRx, [...] Read more.
Aerosol delivery using conventional nebulizers with fixed maximal output rates is limited and unpredictable under high-flow conditions. This study measured regulated aerosol delivery to the lungs of normal volunteers using a nebulizer designed to overcome the limitations of HFNC therapy (i-AIRE (InspiRx, Inc., Somerset, NJ, USA)). This breath-enhanced jet nebulizer, in series with the high-flow catheter, utilizes the high flow to increase aerosol output beyond those of conventional devices. Nine normal subjects breathing tidally via the nose received humidified air at 60 L/min. The nebulizer was connected to the HFNC system upstream to the humidifier and received radio-labeled saline as a marker for drug delivery (99mTc DTPA) infused by a syringe pump (mCi/min). The dose to the subject was regulated at 12, 20 and 50 mL/h. Rates of aerosol deposition in the lungs (µCi/min) were measured via a gamma camera for each infusion rate and converted to µg NaCl/min. The deposition rate, as expressed as µg of NaCl/min, was closely related to the infusion rate: 7.84 ± 3.2 at 12 mL/h, 43.0 ± 12 at 20 mL/h and 136 ± 45 at 50 mL/h. The deposition efficiency ranged from 0.44 to 1.82% of infused saline, with 6% deposited in the nose. A regional analysis indicated peripheral deposition of aerosol (central/peripheral ratio 0.99 ± 0.27). The data were independent of breathing frequency. Breath-enhanced nebulization via HFNC reliably delivered aerosol to the lungs at the highest nasal airflows. The rate of delivery was controlled simply by regulating the infusion rate, indicating that lung deposition in the critically ill can be titrated clinically at the bedside. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

17 pages, 2840 KiB  
Article
Potentiation of Antibiotic Activity of Aztreonam against Metallo-β-Lactamase-Producing Multidrug-Resistant Pseudomonas aeruginosa by 3-O-Substituted Difluoroquercetin Derivatives
by Seongyeon Lee, Taegum Lee, Mi Kyoung Kim, Joong Hoon Ahn, Seri Jeong, Ki-Ho Park and Youhoon Chong
Pharmaceutics 2024, 16(2), 185; https://doi.org/10.3390/pharmaceutics16020185 - 28 Jan 2024
Viewed by 835
Abstract
The combination of aztreonam (ATM) and ceftazidime–avibactam (CAZ-AVI; CZA) has shown therapeutic potential against serine-β-lactamase (SBL)- and metallo-β-lactamase (MBL)-producing Enterobacterales. However, the ability of CZA to restore the antibiotic activity of ATM is severely limited in MBL-producing multidrug-resistant (MDR) Pseudomonas aeruginosa strains [...] Read more.
The combination of aztreonam (ATM) and ceftazidime–avibactam (CAZ-AVI; CZA) has shown therapeutic potential against serine-β-lactamase (SBL)- and metallo-β-lactamase (MBL)-producing Enterobacterales. However, the ability of CZA to restore the antibiotic activity of ATM is severely limited in MBL-producing multidrug-resistant (MDR) Pseudomonas aeruginosa strains because of the myriad of intrinsic and acquired resistance mechanisms associated with this pathogen. We reasoned that the simultaneous inhibition of multiple targets associated with multidrug resistance mechanisms may potentiate the antibiotic activity of ATM against MBL-producing P. aeruginosa. During a search for the multitarget inhibitors through a molecular docking study, we discovered that di-F-Q, the previously reported efflux pump inhibitor of MDR P. aeruginosa, binds to the active sites of the efflux pump (MexB), as well as various β-lactamases, and these sites are open to the 3-O-position of di-F-Q. The 3-O-substituted di-F-Q derivatives were thus synthesized and showed hereto unknown multitarget MDR inhibitory activity against various ATM-hydrolyzing β-lactamases (AmpC, KPC, and New Delhi metallo-β-lactamase (NDM)) and the efflux pump of P. aeruginosa, presumably by forming additional hydrophobic contacts with the targets. The multitarget MDR inhibitor 27 effectively potentiated the antimicrobial activity of ATM and reduced the MIC of ATM more than four-fold in 19 out of 21 MBL-producing P. aeruginosa clinical strains, including the NDM-producing strains which were highly resistant to various combinations of ATM with β-lactamase inhibitors and/or efflux pump inhibitors. Our findings suggest that the simultaneous inhibition of multiple MDR targets might provide new avenues for the discovery of safe and efficient MDR reversal agents which can be used in combination with ATM against MBL-producing MDR P. aeruginosa. Full article
(This article belongs to the Special Issue Recent Advances in Prevention and Treatment of Infectious Diseases)
Show Figures

Figure 1

25 pages, 5051 KiB  
Article
PEG–Lipid–PLGA Hybrid Particles for Targeted Delivery of Anti-Inflammatory Drugs
by Jana Ismail, Lea C. Klepsch, Philipp Dahlke, Ekaterina Tsarenko, Antje Vollrath, David Pretzel, Paul M. Jordan, Kourosh Rezaei, Justyna A. Czaplewska, Steffi Stumpf, Baerbel Beringer-Siemers, Ivo Nischang, Stephanie Hoeppener, Oliver Werz and Ulrich S. Schubert
Pharmaceutics 2024, 16(2), 187; https://doi.org/10.3390/pharmaceutics16020187 - 28 Jan 2024
Viewed by 1432
Abstract
Hybrid nanoparticles (HNPs) were designed by combining a PLGA core with a lipid shell that incorporated PEG–Lipid conjugates with various functionalities (-RGD, -cRGD, -NH2, and -COOH) to create targeted drug delivery systems. Loaded with a neutral lipid orange dye, the HNPs [...] Read more.
Hybrid nanoparticles (HNPs) were designed by combining a PLGA core with a lipid shell that incorporated PEG–Lipid conjugates with various functionalities (-RGD, -cRGD, -NH2, and -COOH) to create targeted drug delivery systems. Loaded with a neutral lipid orange dye, the HNPs were extensively characterized using various techniques and investigated for their uptake in human monocyte-derived macrophages (MDMs) using FC and CLSM. Moreover, the best-performing HNPs (i.e., HNP-COOH and HNP-RGD as well as HNP-RGD/COOH mixed) were loaded with the anti-inflammatory drug BRP-201 and prepared in two size ranges (dH ~140 nm and dH ~250 nm). The HNPs were examined further for their stability, degradation, MDM uptake, and drug delivery efficiency by studying the inhibition of 5-lipoxygenase (5-LOX) product formation, whereby HNP-COOH and HNP-RGD both exhibited superior uptake, and the HNP-COOH/RGD (2:1) displayed the highest inhibition. Full article
Show Figures

Graphical abstract

51 pages, 4394 KiB  
Review
Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments
by Konstantinos Avgoustakis and Athina Angelopoulou
Pharmaceutics 2024, 16(2), 179; https://doi.org/10.3390/pharmaceutics16020179 - 26 Jan 2024
Viewed by 1024
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of [...] Read more.
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials’ properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness. Full article
Show Figures

Scheme 1

27 pages, 6292 KiB  
Review
Improving the Efficacy of Common Cancer Treatments via Targeted Therapeutics towards the Tumour and Its Microenvironment
by Daniel Cecchi, Nolan Jackson, Wayne Beckham and Devika B. Chithrani
Pharmaceutics 2024, 16(2), 175; https://doi.org/10.3390/pharmaceutics16020175 - 26 Jan 2024
Viewed by 1299
Abstract
Cancer is defined as the uncontrolled proliferation of heterogeneous cell cultures in the body that develop abnormalities and mutations, leading to their resistance to many forms of treatment. Left untreated, these abnormal cell growths can lead to detrimental and even fatal complications for [...] Read more.
Cancer is defined as the uncontrolled proliferation of heterogeneous cell cultures in the body that develop abnormalities and mutations, leading to their resistance to many forms of treatment. Left untreated, these abnormal cell growths can lead to detrimental and even fatal complications for patients. Radiation therapy is involved in around 50% of cancer treatment workflows; however, it presents significant recurrence rates and normal tissue toxicity, given the inevitable deposition of the dose to the surrounding healthy tissue. Chemotherapy is another treatment modality with excessive normal tissue toxicity that significantly affects patients’ quality of life. To improve the therapeutic efficacy of radiotherapy and chemotherapy, multiple conjunctive modalities have been proposed, which include the targeting of components of the tumour microenvironment inhibiting tumour spread and anti-therapeutic pathways, increasing the oxygen content within the tumour to revert the hypoxic nature of the malignancy, improving the local dose deposition with metal nanoparticles, and the restriction of the cell cycle within radiosensitive phases. The tumour microenvironment is largely responsible for inhibiting nanoparticle capture within the tumour itself and improving resistance to various forms of cancer therapy. In this review, we discuss the current literature surrounding the administration of molecular and nanoparticle therapeutics, their pharmacokinetics, and contrasting mechanisms of action. The review aims to demonstrate the advancements in the field of conjugated nanomaterials and radiotherapeutics targeting, inhibiting, or bypassing the tumour microenvironment to promote further research that can improve treatment outcomes and toxicity rates. Full article
Show Figures

Figure 1

18 pages, 2330 KiB  
Article
A Tunable Glycosaminoglycan–Peptide Nanoparticle Platform for the Protection of Therapeutic Peptides
by Harkanwalpreet Sodhi and Alyssa Panitch
Pharmaceutics 2024, 16(2), 173; https://doi.org/10.3390/pharmaceutics16020173 - 25 Jan 2024
Viewed by 724
Abstract
The popularity of Glycosaminoglycans (GAGs) in drug delivery systems has grown as their innate ability to sequester and release charged molecules makes them adept in the controlled release of therapeutics. However, peptide therapeutics have been relegated to synthetic, polymeric systems, despite their high [...] Read more.
The popularity of Glycosaminoglycans (GAGs) in drug delivery systems has grown as their innate ability to sequester and release charged molecules makes them adept in the controlled release of therapeutics. However, peptide therapeutics have been relegated to synthetic, polymeric systems, despite their high specificity and efficacy as therapeutics because they are rapidly degraded in vivo when not encapsulated. We present a GAG-based nanoparticle system for the easy encapsulation of cationic peptides, which offers control over particle diameter, peptide release behavior, and swelling behavior, as well as protection from proteolytic degradation, using a singular, organic polymer and no covalent linkages. These nanoparticles can encapsulate cargo with a particle diameter range spanning 130–220 nm and can be tuned to release cargo over a pH range of 4.5 to neutral through the modulation of the degree of sulfation and the molecular weight of the GAG. This particle system also confers better in vitro performance than the unencapsulated peptide via protection from enzymatic degradation. This method provides a facile way to protect therapeutic peptides via the inclusion of the presented binding sequence and can likely be expanded to larger, more diverse cargo as well, abrogating the complexity of previously demonstrated systems while offering broader tunability. Full article
Show Figures

Figure 1

27 pages, 2488 KiB  
Review
An Overview of Biofilm-Associated Infections and the Role of Phytochemicals and Nanomaterials in Their Control and Prevention
by Tsvetozara Damyanova, Petya D. Dimitrova, Dayana Borisova, Tanya Topouzova-Hristova, Emi Haladjova and Tsvetelina Paunova-Krasteva
Pharmaceutics 2024, 16(2), 162; https://doi.org/10.3390/pharmaceutics16020162 - 24 Jan 2024
Viewed by 1324
Abstract
Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable [...] Read more.
Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable of inhibiting biofilm formation. This is considered a promising antivirulence strategy that could potentially overcome antibiotic resistance issues. Effective antibiofilm agents should possess distinctive properties. They should be structurally unique, enable easy entry into cells, influence quorum sensing signaling, and synergize with other antibacterial agents. Many of these properties are found in both natural systems that are isolated from plants and in synthetic systems like nanoparticles and nanocomposites. In this review, we discuss the clinical nature of biofilm-associated infections and some of the mechanisms associated with their antibiotic tolerance. We focus on the advantages and efficacy of various natural and synthetic compounds as a new therapeutic approach to control bacterial biofilms and address multidrug resistance in bacteria. Full article
Show Figures

Figure 1

16 pages, 3612 KiB  
Article
Innovative Multilayer Electrospun Patches for the Slow Release of Natural Oily Extracts as Dressings to Boost Wound Healing
by Noemi Fiaschini, Fiorella Carnevali, Stephen Andrew Van der Esch, Roberta Vitali, Mariateresa Mancuso, Maria Sulli, Gianfranco Diretto, Anna Negroni and Antonio Rinaldi
Pharmaceutics 2024, 16(2), 159; https://doi.org/10.3390/pharmaceutics16020159 - 24 Jan 2024
Viewed by 919
Abstract
Electrospinning is an advanced manufacturing strategy used to create innovative medical devices from continuous nanoscale fibers that is endowed with tunable biological, chemical, and physical properties. Innovative medical patches manufactured entirely by electrospinning are discussed in this paper, using a specific plant-derived formulation [...] Read more.
Electrospinning is an advanced manufacturing strategy used to create innovative medical devices from continuous nanoscale fibers that is endowed with tunable biological, chemical, and physical properties. Innovative medical patches manufactured entirely by electrospinning are discussed in this paper, using a specific plant-derived formulation “1 Primary Wound Dressing©” (1-PWD) as an active pharmaceutical ingredient (API). 1-PWD is composed of neem oil (Azadirachta indica A. Juss.) and the oily extracts of Hypericum perforatum (L.) flowers, according to the formulation patented by the ENEA of proven therapeutic efficacy as wound dressings. The goal of this work is to encapsulate this API and demonstrate that its slow release from an engineered electrospun patch can increase the therapeutic efficacy for wound healing. The prototyped patch is a three-layer core–shell membrane, with a core made of fibers from a 1-PWD-PEO blend, enveloped within two external layers made of medical-grade polycaprolactone (PCL), ensuring mechanical strength and integrity during manipulation. The system was characterized via electron microscopy (SEM) and chemical and contact angle tests. The encapsulation, release, and efficacy of the API were confirmed by FTIR and LC-HRMS and were validated via in vitro toxicology and scratch assays. Full article
(This article belongs to the Special Issue Nanofibrous Scaffolds Application in Biomedicine)
Show Figures

Figure 1

22 pages, 2187 KiB  
Review
Nano-Formulations for Pulmonary Delivery: Past, Present, and Future Perspectives
by Siyuan Peng, Wenhao Wang, Rui Zhang, Chuanbin Wu, Xin Pan and Zhengwei Huang
Pharmaceutics 2024, 16(2), 161; https://doi.org/10.3390/pharmaceutics16020161 - 24 Jan 2024
Viewed by 1175
Abstract
With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and [...] Read more.
With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and increasing drug bioavailability. They are expected to solve the difficulties faced in treating lung diseases. However, limited success has been recorded in the industrialization translation of inhalable nano-formulations. Only one relevant product has been approved by the FDA to date, suggesting that there are still many issues to be resolved in the clinical application of inhalable nano-formulations. These systems are characterized by a dependence on inhalation devices, while the adaptability of device formulation is still inconclusive, which is the most important issue impeding translational research. In this review, we categorized various inhalable nano-formulations, summarized the advantages of inhalable nano-formulations over conventional inhalation formulations, and listed the inhalable nano-formulations undergoing clinical studies. We focused on the influence of inhalation devices on nano-formulations and analyzed their adaptability. After extensive analysis of the drug delivery mechanisms, technical processes, and limitations of different inhalation devices, we concluded that vibrating mesh nebulizers might be most suitable for delivering inhalable nano-formulations, and related examples were introduced to validate our view. Finally, we presented the challenges and outlook for future development. We anticipate providing an informative reference for the field. Full article
(This article belongs to the Special Issue Recent Advances in Pulmonary Inhalation of Nanoformulations)
Show Figures

Figure 1

15 pages, 6963 KiB  
Article
Chitosan-Functionalized Poly(β-Amino Ester) Hybrid System for Gene Delivery in Vaginal Mucosal Epithelial Cells
by Xueqin Gao, Dirong Dong, Chong Zhang, Yuxing Deng, Jiahui Ding, Shiqi Niu, Songwei Tan and Lili Sun
Pharmaceutics 2024, 16(1), 154; https://doi.org/10.3390/pharmaceutics16010154 - 22 Jan 2024
Viewed by 963
Abstract
Gene therapy displays great promise in the treatment of cervical cancer. The occurrence of cervical cancer is highly related to persistent human papilloma virus (HPV) infection. The HPV oncogene can be cleaved via gene editing technology to eliminate carcinogenic elements. However, the successful [...] Read more.
Gene therapy displays great promise in the treatment of cervical cancer. The occurrence of cervical cancer is highly related to persistent human papilloma virus (HPV) infection. The HPV oncogene can be cleaved via gene editing technology to eliminate carcinogenic elements. However, the successful application of the gene therapy method depends on effective gene delivery into the vagina. To improve mucosal penetration and adhesion ability, quaternized chitosan was introduced into the poly(β-amino ester) (PBAE) gene-delivery system in the form of quaternized chitosan-g-PBAE (QCP). At a mass ratio of PBAE:QCP of 2:1, the polymers exhibited the highest green fluorescent protein (GFP) transfection efficiency in HEK293T and ME180 cells, which was 1.1 and 5.4 times higher than that of PEI 25 kD. At this mass ratio, PBAE–QCP effectively compressed the GFP into spherical polyplex nanoparticles (PQ–GFP NPs) with a diameter of 255.5 nm. In vivo results indicated that owing to the mucopenetration and adhesion capability of quaternized CS, the GFP transfection efficiency of the PBAE–QCP hybrid system was considerably higher than those of PBAE and PEI 25 kD in the vaginal epithelial cells of Sprague–Dawley rats. Furthermore, the new system demonstrated low toxicity and good safety, laying an effective foundation for its further application in gene therapy. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

20 pages, 2604 KiB  
Article
Is Gender an Important Factor in the Precision Medicine Approach to Levocetirizine?
by Seung-Hyun Jeong, Ji-Hun Jang and Yong-Bok Lee
Pharmaceutics 2024, 16(1), 146; https://doi.org/10.3390/pharmaceutics16010146 - 21 Jan 2024
Viewed by 786
Abstract
Currently, there is insufficient information on the variability in levocetirizine pharmacometrics among individuals, a crucial aspect for establishing its clinical use. The gender differences in pharmacokinetics and the extent of variation in pharmacodynamics have not been definitively identified. The primary goal of this [...] Read more.
Currently, there is insufficient information on the variability in levocetirizine pharmacometrics among individuals, a crucial aspect for establishing its clinical use. The gender differences in pharmacokinetics and the extent of variation in pharmacodynamics have not been definitively identified. The primary goal of this study was to investigate gender differences in levocetirizine pharmacokinetics and quantitatively predict and compare how these gender-related pharmacokinetic differences impact pharmacodynamics, using population pharmacokinetic–pharmacodynamic modeling. Bioequivalence results for levocetirizine (only from the control formulation) were obtained from both healthy Korean men and women. Physiological and biochemical parameters for each individual were utilized as pharmacokinetic comparison and modeling data between genders. Pharmacodynamic modeling was performed using reported data on antihistamine responses following levocetirizine exposure. Gender, weight, body surface area, peripheral distribution volume, albumin, central–peripheral inter-compartmental clearance, and the fifth sequential absorption rate constant were explored as effective covariates. A comparison of the model simulation results showed a higher maximum concentration and faster plasma loss in females than in males, resulting in a faster recovery to baseline of the antihistamine effect; however, the absolute differences between genders in the mean values were not large within 10 ng/mL (for plasma concentrations) or % (wheal and flare size changes). Regarding the pharmacokinetics and pharmacodynamics of levocetirizine, the gender effect may not be significant when applying the usual dosage (5 mg/day). This study will be useful for bridging the knowledge gap in scientific precision medicine by introducing previously unconfirmed information regarding gender differences in levocetirizine pharmacometrics. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

23 pages, 4095 KiB  
Article
A Bilayer Microarray Patch (MAP) for HIV Pre-Exposure Prophylaxis: The Role of MAP Designs and Formulation Composition in Enhancing Long-Acting Drug Delivery
by Lalitkumar K. Vora, Ismaiel A. Tekko, Fabiana Volpe Zanutto, Akmal Sabri, Robert K. M. Choy, Jessica Mistilis, Priscilla Kwarteng, Courtney Jarrahian, Helen O. McCarthy and Ryan F. Donnelly
Pharmaceutics 2024, 16(1), 142; https://doi.org/10.3390/pharmaceutics16010142 - 20 Jan 2024
Viewed by 1040
Abstract
Microarray patches (MAPs) have shown great potential for efficient and patient-friendly drug delivery through the skin; however, improving their delivery efficiency for long-acting drug release remains a significant challenge. This research provides an overview of novel strategies aimed at enhancing the efficiency of [...] Read more.
Microarray patches (MAPs) have shown great potential for efficient and patient-friendly drug delivery through the skin; however, improving their delivery efficiency for long-acting drug release remains a significant challenge. This research provides an overview of novel strategies aimed at enhancing the efficiency of MAP delivery of micronized cabotegravir sodium (CAB Na) for HIV pre-exposure prophylaxis (PrEP). The refinement of microneedle design parameters, including needle length, shape, density, and arrangement, and the formulation properties, such as solubility, viscosity, polymer molecular weight, and stability, are crucial for improving penetration and release profiles. Additionally, a bilayer MAP optimization step was conducted by diluting the CAB Na polymeric mixture to localize the drug into the tips of the needles to enable rapid drug deposition into the skin following MAP application. Six MAP designs were analyzed and investigated with regard to delivery efficiency into the skin in ex vivo and in vivo studies. The improved MAP design and formulations were found to be robust and had more than 30% in vivo delivery efficiency, with plasma levels several-fold above the therapeutic concentration over a month. Repeated weekly dosing demonstrated the robustness of MAPs in delivering a consistent and sustained dose of CAB. In summary, CAB Na MAPs were able to deliver therapeutically relevant levels of drug. Full article
Show Figures

Figure 1

15 pages, 4260 KiB  
Article
Neuroprotective Effect of Polyvalent Immunoglobulins on Mouse Models of Chemotherapy-Induced Peripheral Neuropathy
by Mohamad Mroué, Flavien Bessaguet, Angélique Nizou, Laurence Richard, Franck Sturtz, Laurent Magy, Sylvie Bourthoumieu, Aurore Danigo and Claire Demiot
Pharmaceutics 2024, 16(1), 139; https://doi.org/10.3390/pharmaceutics16010139 - 20 Jan 2024
Viewed by 898
Abstract
The occurrence of neuropathic pain in chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting effect of many commonly-used anticancer agents. Polyvalent human immunoglobulins (hIg), used in the treatment of several peripheral neuropathies, may alleviate neuropathic pain. The aim of this project was to [...] Read more.
The occurrence of neuropathic pain in chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting effect of many commonly-used anticancer agents. Polyvalent human immunoglobulins (hIg), used in the treatment of several peripheral neuropathies, may alleviate neuropathic pain. The aim of this project was to investigate the preventive effect of hIg in two mouse models of CIPN, induced by vincristine (VCR, 100 µg/kg/d) and oxaliplatin (OXP, 6 mg/kg/3d). Human Ig were administered one day before the first injection of chemotherapy. The onset of CIPN and effects of hIg were assessed via functional tests and morphological analyses of sensory nerves. To evaluate the effect of hIg on chemotherapy cytotoxicity, viability assays were performed using hIg (0 to 12 mg/mL) combined with anticancer agents on human cancer cell lines. The preventive treatment with hIg alleviated tactile hypersensitivity and nerve injuries induced by VCR. It also alleviated tactile/cold hypersensitivities and nerve injuries induced by OXP. Treatment with hIg did not affect the cytotoxicity of either chemotherapy. Furthermore, in combination with VCR, hIg potentiated chemo-induced cell death. In conclusion, hIg is a promising therapy to prevent the onset of CIPN and potentiate chemotherapy effect on cancer, reinforcing the interest in hIg in the management of CIPN. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

22 pages, 4600 KiB  
Article
The Impact of Various Poly(vinylpyrrolidone) Polymers on the Crystallization Process of Metronidazole
by Luiza Orszulak, Taoufik Lamrani, Magdalena Tarnacka, Barbara Hachuła, Karolina Jurkiewicz, Patryk Zioła, Anna Mrozek-Wilczkiewicz, Ewa Kamińska and Kamil Kamiński
Pharmaceutics 2024, 16(1), 136; https://doi.org/10.3390/pharmaceutics16010136 - 19 Jan 2024
Viewed by 1089
Abstract
In this paper, we propose one-step synthetic strategies for obtaining well-defined linear and star-shaped polyvinylpyrrolidone (linPVP and starPVP). The produced macromolecules and a commercial PVP K30 with linear topology were investigated as potential matrices for suppressing metronidazole (MTZ) crystallization. Interestingly, [...] Read more.
In this paper, we propose one-step synthetic strategies for obtaining well-defined linear and star-shaped polyvinylpyrrolidone (linPVP and starPVP). The produced macromolecules and a commercial PVP K30 with linear topology were investigated as potential matrices for suppressing metronidazole (MTZ) crystallization. Interestingly, during the formation of binary mixtures (BMs) containing different polymers and MTZ, we found that linear PVPs exhibit maximum miscibility with the drug at a 50:50 weight ratio (w/w), while the star-shaped polymer mixes with MTZ even at a 30:70 w/w. To explain these observations, comprehensive studies of MTZ-PVP formulations with various contents of both components were performed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The obtained results clearly showed that the polymer’s topology plays a significant role in the type of interactions occurring between the matrix and MTZ. Additionally, we established that for MTZ-PVP 50:50 and 75:25 w/w BMs, linear polymers have the most substantial impact on inhibiting the crystallization of API. The star-shaped macromolecule turned out to be the least effective in stabilizing amorphous MTZ at these polymer concentrations. Nevertheless, long-term structural investigations of the MTZ-starPVP 30:70 w/w system (which is not achievable for linear PVPs) demonstrated its complete amorphousness for over one month. Full article
Show Figures

Graphical abstract

35 pages, 10219 KiB  
Review
Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up
by Rijo John, Jasmin Monpara, Shankar Swaminathan and Rahul Kalhapure
Pharmaceutics 2024, 16(1), 131; https://doi.org/10.3390/pharmaceutics16010131 - 19 Jan 2024
Cited by 1 | Viewed by 2751
Abstract
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic [...] Read more.
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic acids and messenger RNA. The advancement of efficient LNP-based delivery systems for biologics that can overcome their limitations remains a highly favorable formulation strategy. Moreover, given their small size, biocompatibility, and biodegradation, LNPs can proficiently transport therapeutic moiety into the cells without significant toxicity and adverse reactions. This is especially crucial for the existing and upcoming biopharmaceuticals since large molecules as a group present several challenges that can be overcome by LNPs. This review describes the LNP technology for the delivery of biologics and summarizes the developments in the chemistry, manufacturing, and characterization of lipids used in the development of LNPs for biologics. Finally, we present a perspective on the potential opportunities and the current challenges pertaining to LNP technology. Full article
(This article belongs to the Special Issue Innovative Drug Release and Vaccine Delivery Systems)
Show Figures

Figure 1

21 pages, 10997 KiB  
Article
Mesoporous Silica-Layered Gold Nanorod Core@Silver Shell Nanostructures for Intracellular SERS Imaging and Phototherapy
by Sun-Hwa Seo, Ara Joe, Hyo-Won Han, Panchanathan Manivasagan and Eue-Soon Jang
Pharmaceutics 2024, 16(1), 137; https://doi.org/10.3390/pharmaceutics16010137 - 19 Jan 2024
Viewed by 988
Abstract
Precision diagnosis-guided efficient treatment is crucial to extending the lives of cancer patients. The integration of surface-enhanced Raman scattering (SERS) imaging and phototherapy into a single nanoplatform has been considered a more accurate diagnosis and treatment strategy for cancer nanotheranostics. Herein, we constructed [...] Read more.
Precision diagnosis-guided efficient treatment is crucial to extending the lives of cancer patients. The integration of surface-enhanced Raman scattering (SERS) imaging and phototherapy into a single nanoplatform has been considered a more accurate diagnosis and treatment strategy for cancer nanotheranostics. Herein, we constructed a new type of mesoporous silica-layered gold nanorod core@silver shell nanostructures loaded with methylene blue (GNR@Ag@mSiO2-MB) as a multifunctional nanotheranostic agent for intracellular SERS imaging and phototherapy. The synthesized GNR@Ag@mSiO2-MB nanostructures possessed a uniform core–shell structure, strong near-infrared (NIR) absorbance, photothermal conversion efficiency (65%), dye loading ability, SERS signal, and Raman stability under phototherapy conditions. Under single 785 nm NIR laser irradiation, the intracellular GNR@Ag@mSiO2-MB nanostructures were dramatically decreased to <9%, which showed excellent photothermal and photodynamic effects toward cancer cell killing, indicating that the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) of the GNR@Ag@mSiO2-MB nanostructures could greatly enhance the therapeutic efficacy of cancer cell death. GNR@Ag@mSiO2-MB nanostructures demonstrated a strong Raman signal at 450 and 502 cm−1, corresponding to the δ(C–N–C) mode, suggesting that the Raman bands of GNR@Ag@mSiO2-MB nanostructures were more efficient to detect CT-26 cell SERS imaging with high specificity. Our results indicate that GNR@Ag@mSiO2-MB nanostructures offer an excellent multifunctional nanotheranostic platform for SERS imaging and synergistic anticancer phototherapy in the future. Full article
(This article belongs to the Special Issue Nanodynamic Therapies against Cancer and Microbial Infections)
Show Figures

Figure 1

33 pages, 3676 KiB  
Review
Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain
by Nergis Zeynep Renkler, Stefania Scialla, Teresa Russo, Ugo D’Amora, Iriczalli Cruz-Maya, Roberto De Santis and Vincenzo Guarino
Pharmaceutics 2024, 16(1), 134; https://doi.org/10.3390/pharmaceutics16010134 - 19 Jan 2024
Viewed by 1072
Abstract
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for [...] Read more.
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for brain cells can represent a key tool for tissue repair and regeneration. Indeed, this is crucial to support cell growth, mitigate inflammation phenomena and provide adequate structural properties needed to support the damaged tissue, corroborating the activity of the vascular network and ultimately the functionality of neurons. In this context, electro-fluid dynamic techniques (EFDTs), i.e., electrospinning, electrospraying and related techniques, offer the opportunity to engineer a wide variety of composite substrates by integrating fibers, particles, and hydrogels at different scales—from several hundred microns down to tens of nanometers—for the generation of countless patterns of physical and biochemical cues suitable for influencing the in vitro response of coexistent brain cell populations mediated by the surrounding microenvironment. In this review, an overview of the different technological approaches—based on EFDTs—for engineering fibrous and/or particle-loaded composite substrates will be proposed. The second section of this review will primarily focus on describing current and future approaches to the use of composites for brain applications, ranging from therapeutic to diagnostic/theranostic use and from repair to regeneration, with the ultimate goal of providing insightful information to guide future research efforts toward the development of more efficient and reliable solutions. Full article
(This article belongs to the Special Issue Nanofibrous Scaffolds Application in Biomedicine)
Show Figures

Figure 1

16 pages, 2533 KiB  
Article
Biomolecules to Biomarkers? U87MG Marker Evaluation on the Path towards Glioblastoma Multiforme Pathogenesis
by Markéta Pokorná, Viera Kútna, Saak V. Ovsepian, Radoslav Matěj, Marie Černá and Valerie Bríd O’Leary
Pharmaceutics 2024, 16(1), 123; https://doi.org/10.3390/pharmaceutics16010123 - 18 Jan 2024
Viewed by 933
Abstract
The heterogeneity of the glioma subtype glioblastoma multiforme (GBM) challenges effective neuropathological treatment. The reliance on in vitro studies and xenografted animal models to simulate human GBM has proven ineffective. Currently, a dearth of knowledge exists regarding the applicability of cell line biomolecules [...] Read more.
The heterogeneity of the glioma subtype glioblastoma multiforme (GBM) challenges effective neuropathological treatment. The reliance on in vitro studies and xenografted animal models to simulate human GBM has proven ineffective. Currently, a dearth of knowledge exists regarding the applicability of cell line biomolecules to the realm of GBM pathogenesis. Our study’s objectives were to address this preclinical issue and assess prominin-1, ICAM-1, PARTICLE and GAS5 as potential GBM diagnostic targets. The methodologies included haemoxylin and eosin staining, immunofluorescence, in situ hybridization and quantitative PCR. The findings identified that morphology correlates with malignancy in GBM patient pathology. Immunofluorescence confocal microscopy revealed prominin-1 in pseudo-palisades adjacent to necrotic foci in both animal and human GBM. Evidence is presented for an ICAM-1 association with degenerating vasculature. Significantly elevated nuclear PARTICLE expression from in situ hybridization and quantitative PCR reflected its role as a tumor activator. GAS5 identified within necrotic GBM validated this potential prognostic biomolecule with extended survival. Here we present evidence for the stem cell marker prominin-1 and the chemotherapeutic target ICAM-1 in a glioma animal model and GBM pathology sections from patients that elicited alternative responses to adjuvant chemotherapy. This foremost study introduces the long non-coding RNA PARTICLE into the context of human GBM pathogenesis while substantiating the role of GAS5 as a tumor suppressor. The validation of GBM biomarkers from cellular models contributes to the advancement towards superior detection, therapeutic responders and the ultimate attainment of promising prognoses for this currently incurable brain cancer. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Glioblastoma)
Show Figures

Figure 1

18 pages, 7208 KiB  
Article
Antibiotics against Pseudomonas aeruginosa on Human Skin Cell Lines: Determination of the Highest Non-Cytotoxic Concentrations with Antibiofilm Capacity for Wound Healing Strategies
by María I. Quiñones-Vico, Ana Fernández-González, Ana Ubago-Rodríguez, Kirsten Moll, Anna Norrby-Teglund, Mattias Svensson, José Gutiérrez-Fernández, Jesús M. Torres and Salvador Arias-Santiago
Pharmaceutics 2024, 16(1), 117; https://doi.org/10.3390/pharmaceutics16010117 - 17 Jan 2024
Viewed by 1022
Abstract
Pseudomonas aeruginosa is one of the most common microorganisms causing infections of severe skin wounds. Antibiotic or antiseptic treatments are crucial to prevent and curb these infections. Antiseptics have been reported to be cytotoxic to skin cells and few studies evaluate the impact [...] Read more.
Pseudomonas aeruginosa is one of the most common microorganisms causing infections of severe skin wounds. Antibiotic or antiseptic treatments are crucial to prevent and curb these infections. Antiseptics have been reported to be cytotoxic to skin cells and few studies evaluate the impact of commonly used antibiotics. This study evaluates how clinical antibiotics affect skin cells’ viability, proliferation, migration, and cytokine secretion and defines the highest non-cytotoxic concentrations that maintain antibacterial activity. Cell proliferation, viability, and migration were evaluated on cell monolayers. Cytokines related to the wound healing process were determined. The minimum inhibitory concentrations and the impact on bacterial biofilm were assessed. Results showed that 0.02 mg/mL ciprofloxacin and 1 mg/mL meropenem are the highest non-cytotoxic concentrations for fibroblasts and keratinocytes while 1.25 mg/mL amikacin and 0.034 mg/mL colistin do not affect fibroblasts’ viability and cytokine secretion but have an impact on keratinocytes. These concentrations are above the minimum inhibitory concentration but only amikacin could eradicate the biofilm. For the other antibiotics, cytotoxic concentrations are needed to eradicate the biofilm. Combinations with colistin at non-cytotoxic concentrations effectively eliminate the biofilm. These results provide information about the concentrations required when administering topical antibiotic treatments on skin lesions, and how these antibiotics affect wound management therapies. This study set the basis for the development of novel antibacterial wound healing strategies such as antibiotic artificial skin substitutes. Full article
Show Figures

Graphical abstract

20 pages, 8957 KiB  
Article
Exploring the Ocular Absorption Pathway of Fasudil Hydrochloride towards Developing a Nanoparticulate Formulation with Improved Performance
by Barzan Osi, Ali A. Al-Kinani, Zinah K. Al-Qaysi, Mouhamad Khoder and Raid G. Alany
Pharmaceutics 2024, 16(1), 112; https://doi.org/10.3390/pharmaceutics16010112 - 15 Jan 2024
Viewed by 836
Abstract
Rho-kinase (ROCK) inhibitors represent a new category of anti-glaucoma medications. Among them, Fasudil hydrochloride, a selective ROCK inhibitor, has demonstrated promising outcomes in glaucoma treatment. It works by inhibiting the ROCK pathway, which plays a crucial role in regulating the trabecular meshwork and [...] Read more.
Rho-kinase (ROCK) inhibitors represent a new category of anti-glaucoma medications. Among them, Fasudil hydrochloride, a selective ROCK inhibitor, has demonstrated promising outcomes in glaucoma treatment. It works by inhibiting the ROCK pathway, which plays a crucial role in regulating the trabecular meshwork and canal of Schlemm’s aqueous humor outflow. This study aims to investigate the ocular absorption pathway of Fasudil hydrochloride and, subsequently, develop a nanoparticle-based delivery system for enhanced corneal absorption. Employing the ionic gelation method and statistical experimental design, the factors influencing chitosan nanoparticle (Cs NP) characteristics and performance were explored. Fasudil in vitro release and ex vivo permeation studies were performed, and Cs NP ocular tolerability and cytotoxicity on human lens epithelial cells were evaluated. Permeation studies on excised bovine eyes revealed significantly higher Fasudil permeation through the sclera compared to the cornea (370.0 μg/cm2 vs. 96.8 μg/cm2, respectively). The nanoparticle size (144.0 ± 15.6 nm to 835.9 ± 23.4 nm) and entrapment efficiency range achieved (17.2% to 41.4%) were predominantly influenced by chitosan quantity. Cs NPs showed a substantial improvement in the permeation of Fasudil via the cornea, along with slower release compared to the Fasudil aqueous solution. The results from the Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) and Bovine Corneal Opacity and Permeability (BCOP) tests indicated good conjunctival and corneal biocompatibility of the formulated chitosan nanoparticles, respectively. Lens epithelial cells displayed excellent tolerance to low concentrations of these nanoparticles (>94% cell viability). To the best of our knowledge, this is the first report on the ocular absorption pathway of topically applied Fasudil hydrochloride where the cornea has been identified as a potential barrier that could be overcome using Cs NPs. Full article
Show Figures

Figure 1

17 pages, 3307 KiB  
Article
The Development of an Oral Solution Containing Nirmatrelvir and Ritonavir and Assessment of Its Pharmacokinetics and Stability
by Lili Wang, Zhuang Ding, Zhengping Wang, Yanna Zhao, Hengqian Wu, Qipeng Wei, Lingfeng Gao and Jun Han
Pharmaceutics 2024, 16(1), 109; https://doi.org/10.3390/pharmaceutics16010109 - 14 Jan 2024
Viewed by 1018
Abstract
Paxlovid®, a co-packaged medication comprised of separate tablets containing two active ingredients, nirmatrelvir (NRV) and ritonavir (RTV), exhibits good effectiveness against coronavirus disease 2019 (COVID-19). However, the size of the NRV/RTV tablets makes them difficult for some patients to swallow, especially [...] Read more.
Paxlovid®, a co-packaged medication comprised of separate tablets containing two active ingredients, nirmatrelvir (NRV) and ritonavir (RTV), exhibits good effectiveness against coronavirus disease 2019 (COVID-19). However, the size of the NRV/RTV tablets makes them difficult for some patients to swallow, especially the elderly and those with dysphagia. Therefore, an oral liquid formulation that can overcome this shortcoming and improve patient compliance is required. In this study, we developed a liquid formulation containing NRV and RTV by adopting strategies that used co-solvents and surfactants to enhance the solubility and inhibit possible recrystallization. The in vitro release results showed that NRV and RTV could be maintained at high concentrations in solution for a certain period in the investigated media. In vivo studies in rats showed that the oral bioavailability of NRV/RTV solution was significantly enhanced. Compared to Paxlovid® tablets, the AUC(0–t) of NRV and RTV increased by 6.1 and 3.8 times, respectively, while the Cmax increased by 5.5 times for both. Furthermore, the promoting effect of the absorption of RTV on the bioavailability of NRV was confirmed. Experiments with a beagle showed a similar trend. Stability studies were also conducted at 4 °C, 25 °C, and 40 °C for 90 days, indicating that the oral liquid formulation was physically and chemically stable. This study can be used as a valuable resource for developing and applying oral liquid NRV/RTV formulations in a clinical context. Full article
(This article belongs to the Special Issue Pharmacokinetics of Orally Administered Drugs, 2nd Edition)
Show Figures

Figure 1

17 pages, 3748 KiB  
Article
Enhancing Liver Delivery of Gold Nanoclusters via Human Serum Albumin Encapsulation for Autoimmune Hepatitis Alleviation
by Cong Meng, Yu Liu, Yuping Ming, Cao Lu, Yanggege Li, Yulu Zhang, Dongdong Su, Xueyun Gao and Qing Yuan
Pharmaceutics 2024, 16(1), 110; https://doi.org/10.3390/pharmaceutics16010110 - 14 Jan 2024
Viewed by 958
Abstract
Peptide-protected gold nanoclusters (AuNCs), possessing exceptional biocompatibility and remarkable physicochemical properties, have demonstrated intrinsic pharmaceutical activity in immunomodulation, making them a highly attractive frontier in the field of nanomedicine exploration. Autoimmune hepatitis (AIH) is a serious autoimmune liver disease caused by the disruption [...] Read more.
Peptide-protected gold nanoclusters (AuNCs), possessing exceptional biocompatibility and remarkable physicochemical properties, have demonstrated intrinsic pharmaceutical activity in immunomodulation, making them a highly attractive frontier in the field of nanomedicine exploration. Autoimmune hepatitis (AIH) is a serious autoimmune liver disease caused by the disruption of immune balance, for which effective treatment options are still lacking. In this study, we initially identified glutathione (GSH)-protected AuNCs as a promising nanodrug candidate for AIH alleviating in a Concanavalin A (Con A)-induced mice model. However, to enhance treatment efficiency, liver-targeted delivery needs to be improved. Therefore, human serum albumin (HSA)-encapsulated AuNCs were constructed to achieve enhanced liver targeting and more potent mitigation of Con A-induced elevations in plasma aspartate transaminase (AST), alanine transaminase (ALT), and liver injury in mice. In vivo and in vitro mechanism studies indicated that AuNCs could suppress the secretion of IFN-γ by Con A-stimulated T cells and subsequently inhibit the activation of the JAK2/STAT1 pathway and eventual hepatocyte apoptosis induced by IFN-γ. These actions ultimately protect the liver from immune cell infiltration and damage caused by Con A. These findings suggest that bio-protected AuNCs hold promise as nanodrugs for AIH therapy, with their liver targeting capabilities and therapeutic efficiency being further improved via rational surface ligand engineering. Full article
(This article belongs to the Special Issue Nanosystems for Drug Delivery)
Show Figures

Figure 1

20 pages, 3698 KiB  
Article
Co-Delivery of a Novel Lipidated TLR7/8 Agonist and Hemagglutinin-Based Influenza Antigen Using Silica Nanoparticles Promotes Enhanced Immune Responses
by Walid M. Abdelwahab, Sarah Auclair, Timothy Borgogna, Karthik Siram, Alexander Riffey, Hélène G. Bazin, Howard B. Cottam, Tomoko Hayashi, Jay T. Evans and David J. Burkhart
Pharmaceutics 2024, 16(1), 107; https://doi.org/10.3390/pharmaceutics16010107 - 13 Jan 2024
Cited by 1 | Viewed by 1534
Abstract
Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen [...] Read more.
Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen hemagglutinin H7 (H7) to APCs. A-SNP of two different sizes (50 and 200 nm) were prepared and coated with INI-4001 at different coating densities, followed by co-adsorption of H7. Both INI-4001 and H7 showed >90% adsorption to the tested A-SNP formulations. TNF-α and IFN-α cytokine release by human peripheral blood mononuclear cells as well as TNF-α, IL-6, and IL-12 release by mouse bone marrow-derived dendritic cells revealed that the potency of the INI-4001-adsorbed A-SNP (INI-4001/A-SNP) formulations was improved relative to aqueous formulation control. This improved potency was dependent on particle size and ligand coating density. In addition, slow-release profiles of INI-4001 were measured from INI-4001/A-SNP formulations in plasma with 30–50% INI-4001 released after 7 days. In vivo murine immunization studies demonstrated significantly improved H7-specific humoral and Th1/Th17-polarized T cell immune responses with no observed adverse reactions. Low-density 50 nm INI-4001/A-SNP elicited significantly higher IFN-γ and IL-17 induction over that of the H7 antigen-only group and INI-4001 aqueous formulation controls. In summary, this work introduces an effective and biocompatible SNP-based co-delivery platform that enhances the immunogenicity of TLR7/8 agonist-adjuvanted subunit influenza vaccines. Full article
(This article belongs to the Special Issue Innovative Drug Release and Vaccine Delivery Systems)
Show Figures

Graphical abstract

12 pages, 3542 KiB  
Article
The Effect of Systemic Parameters and Baseline Characteristics in Short-Term Response Analysis with Intravitreal Ranibizumab in Treatment-Naive Patients with Neovascular Age-Related Macular Degeneration
by Laura García-Quintanilla, Pablo Almuiña-Varela, María José Rodríguez-Cid, María Gil-Martínez, Maximino J. Abraldes, Francisco Gómez-Ulla, Miguel González-Barcia, Cristina Mondelo-García, Ana Estany-Gestal, Francisco J. Otero-Espinar, Maribel Fernández-Rodríguez and Anxo Fernández-Ferreiro
Pharmaceutics 2024, 16(1), 105; https://doi.org/10.3390/pharmaceutics16010105 - 13 Jan 2024
Viewed by 833
Abstract
Anti-vascular endothelial growth factor drugs keep being the main therapy for neovascular age-related macular degeneration (AMD). Possible predictive parameters (demographic, biochemical and/or inflammatory) could anticipate short-term treatment response with ranibizumab. 46 treatment-naive patients were included in a prospective observational study. They underwent three [...] Read more.
Anti-vascular endothelial growth factor drugs keep being the main therapy for neovascular age-related macular degeneration (AMD). Possible predictive parameters (demographic, biochemical and/or inflammatory) could anticipate short-term treatment response with ranibizumab. 46 treatment-naive patients were included in a prospective observational study. They underwent three monthly injections of intravitreal ranibizumab for neovascular AMD and the clinical examination was made at baseline and one month after the third injection. Demographic characteristics, co-morbidities and concomitant treatments were recorded at the baseline visit. Biochemical parameters, complete blood count and inflammation biomarkers were also measured at these times. Uric Acid was found to be statistically significant with a one-point difference between good and poor responders in both basal and treated patients, but only in basal parameters was statistical significance reached (p = 0.007 vs. p = 0.071 in treated patients). Cholesterol and inflammatory parameters such as white blood cell count and neutrophils were significantly reduced over time when treated with intravitreal ranibizumab. On the other hand, women seemed to have a worse prognosis for short-term response to intravitreal ranibizumab treatment. Uric acid may help identify possible non-responders before initial treatment with ranibizumab, and cholesterol and white blood cells could be good candidates to monitor short-term response to ranibizumab treatment. Full article
Show Figures

Figure 1

15 pages, 4672 KiB  
Article
Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System
by Mena Asha Krishnan, Olawale A. Alimi, Tianshu Pan, Mitchell Kuss, Zeljka Korade, Guoku Hu, Bo Liu and Bin Duan
Pharmaceutics 2024, 16(1), 102; https://doi.org/10.3390/pharmaceutics16010102 - 12 Jan 2024
Cited by 1 | Viewed by 1533
Abstract
The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood–nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived [...] Read more.
The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood–nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived exosomes (Exos) have gained widespread attention as biocompatible vehicles for therapeutics in clinical applications. However, engineering targeted Exos for the peripheral nervous system (PNS) is still challenging. This study aims to develop a targeted Exo delivery system specifically designed for presynaptic terminals of peripheral nerve tissue. The clostridium neurotoxin, tetanus toxin-C fragment (TTC), was tethered to the surface of red blood cell (RBC)-derived Exos via a facile and efficient bio-orthogonal click chemistry method without a catalyst. Additionally, Cyanine5 (Cy5), a reactive fluorescent tag, was also conjugated to track Exo movement in both in vitro and in vivo models. Subsequently, Neuro-2a, a mouse neuronal cell line, was treated with dye-labeled Exos with/without TTC in vitro, and the results indicated that TTC-Exos exhibited more efficient accumulation along the soma and axonal circumference, compared to their unmodified counterparts. Further investigation, using a mouse model, revealed that within 72 h of intramuscular administration, engineered TTC-Exos were successfully transported into the neuromuscular junction and sciatic nerve tissues. These results indicated that TTC played a crucial role in the Exo delivery system, improving the affinity to peripheral nerves. These promising results underscore the potential of using targeted Exo carriers to deliver therapeutics for treating peripheral neuropathies. Full article
(This article belongs to the Special Issue Advances of Membrane Vesicles in Drug Delivery Systems, 2nd Edition)
Show Figures

Figure 1

32 pages, 2419 KiB  
Review
Assessment of In Vitro Release Testing Methods for Colloidal Drug Carriers: The Lack of Standardized Protocols
by Laura Gómez-Lázaro, Cristina Martín-Sabroso, Juan Aparicio-Blanco and Ana Isabel Torres-Suárez
Pharmaceutics 2024, 16(1), 103; https://doi.org/10.3390/pharmaceutics16010103 - 12 Jan 2024
Viewed by 1224
Abstract
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters [...] Read more.
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters in the development and quality control of drug-loaded nano- and microcarriers. This lack of standardized protocols occurs due to the difficulties encountered in separating the released drug from the encapsulated one. This review aims to compare the most frequent types of release testing methods (i.e., membrane diffusion techniques, sample and separate methods and in situ detection techniques) in terms of the advantages and disadvantages of each one and of the key parameters that influence drug release in each case. Full article
Show Figures

Graphical abstract

26 pages, 9454 KiB  
Article
3D-Printed Alginate/Pectin-Based Patches Loaded with Olive Leaf Extracts for Wound Healing Applications: Development, Characterization and In Vitro Evaluation of Biological Properties
by Francesco Patitucci, Marisa Francesca Motta, Marco Dattilo, Rocco Malivindi, Adele Elisabetta Leonetti, Giuseppe Pezzi, Sabrina Prete, Olga Mileti, Domenico Gabriele, Ortensia Ilaria Parisi and Francesco Puoci
Pharmaceutics 2024, 16(1), 99; https://doi.org/10.3390/pharmaceutics16010099 - 11 Jan 2024
Viewed by 1049
Abstract
Traditional wound dressings may lack suitability for diverse wound types and individual patient requirements. In this context, this study aimed to innovate wound care by developing a 3D-printed patch using alginate and pectin and incorporating Olive Leaf Extract (OLE) as an active ingredient. [...] Read more.
Traditional wound dressings may lack suitability for diverse wound types and individual patient requirements. In this context, this study aimed to innovate wound care by developing a 3D-printed patch using alginate and pectin and incorporating Olive Leaf Extract (OLE) as an active ingredient. Different polymer-to-plasticizer ratios were systematically examined to formulate a printable ink with optimal viscosity. The resultant film, enriched with OLE, exhibited a substantial polyphenolic content of 13.15 ± 0.41 mg CAE/g, showcasing significant antioxidant and anti-inflammatory properties. Notably, the film demonstrated potent scavenging abilities against DPPH, ABTS, and NO radicals, with IC50 values of 0.66 ± 0.07, 0.47 ± 0.04, and 2.02 ± 0.14 mg/mL, respectively. In vitro release and diffusion studies were carried out and the release profiles revealed an almost complete release of polyphenols from the patch within 48 h. Additionally, the fabricated film exhibited the capacity to enhance cell motility and accelerate wound healing, evidenced by increased collagen I expression in BJ fibroblast cells. Structural assessments affirmed the ability of the patch to absorb exudates and maintain the optimal moisture balance, while biocompatibility studies underscored its suitability for biomedical applications. These compelling findings endorse the potential application of the developed film in advanced wound care, with the prospect of tailoring patches to individual patient needs. Full article
(This article belongs to the Special Issue Polymer-Based Wound Dressings)
Show Figures

Graphical abstract

27 pages, 8711 KiB  
Review
Electrospun Antimicrobial Drug Delivery Systems and Hydrogels Used for Wound Dressings
by Zahra Moazzami Goudarzi, Angelika Zaszczyńska, Tomasz Kowalczyk and Paweł Sajkiewicz
Pharmaceutics 2024, 16(1), 93; https://doi.org/10.3390/pharmaceutics16010093 - 10 Jan 2024
Viewed by 1328
Abstract
Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort in patients. To solve this problem, scientists are working to create modern wound dressings with antibacterial additives, mainly because traditional materials cannot meet the general requirements for complex wounds [...] Read more.
Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort in patients. To solve this problem, scientists are working to create modern wound dressings with antibacterial additives, mainly because traditional materials cannot meet the general requirements for complex wounds and cannot promote wound healing. This demand is met by material engineering, through which we can create electrospun wound dressings. Electrospun wound dressings, as well as those based on hydrogels with incorporated antibacterial compounds, can meet these requirements. This manuscript reviews recent materials used as wound dressings, discussing their formation, application, and functionalization. The focus is on presenting dressings based on electrospun materials and hydrogels. In contrast, recent advancements in wound care have highlighted the potential of thermoresponsive hydrogels as dynamic and antibacterial wound dressings. These hydrogels contain adaptable polymers that offer targeted drug delivery and show promise in managing various wound types while addressing bacterial infections. In this way, the article is intended to serve as a compendium of knowledge for researchers, medical practitioners, and biomaterials engineers, providing up-to-date information on the state of the art, possibilities of innovative solutions, and potential challenges in the area of materials used in dressings. Full article
(This article belongs to the Special Issue Local Antibacterial and Antimicrobial Drug Delivery Systems)
Show Figures

Figure 1

0 pages, 2576 KiB  
Review
Towards More Precise Targeting of Inhaled Aerosols to Different Areas of the Respiratory System
by Tomasz R. Sosnowski
Pharmaceutics 2024, 16(1), 97; https://doi.org/10.3390/pharmaceutics16010097 - 10 Jan 2024
Viewed by 1229
Abstract
Pharmaceutical aerosols play a key role in the treatment of lung disorders, but also systemic diseases, due to their ability to target specific areas of the respiratory system (RS). This article focuses on identifying and clarifying the influence of various factors involved in [...] Read more.
Pharmaceutical aerosols play a key role in the treatment of lung disorders, but also systemic diseases, due to their ability to target specific areas of the respiratory system (RS). This article focuses on identifying and clarifying the influence of various factors involved in the generation of aerosol micro- and nanoparticles on their regional distribution and deposition in the RS. Attention is given to the importance of process parameters during the aerosolization of liquids or powders and the role of aerosol flow dynamics in the RS. The interaction of deposited particles with the fluid environment of the lung is also pointed out as an important step in the mass transfer of the drug to the RS surface. The analysis presented highlights the technical aspects of preparing the precursors to ensure that the properties of the aerosol are suitable for a given therapeutic target. Through an analysis of existing technical limitations, selected strategies aimed at enhancing the effectiveness of targeted aerosol delivery to the RS have been identified and presented. These strategies also include the use of smart inhaling devices and systems with built-in AI algorithms. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Respiratory Diseases)
Show Figures

Figure 1

15 pages, 766 KiB  
Article
Pharmacokinetic Interpretation of Applying Local Drug Delivery System for the Treatment of Deep Surgical Site Infection in the Spine
by Ahmad Khalid Madadi and Moon-Jun Sohn
Pharmaceutics 2024, 16(1), 94; https://doi.org/10.3390/pharmaceutics16010094 - 10 Jan 2024
Viewed by 1202
Abstract
Surgical site infections (SSIs) after spinal surgery present significant challenges, including poor antibiotic penetration and biofilm formation on implants, leading to frequent treatment failures. Polymethylmethacrylate (PMMA) is widely used for localized drug delivery in bone infections, yet quantifying individual drug release kinetics is [...] Read more.
Surgical site infections (SSIs) after spinal surgery present significant challenges, including poor antibiotic penetration and biofilm formation on implants, leading to frequent treatment failures. Polymethylmethacrylate (PMMA) is widely used for localized drug delivery in bone infections, yet quantifying individual drug release kinetics is often impractical. This retrospective study analyzed 23 cases of deep SSIs (DSSIs) following spinal surgery treated with antibiotic-loaded PMMA. A mathematical model estimated personalized drug release kinetics from PMMA, considering disease types, pathogens, and various antibiotics. The study found that vancomycin (VAN), ceftriaxone (CRO), and ceftazidime (CAZ) reached peak concentrations of 15.43%, 15.42%, and 15.41%, respectively, within the first two days, which was followed by a lag phase (4.91–4.92%) on days 2–3. On days 5–7, concentrations stabilized, with CRO at 3.22% and CAZ/VAN between 3.63% and 3.65%, averaging 75.4 µg/cm2. Key factors influencing release kinetics include solubility, diffusivity, porosity, tortuosity, and bead diameter. Notably, a patient with a low glomerular filtration rate (ASA IV) was successfully treated with a shortened 9-day intravenous VAN regimen, avoiding systemic complications. This study affirms the effectiveness of local drug delivery systems (DDS) in treating DSSIs and underscores the value of mathematical modeling in determining drug release kinetics. Further research is essential to optimize release rates and durations and to mitigate risks of burst release and tissue toxicity. Full article
Show Figures

Figure 1

17 pages, 674 KiB  
Review
Vaccines to Treat Substance Use Disorders: Current Status and Future Directions
by Tangsheng Lu, Xue Li, Wei Zheng, Chenyan Kuang, Bingyi Wu, Xiaoxing Liu, Yanxue Xue, Jie Shi, Lin Lu and Ying Han
Pharmaceutics 2024, 16(1), 84; https://doi.org/10.3390/pharmaceutics16010084 - 08 Jan 2024
Viewed by 1506
Abstract
Addiction, particularly in relation to psychostimulants and opioids, persists as a global health crisis with profound social and economic ramifications. Traditional interventions, including medications and behavioral therapies, often encounter limited success due to the chronic and relapsing nature of addictive disorders. Consequently, there [...] Read more.
Addiction, particularly in relation to psychostimulants and opioids, persists as a global health crisis with profound social and economic ramifications. Traditional interventions, including medications and behavioral therapies, often encounter limited success due to the chronic and relapsing nature of addictive disorders. Consequently, there is significant interest in the development of innovative therapeutics to counteract the effects of abused substances. In recent years, vaccines have emerged as a novel and promising strategy to tackle addiction. Anti-drug vaccines are designed to stimulate the immune system to produce antibodies that bind to addictive compounds, such as nicotine, cocaine, morphine, methamphetamine, and heroin. These antibodies effectively neutralize the target molecules, preventing them from reaching the brain and eliciting their rewarding effects. By obstructing the rewarding sensations associated with substance use, vaccines aim to reduce cravings and the motivation to engage in drug use. Although anti-drug vaccines hold significant potential, challenges remain in their development and implementation. The reversibility of vaccination and the potential for combining vaccines with other addiction treatments offer promise for improving addiction outcomes. This review provides an overview of anti-drug vaccines, their mechanisms of action, and their potential impact on treatment for substance use disorders. Furthermore, this review summarizes recent advancements in vaccine development for each specific drug, offering insights for the development of more effective and personalized treatments capable of addressing the distinct challenges posed by various abused substances. Full article
(This article belongs to the Special Issue Advances in Vaccines for Substance Use Disorders)
Show Figures

Figure 1

0 pages, 5202 KiB  
Article
Combined Role of Interleukin-15 Stimulated Natural Killer Cell-Derived Extracellular Vesicles and Carboplatin in Osimertinib-Resistant H1975 Lung Cancer Cells with EGFR Mutations
by Aakash Nathani, Li Sun, Islauddin Khan, Mounika Aare, Arvind Bagde, Yan Li and Mandip Singh
Pharmaceutics 2024, 16(1), 83; https://doi.org/10.3390/pharmaceutics16010083 - 08 Jan 2024
Viewed by 1512
Abstract
In this study, we evaluated IL-15 stimulated natural killer cell-derived EVs (NK-EVs) as therapeutic agents in vitro and in vivo in Osimertinib-resistant lung cancer (H1975R) with EGFR mutations (L858R) in combination with carboplatin (CBP). NK-EVs were isolated by ultracentrifugation and characterized by nanoparticle [...] Read more.
In this study, we evaluated IL-15 stimulated natural killer cell-derived EVs (NK-EVs) as therapeutic agents in vitro and in vivo in Osimertinib-resistant lung cancer (H1975R) with EGFR mutations (L858R) in combination with carboplatin (CBP). NK-EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis, and atomic force microscopy imaging revealed vesicles with a spherical form and sizes meeting the criteria of exosomal EVs. Further, Western blot studies demonstrated the presence of regular EV markers along with specific NK markers (perforin and granzyme). EVs were also characterized by proteomic analysis, which demonstrated that EVs had proteins for natural killer cell-mediated cytotoxicity (Granzyme B) and T cell activation (perforin and plastin-2). Gene oncology analysis showed that these differentially expressed proteins are involved in programmed cell death and positive regulation of cell death. Further, isolated NK-EVs were cytotoxic to H1975R cells in vitro in 2D and 3D cell cultures. CBP’s IC50 was reduced by approximately in 2D and 3D cell cultures when combined with NK-EVs. The EVs were then combined with CBP and administered by i.p. route to H1975R tumor xenografts, and a significant reduction in tumor volume in vivo was observed. Our findings show for the first time that NK-EVs target the PD-L1/PD-1 immunological checkpoint to induce apoptosis and anti-inflammatory response by downregulation of SOD2, PARP, BCL2, SET, NF-κB, and TGF-ß. The ability to isolate functional NK-EVs on a large scale and use them with platinum-based drugs may lead to new clinical applications. The results of the present study suggest the possibility of the combination of NK-cell-derived EVs and CBP as a viable immunochemotherapeutic strategy for resistant cancers. Full article
(This article belongs to the Special Issue Combination Therapeutic Delivery Systems)
Show Figures

Graphical abstract

13 pages, 3318 KiB  
Article
Flexible Coatings Facilitate pH-Targeted Drug Release via Self-Unfolding Foils: Applications for Oral Drug Delivery
by Carmen Milián-Guimerá, Laura De Vittorio, Reece McCabe, Nuray Göncü, Samvrta Krishnan, Lasse Højlund Eklund Thamdrup, Anja Boisen and Mahdi Ghavami
Pharmaceutics 2024, 16(1), 81; https://doi.org/10.3390/pharmaceutics16010081 - 06 Jan 2024
Viewed by 1332
Abstract
Ingestible self-configurable proximity-enabling devices have been developed as a non-invasive platform to improve the bioavailability of drug compounds via swellable or self-unfolding devices. Self-unfolding foils support unidirectional drug release in close proximity to the intestinal epithelium, the main drug absorption site following oral [...] Read more.
Ingestible self-configurable proximity-enabling devices have been developed as a non-invasive platform to improve the bioavailability of drug compounds via swellable or self-unfolding devices. Self-unfolding foils support unidirectional drug release in close proximity to the intestinal epithelium, the main drug absorption site following oral administration. The foils are loaded with a solid-state formulation containing the active pharmaceutical ingredient and then coated and rolled into enteric capsules. The coated lid must remain intact to ensure drug protection in the rolled state until targeted release in the small intestine after capsule disintegration. Despite promising results in previous studies, the deposition of an enteric top coating that remains intact after rolling is still challenging. In this study, we compare different mixtures of enteric polymers and a plasticizer, PEG 6000, as potential coating materials. We evaluate mechanical properties as well as drug protection and targeted release in gastric and intestinal media, respectively. Commercially available Eudragit® FL30D-55 appears to be the most suitable material due to its high strain at failure and integrity after capsule fitting. In vitro studies of coated foils in gastric and intestinal media confirm successful pH-triggered drug release. This indicates the potential advantage of the selected material in the development of self-unfolding foils for oral drug delivery. Full article
(This article belongs to the Special Issue Nano and Microdevices for Targeted Drug Delivery)
Show Figures

Figure 1

25 pages, 4065 KiB  
Article
Material-Sparing Feasibility Screening for Hot Melt Extrusion
by Amanda Pluntze, Scott Beecher, Maria Anderson, Dillon Wright and Deanna Mudie
Pharmaceutics 2024, 16(1), 76; https://doi.org/10.3390/pharmaceutics16010076 - 05 Jan 2024
Viewed by 1332
Abstract
Hot melt extrusion (HME) offers a high-throughput process to manufacture amorphous solid dispersions. A variety of experimental and model-based approaches exist to predict API solubility in polymer melts, but these methods are typically aimed at determining the thermodynamic solubility and do not take [...] Read more.
Hot melt extrusion (HME) offers a high-throughput process to manufacture amorphous solid dispersions. A variety of experimental and model-based approaches exist to predict API solubility in polymer melts, but these methods are typically aimed at determining the thermodynamic solubility and do not take into account kinetics of dissolution or the associated degradation of the API during thermal processing, both of which are critical considerations in generating a successful amorphous solid dispersion by HME. This work aims to develop a material-sparing approach for screening manufacturability of a given pharmaceutical API by HME using physically relevant time, temperature, and shear. Piroxicam, ritonavir, and phenytoin were used as model APIs with PVP VA64 as the dispersion polymer. We present a screening flowchart, aided by a simple custom device, that allows rapid formulation screening to predict both achievable API loadings and expected degradation from an HME process. This method has good correlation to processing with a micro compounder, a common HME screening industry standard, but only requires 200 mg of API or less. Full article
Show Figures

Graphical abstract

18 pages, 3677 KiB  
Article
New Formulation–Microporation Combination Approaches to Delivering Ciclopirox across Human Nails
by Juliana Kishishita, Camila de Almeida Perez Pimenta, Danielle Patricia Cerqueira Macedo, M. Begoña Delgado-Charro and Leila Bastos Leal
Pharmaceutics 2024, 16(1), 72; https://doi.org/10.3390/pharmaceutics16010072 - 04 Jan 2024
Viewed by 822
Abstract
Topical treatments for onychomycosis are of interest to those seeking to avoid systemic drug interactions and to improve systemic safety. This work aimed to develop aqueous-based, simple, and cost-effective vehicles that provide high solubility for ciclopirox and enable the delivery of an active [...] Read more.
Topical treatments for onychomycosis are of interest to those seeking to avoid systemic drug interactions and to improve systemic safety. This work aimed to develop aqueous-based, simple, and cost-effective vehicles that provide high solubility for ciclopirox and enable the delivery of an active through channels created by nail microporation. Following solubility tests, aqueous gels and thermogels based on hydroxypropylmethylcellulose and poloxamer 407, respectively, were loaded with 8% and 16% ciclopirox. Their performance was then compared to the marketed lacquer Micolamina® in in vitro release tests with artificial membranes and in in vitro permeation tests with human nail clippings with and without poration. Finally, a microbiological assay compared the best gel formulations and the reference product. Little correlation was observed between the in vitro release and the permeation data, and the drug release was highly membrane-dependent. Ciclopirox nail retention in single-dose, porated nails tests was larger than in daily-dosing, non-porated nail conditions. The series of new gel and thermogel vehicles delivered ciclopirox more effectively than Micolamina® in single-dose, porated nail experiments. The inhibition of Trichophyton rubrum activity was significantly increased with microporated nails when the gel formulations were applied but not with Micolamina®. Overall, the results suggest that the new vehicles could be successfully combined with nail microporation to improve the drug delivery and efficacy of topical antifungal medication while reducing the dosing frequency, facilitating patients’ adherence. Full article
(This article belongs to the Special Issue Advances in Topical and Transdermal Drug Delivery, 2nd Edition)
Show Figures

Figure 1

18 pages, 3524 KiB  
Review
Innovative Phosphorene Nanoplatform for Light Antimicrobial Therapy
by Elisa Passaglia and Antonella Sgarbossa
Pharmaceutics 2023, 15(12), 2748; https://doi.org/10.3390/pharmaceutics15122748 - 09 Dec 2023
Viewed by 1929
Abstract
Over the past few years, antibiotic resistance has reached global dimensions as a major threat to public health. Consequently, there is a pressing need to find effective alternative therapies and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely employed as a [...] Read more.
Over the past few years, antibiotic resistance has reached global dimensions as a major threat to public health. Consequently, there is a pressing need to find effective alternative therapies and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely employed as a clinical treatment for several malignant pathologies, has also gained importance as a promising antimicrobial approach. Antimicrobial PDT (aPDT) relies on the application of a photosensitizer able to produce singlet oxygen (1O2) or other cytotoxic reactive oxygen species (ROS) upon exposure to appropriate light, which leads to cell death after the induced photodamage. Among different types of 2D nanomaterials with antimicrobial properties, phosphorene, the exfoliated form of black phosphorus (bP), has the unique property intrinsic photoactivity exploitable for photothermal therapy (PTT) as well as for PDT against pathogenic bacteria. Full article
(This article belongs to the Special Issue Photodynamic Therapy: Rising Star in Pharmaceutical Applications)
Show Figures

Graphical abstract

22 pages, 4190 KiB  
Article
Investigation on Electrospun and Solvent-Casted PCL-PLGA Blends Scaffolds Embedded with Induced Pluripotent Stem Cells for Tissue Engineering
by Mariella Rosalia, Martina Giacomini, Erika Maria Tottoli, Rossella Dorati, Giovanna Bruni, Ida Genta, Enrica Chiesa, Silvia Pisani, Maurilio Sampaolesi and Bice Conti
Pharmaceutics 2023, 15(12), 2736; https://doi.org/10.3390/pharmaceutics15122736 - 06 Dec 2023
Viewed by 973
Abstract
The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence [...] Read more.
The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence of one of the two polymers, in order to investigate the contribution of the less concentrated polymer on the scaffolds’ properties. Physical–chemical characterization of ES scaffolds demonstrated that tailoring of fibre diameter and Young modulus (YM) was possible by controlling PCL concentration in PLGA-based blends, increasing the fibre diameter from 0.6 to 1.0 µm and reducing the YM from about 22 to 9 MPa. SC scaffolds showed a “bubble-like” topography, caused by the porogen spherical particles, which is responsible for decreasing the contact angles from about 110° in ES scaffolds to about 74° in SC specimens. Nevertheless, due to phase separation within the blend, solvent-casted samples displayed less reproducible properties. Furthermore, ES samples were characterised by 10-fold higher water uptake than SC scaffolds. The scaffolds suitability as iPSCs culturing support was evaluated using XTT assay, and pluripotency and integrin gene expression were investigated using RT-PCR and RT-qPCR. Thanks to their higher wettability and appropriate YM, SC scaffolds seemed to be superior in ensuring high cell viability over 5 days, whereas the ability to maintain iPSCs pluripotency status was found to be similar for ES and SC scaffolds. Full article
Show Figures

Graphical abstract

22 pages, 2695 KiB  
Review
Advances in NIR-Responsive Natural Macromolecular Hydrogel Assembly Drugs for Cancer Treatment
by Chenyu Zhao, Boyue Pan, Tianlin Wang, Huazhe Yang, David Vance, Xiaojia Li, Haiyang Zhao, Xinru Hu, Tianchang Yang, Zihao Chen, Liang Hao, Ting Liu and Yang Wang
Pharmaceutics 2023, 15(12), 2729; https://doi.org/10.3390/pharmaceutics15122729 - 04 Dec 2023
Viewed by 1226
Abstract
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage [...] Read more.
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology)
Show Figures

Graphical abstract

58 pages, 12931 KiB  
Review
Podophyllotoxin: Recent Advances in the Development of Hybridization Strategies to Enhance Its Antitumoral Profile
by Carolina Miranda-Vera, Ángela Patricia Hernández, Pilar García-García, David Díez, Pablo Anselmo García and María Ángeles Castro
Pharmaceutics 2023, 15(12), 2728; https://doi.org/10.3390/pharmaceutics15122728 - 04 Dec 2023
Cited by 2 | Viewed by 1131
Abstract
Podophyllotoxin is a naturally occurring cyclolignan isolated from rhizomes of Podophyllum sp. In the clinic, it is used mainly as an antiviral; however, its antitumor activity is even more interesting. While podophyllotoxin possesses severe side effects that limit its development as an anticancer [...] Read more.
Podophyllotoxin is a naturally occurring cyclolignan isolated from rhizomes of Podophyllum sp. In the clinic, it is used mainly as an antiviral; however, its antitumor activity is even more interesting. While podophyllotoxin possesses severe side effects that limit its development as an anticancer agent, nevertheless, it has become a good lead compound for the synthesis of derivatives with fewer side effects and better selectivity. Several examples, such as etoposide, highlight the potential of this natural product for chemomodulation in the search for new antitumor agents. This review focuses on the recent chemical modifications (2017–mid-2023) of the podophyllotoxin skeleton performed mainly at the C-ring (but also at the lactone D-ring and at the trimethoxyphenyl E-ring) together with their biological properties. Special emphasis is placed on hybrids or conjugates with other natural products (either primary or secondary metabolites) and other molecules (heterocycles, benzoheterocycles, synthetic drugs, and other moieties) that contribute to improved podophyllotoxin bioactivity. In fact, hybridization has been a good strategy to design podophyllotoxin derivatives with enhanced bioactivity. The way in which the two components are joined (directly or through spacers) was also considered for the organization of this review. This comprehensive perspective is presented with the aim of guiding the medicinal chemistry community in the design of new podophyllotoxin-based drugs with improved anticancer properties. Full article
(This article belongs to the Special Issue Recent Advances in Drug Targeting for Cancer Treatment)
Show Figures

Graphical abstract

10 pages, 746 KiB  
Article
Photodynamic Therapy Supported by Antitumor Lipids
by Mladen Korbelik
Pharmaceutics 2023, 15(12), 2723; https://doi.org/10.3390/pharmaceutics15122723 - 03 Dec 2023
Viewed by 865
Abstract
Photodynamic therapy (PDT) destroys tumors by generating cytotoxic oxidants that induce oxidative stress in targeted cancer cells. Antitumor lipids developed for cancer therapy act also by inflicting similar stress. The present study investigated whether tumor response to PDT can be improved by adjuvant [...] Read more.
Photodynamic therapy (PDT) destroys tumors by generating cytotoxic oxidants that induce oxidative stress in targeted cancer cells. Antitumor lipids developed for cancer therapy act also by inflicting similar stress. The present study investigated whether tumor response to PDT can be improved by adjuvant treatment with such lipids using the prototype molecule edelfosine. Cellular stress intensity following Photofrin-based PDT, edelfosine treatment, or their combination was assessed by the expression of heat shock protein 70 (HSP70) on the surface of treated SCCVII tumor cells by FITC-conjugated anti-HSP70 antibody staining and flow cytometry. Surface HSP70 levels that became elevated after either PDT or edelfosine rose much higher after their combined treatment. The impact of Photofrin-PDT-plus-edelfosine treatment was studied with three types of tumor models grown in syngeneic mice. With both SCCVII squamous cell carcinomas and MCA205 fibrosarcoma, the greatest impact was with edelfosine peritumoral injection at 24 h after PDT, which substantially improved tumor cure rates. With Lewis lung carcinomas, edelfosine was highly effective in elevating PDT-mediated tumor cure rates even when injected peritumorally immediately after PDT. Edelfosine used before PDT was ineffective as adjuvant with all tumor models. The study findings provide proof-in-principle for use of cancer lipids with tumor PDT. Full article
Show Figures

Figure 1

14 pages, 2553 KiB  
Article
Improved Therapeutic Efficacy of MT102, a New Anti-Inflammatory Agent, via a Self-Microemulsifying Drug Delivery System, in Ulcerative Colitis Mice
by Kshitis Chandra Baral, Sang Hoon Lee, Jae Geun Song, Seong Hoon Jeong and Hyo-Kyung Han
Pharmaceutics 2023, 15(12), 2720; https://doi.org/10.3390/pharmaceutics15122720 - 02 Dec 2023
Viewed by 958
Abstract
MT-102 is a new anti-inflammatory agent derived from Juglans mandshurica and Isatis indigotica. Its therapeutic potential is hindered by low aqueous solubility, impacting its in vivo efficacy. Therefore, this study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) for MT-102 to [...] Read more.
MT-102 is a new anti-inflammatory agent derived from Juglans mandshurica and Isatis indigotica. Its therapeutic potential is hindered by low aqueous solubility, impacting its in vivo efficacy. Therefore, this study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) for MT-102 to enhance its oral efficacy in treating ulcerative colitis. Solubility assessment in different oils, surfactants, and cosurfactants led to a SMEDDS formulation of MT-102 using Capmul MCM, Tween 80, and propylene glycol. Based on a pseudoternary phase diagram, the optimal SMEDDS composition was selected, which consisted of 15% Capmul MCM, 42.5% Tween 80, and 42.5% propylene glycol. The resulting optimized SMEDDS (SMEDDS-F1) exhibited a narrow size distribution (177.5 ± 2.80 nm) and high indirubin content (275 ± 5.58 µg/g, a biomarker). Across an acidic to neutral pH range, SMEDDS-F1 showed rapid and extensive indirubin release, with dissolution rates approximately 15-fold higher than pure MT-102. Furthermore, oral administration of SMEDDS-F1 effectively mitigated inflammatory progression and symptoms in a mouse model of ulcerative colitis, whereas pure MT-102 was ineffective. SMEDDS-F1 minimized body weight loss (less than 5%) without any significant change in colon length and the morphology of colonic tissues, compared to those of the healthy control group. In addition, oral administration of SMEDDS-F1 significantly inhibited the secretion of pro-inflammatory cytokines such as IL-6 and TNF-α. In conclusion, the SMEDDS-F1 formulation employing Capmul MCM, Tween 80, and propylene glycol (15:42.5:42.5, w/w) enhances the solubility and therapeutic efficacy of MT-102. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology in Korea)
Show Figures

Figure 1

20 pages, 4226 KiB  
Review
Natural Chalcones and Derivatives in Colon Cancer: Pre-Clinical Challenges and the Promise of Chalcone-Based Nanoparticles
by Soufyane Hba, Suzan Ghaddar, Hicham Wahnou, Aline Pinon, Riad El Kebbaj, Christelle Pouget, Vincent Sol, Bertrand Liagre, Mounia Oudghiri and Youness Limami
Pharmaceutics 2023, 15(12), 2718; https://doi.org/10.3390/pharmaceutics15122718 - 01 Dec 2023
Cited by 1 | Viewed by 1128
Abstract
Colon cancer poses a complex and substantial global health challenge, necessitating innovative therapeutic approaches. Chalcones, a versatile class of compounds with diverse pharmacological properties, have emerged as promising candidates for addressing colon cancer. Their ability to modulate pivotal signaling pathways in the development [...] Read more.
Colon cancer poses a complex and substantial global health challenge, necessitating innovative therapeutic approaches. Chalcones, a versatile class of compounds with diverse pharmacological properties, have emerged as promising candidates for addressing colon cancer. Their ability to modulate pivotal signaling pathways in the development and progression of colon cancer makes them invaluable as targeted therapeutics. Nevertheless, it is crucial to recognize that although chalcones exhibit promise, further pre-clinical studies are required to validate their efficacy and safety. The journey toward effective colon cancer treatment is multifaceted, involving considerations such as optimizing the sequencing of therapeutic agents, comprehending the resistance mechanisms, and exploring combination therapies incorporating chalcones. Furthermore, the integration of nanoparticle-based drug delivery systems presents a novel avenue for enhancing the effectiveness of chalcones in colon cancer treatment. This review delves into the mechanisms of action of natural chalcones and some derivatives. It highlights the challenges associated with their use in pre-clinical studies, while also underscoring the advantages of employing chalcone-based nanoparticles for the treatment of colon cancer. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies (Volume III))
Show Figures

Graphical abstract

20 pages, 1049 KiB  
Review
Recent Advancements in the Development of Nanocarriers for Mucosal Drug Delivery Systems to Control Oral Absorption
by Hideyuki Sato, Kohei Yamada, Masateru Miyake and Satomi Onoue
Pharmaceutics 2023, 15(12), 2708; https://doi.org/10.3390/pharmaceutics15122708 - 30 Nov 2023
Viewed by 919
Abstract
Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane [...] Read more.
Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane from foreign substances; however, in the absorption process after oral administration, it can also disturb effective drug absorption by trapping it in the biological sieve structured by mucin, a major component of mucus, and eliminating it by mucus turnover. Recently, functional nanocarriers (NCs) have attracted much attention due to their immense potential and effectiveness in the field of oral drug delivery. Among them, NCs with mucopenetrating and mucoadhesive properties are promising dosage options for controlling drug absorption from the GI tracts. Mucopenetrating and mucoadhesive NCs can rapidly deliver encapsulated drugs to the absorption site and/or prolong the residence time of NCs close to the absorption membrane, providing better medications than conventional approaches. The surface characteristics of NCs are important factors that determine their functionality, owing to the formation of various kinds of interactions between the particle surface and mucosal components. Thus, a deeper understanding of surface modifications on the biopharmaceutical characteristics of NCs is necessary to develop the appropriate mucosal drug delivery systems (mDDS) for the treatment of target diseases. This review summarizes the basic information and functions of the mucosal layer, highlights the recent progress in designing functional NCs for mDDS, and discusses their performance in the GI tract. Full article
Show Figures

Figure 1

18 pages, 3311 KiB  
Article
Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo
by Oleksandr Shapoval, David Větvička, Vitalii Patsula, Hana Engstová, Olga Kočková, Magdalena Konefał, Martina Kabešová and Daniel Horák
Pharmaceutics 2023, 15(12), 2694; https://doi.org/10.3390/pharmaceutics15122694 - 28 Nov 2023
Cited by 1 | Viewed by 925
Abstract
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case [...] Read more.
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer. Full article
(This article belongs to the Special Issue Advanced Nanopharmaceutics for Anticancer Therapy)
Show Figures

Figure 1

24 pages, 5567 KiB  
Article
Study of the Molecular Architectures of 2-(4-Chlorophenyl)-5-(pyrrolidin-1-yl)-2H-1,2,3-triazole-4-carboxylic Acid Using Their Vibrational Spectra, Quantum Chemical Calculations and Molecular Docking with MMP-2 Receptor
by Mauricio Alcolea Palafox, Nataliya P. Belskaya and Irena P. Kostova
Pharmaceutics 2023, 15(12), 2686; https://doi.org/10.3390/pharmaceutics15122686 - 27 Nov 2023
Viewed by 887
Abstract
1,2,3-triazole skeleton is a valuable building block for the discovery of new promising anticancer agents. In the present work, the molecular structure of the synthesized anticancer drug 2-(4-chlorophenyl)-5-(pyrrolidin-1-yl)-2H-1,2,3-triazole-4-carboxylic acid (1b) and its anionic form (2b) was characterized [...] Read more.
1,2,3-triazole skeleton is a valuable building block for the discovery of new promising anticancer agents. In the present work, the molecular structure of the synthesized anticancer drug 2-(4-chlorophenyl)-5-(pyrrolidin-1-yl)-2H-1,2,3-triazole-4-carboxylic acid (1b) and its anionic form (2b) was characterized by means of the B3LYP, M06-2X and MP2 quantum chemical methods, optimizing their monomer, cyclic dimer and stacking forms using the Gaussian16 program package. The molecular structure was found to be slightly out of plane. The good agreement between the IR and Raman bands experimentally observed in the solid state with those calculated theoretically confirms the synthesized structures. All of the bands were accurately assigned according to functional calculations (DFT) in the monomer and dimer forms, together with the polynomic scaling equation procedure (PSE). Therefore, the effect of the substituents on the triazole ring and the effect of the chlorine atom on the molecular structure and on the vibrational spectra were evaluated through comparison with its non-substituted form. Through molecular docking calculations, it was evaluated as to how molecule 1b interacts with few amino acids of the MMP-2 metalloproteinase receptor, using Sybyl-X 2.0 software. Thus, the relevance of triazole scaffolds in established hydrogen bond-type interactions was demonstrated. Full article
Show Figures

Figure 1

17 pages, 656 KiB  
Review
Intradermal Delivery of Naked mRNA Vaccines via Iontophoresis
by Mahadi Hasan, Anowara Khatun and Kentaro Kogure
Pharmaceutics 2023, 15(12), 2678; https://doi.org/10.3390/pharmaceutics15122678 - 26 Nov 2023
Viewed by 1690
Abstract
Messenger RNA (mRNA) vaccines against infectious diseases and for anticancer immunotherapy have garnered considerable attention. Currently, mRNA vaccines encapsulated in lipid nanoparticles are administrated via intramuscular injection using a needle. However, such administration is associated with pain, needle phobia, and lack of patient [...] Read more.
Messenger RNA (mRNA) vaccines against infectious diseases and for anticancer immunotherapy have garnered considerable attention. Currently, mRNA vaccines encapsulated in lipid nanoparticles are administrated via intramuscular injection using a needle. However, such administration is associated with pain, needle phobia, and lack of patient compliance. Furthermore, side effects such as fever and anaphylaxis associated with the lipid nanoparticle components are also serious problems. Therefore, noninvasive, painless administration of mRNA vaccines that do not contain other problematic components is highly desirable. Antigen-presenting cells reside in the epidermis and dermis, making the skin an attractive vaccination site. Iontophoresis (ItP) uses weak electric current applied to the skin surface and offers a noninvasive permeation technology that enables intradermal delivery of hydrophilic and ionic substances. ItP-mediated intradermal delivery of biological macromolecules has also been studied. Herein, we review the literature on the use of ItP technology for intradermal delivery of naked mRNA vaccines which is expected to overcome the challenges associated with mRNA vaccination. In addition to the physical mechanism, we discuss novel biological mechanisms of iontophoresis, particularly ItP-mediated opening of the skin barriers and the intracellular uptake pathway, and how the combined mechanisms can allow for effective intradermal delivery of mRNA vaccines. Full article
(This article belongs to the Special Issue Advances in the Development of mRNA Medicines and mRNA Vaccines)
Show Figures

Figure 1

Back to TopTop