Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Int. J. Mol. Sci., Volume 18, Issue 10 (October 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) A comprehensive screening effort was performed targeting the DNA damage-related kinase CK1. The [...] Read more.
View options order results:
result details:
Displaying articles 1-210
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

Open AccessEditorial Advances in Biomarkers for PCa Diagnostics and Prognostics—A Way towards Personalized Medicine
Int. J. Mol. Sci. 2017, 18(10), 2193; https://doi.org/10.3390/ijms18102193
Received: 10 October 2017 / Revised: 17 October 2017 / Accepted: 18 October 2017 / Published: 20 October 2017
PDF Full-text (219 KB) | HTML Full-text | XML Full-text
Abstract
Prostate cancer (PCa) is, with an estimated number of 161,360 cases and 26,730 deaths in 2017, the most common malignancy in the USA [...]
Full article

Research

Jump to: Editorial, Review, Other

Open AccessArticle A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes
Int. J. Mol. Sci. 2017, 18(10), 2010; https://doi.org/10.3390/ijms18102010
Received: 14 July 2017 / Revised: 4 September 2017 / Accepted: 12 September 2017 / Published: 21 September 2017
PDF Full-text (23861 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of
[...] Read more.
Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein–protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the perspective of intrinsic disorder provides useful information that can potentially lead to future experimental studies that may uncover latent and novel pathways associated with the disease. Full article
(This article belongs to the Section Molecular Biophysics)
Figures

Graphical abstract

Open AccessArticle Salmonella O48 Serum Resistance is Connected with the Elongation of the Lipopolysaccharide O-Antigen Containing Sialic Acid
Int. J. Mol. Sci. 2017, 18(10), 2022; https://doi.org/10.3390/ijms18102022
Received: 7 August 2017 / Revised: 9 September 2017 / Accepted: 12 September 2017 / Published: 21 September 2017
PDF Full-text (1265 KB) | HTML Full-text | XML Full-text
Abstract
Complement is one of the most important parts of the innate immune system. Some bacteria can gain resistance against the bactericidal action of complement by decorating their outer cell surface with lipopolysaccharides (LPSs) containing a very long O-antigen or with specific outer membrane
[...] Read more.
Complement is one of the most important parts of the innate immune system. Some bacteria can gain resistance against the bactericidal action of complement by decorating their outer cell surface with lipopolysaccharides (LPSs) containing a very long O-antigen or with specific outer membrane proteins. Additionally, the presence of sialic acid in the LPS molecules can provide a level of protection for bacteria, likening them to human cells, a phenomenon known as molecular mimicry. Salmonella O48, which contains sialic acid in the O-antigen, is the major cause of reptile-associated salmonellosis, a worldwide public health problem. In this study, we tested the effect of prolonged exposure to human serum on strains from Salmonella serogroup O48, specifically on the O-antigen length. After multiple passages in serum, three out of four tested strains became resistant to serum action. The gas-liquid chromatography/tandem mass spectrometry analysis showed that, for most of the strains, the average length of the LPS O-antigen increased. Thus, we have discovered a link between the resistance of bacterial cells to serum and the elongation of the LPS O-antigen. Full article
(This article belongs to the Special Issue Lipopolysaccharides (LPSs))
Figures

Graphical abstract

Open AccessArticle Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2
Int. J. Mol. Sci. 2017, 18(10), 2024; https://doi.org/10.3390/ijms18102024
Received: 18 August 2017 / Revised: 9 September 2017 / Accepted: 19 September 2017 / Published: 21 September 2017
PDF Full-text (6743 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae
[...] Read more.
The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa. Full article
(This article belongs to the Section Molecular Plant Sciences)
Figures

Graphical abstract

Open AccessArticle Isoliquiritigenin Induces Autophagy and Inhibits Ovarian Cancer Cell Growth
Int. J. Mol. Sci. 2017, 18(10), 2025; https://doi.org/10.3390/ijms18102025
Received: 28 June 2017 / Revised: 2 September 2017 / Accepted: 12 September 2017 / Published: 21 September 2017
Cited by 1 | PDF Full-text (3298 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Ovarian cancer is one of the commonest gynecologic malignancies, which has a poor prognosis for patients at the advanced stage. Isoliquiritigenin (ISL), an active flavonoid component of the licorice plant, previously demonstrated antioxidant, anti-inflammatory, and tumor suppressive effects. In this study, we investigated
[...] Read more.
Ovarian cancer is one of the commonest gynecologic malignancies, which has a poor prognosis for patients at the advanced stage. Isoliquiritigenin (ISL), an active flavonoid component of the licorice plant, previously demonstrated antioxidant, anti-inflammatory, and tumor suppressive effects. In this study, we investigated the antitumor effect of ISL on human ovarian cancer in vitro using the human ovarian cancer cell lines, OVCAR5 and ES-2, as model systems. Our results show that ISL significantly inhibited the viability of cancer cells in a concentration- and time-dependent manner. Flow cytometry analysis indicated that ISL induced G2/M phase arrest. Furthermore, the expression of cleaved PARP, cleaved caspase-3, Bax/Bcl-2 ratio, LC3B-II, and Beclin-1 levels were increased in western blot analysis. To clarify the role of autophagy and apoptosis in the effect of ISL, we used the autophagy inhibitor—3-methyladenine (3-MA) to attenuate the punctate fluorescence staining pattern of the p62/sequestosome 1 (SQSTM1, red fluorescence) and LC3 (green fluorescence) proteins after ISL treatment, and 3-MA inhibited the cytotoxicity of ISL. These findings provide new information about the link between ISL-induced autophagy and apoptosis and suggest that ISL is a candidate agent for the treatment of human ovarian cancer. Full article
(This article belongs to the Special Issue Autophagy at the Intersection of the Immune System and Cancer)
Figures

Figure 1

Open AccessArticle Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn
Int. J. Mol. Sci. 2017, 18(10), 2026; https://doi.org/10.3390/ijms18102026
Received: 18 August 2017 / Revised: 9 September 2017 / Accepted: 12 September 2017 / Published: 21 September 2017
Cited by 2 | PDF Full-text (1996 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive
[...] Read more.
Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP) colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils. Full article
(This article belongs to the Special Issue Plant Microbe Interaction 2017)
Figures

Graphical abstract

Open AccessArticle Targeted Delivery of siRNA with pH-Responsive Hybrid Gold Nanostars for Cancer Treatment
Int. J. Mol. Sci. 2017, 18(10), 2029; https://doi.org/10.3390/ijms18102029
Received: 7 September 2017 / Revised: 18 September 2017 / Accepted: 18 September 2017 / Published: 22 September 2017
Cited by 1 | PDF Full-text (2800 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this work, we report the engineering of gold nanostars (GNS) to deliver small interfering RNA (siRNA) into HepG2 cells. The ligand DG-PEG-Lipoic acid (LA)-Lys-9R (hydrazone) was designed to functionalize GNS, and create the nanoparticles named as 9R/DG-GNS (hydrazone). In the ligand, 2-deoxyglucose
[...] Read more.
In this work, we report the engineering of gold nanostars (GNS) to deliver small interfering RNA (siRNA) into HepG2 cells. The ligand DG-PEG-Lipoic acid (LA)-Lys-9R (hydrazone) was designed to functionalize GNS, and create the nanoparticles named as 9R/DG-GNS (hydrazone). In the ligand, 2-deoxyglucose (DG) is the targeting molecule, polyethylene glycol (PEG) helps to improve the dispersity and biocompatibility, 9-poly-d-arginine (9R) is employed to provide a positive surface charge and adsorb negative siRNA, and hydrazone bonds are pH-responsive and can avoid receptor-mediated endosomal recycling. Compared to GNS alone, 9R/DG-GNS (hydrazone) showed superior transfection efficiency. The expressions of cyclooxygenase-2 (COX-2) in HepG2 and SGC7901 cells were significantly suppressed by siRNA/9R/DG-GNS (hydrazone) complex. Notably, 9R/DG-GNS (hydrazone) possessed low cytotoxicity even at high concentrations in both normal cells and tumor cells. The combination treatment of siRNA/9R/DG-GNS (hydrazone) complex inhibited the cell growth rate by more than 75%. These results verified that the pH-responsive GNS complex is a promising siRNA delivery system for cancer therapy, and it is anticipated that near-infrared absorbing GNS with good photothermal conversion efficiency can be potentially used for photothermal therapy of tumors. Full article
(This article belongs to the collection Bioactive Nanoparticles)
Figures

Graphical abstract

Open AccessArticle Molecular Tools for the Detection and the Identification of Hymenoptera Parasitoids in Tortricid Fruit Pests
Int. J. Mol. Sci. 2017, 18(10), 2031; https://doi.org/10.3390/ijms18102031
Received: 30 August 2017 / Revised: 16 September 2017 / Accepted: 18 September 2017 / Published: 22 September 2017
PDF Full-text (717 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Biological control requires specific tools for the accurate detection and identification of natural enemies in order to estimate variations in their abundance and their impact according to changes in environmental conditions or agricultural practices. Here, we developed two molecular methods of detection based
[...] Read more.
Biological control requires specific tools for the accurate detection and identification of natural enemies in order to estimate variations in their abundance and their impact according to changes in environmental conditions or agricultural practices. Here, we developed two molecular methods of detection based on PCR-RFLP with universal primers and on PCR with specific primers to identify commonly occurring larval parasitoids of the tortricid fruit pests and to estimate parasitism in the codling moth. Both methods were designed based on DNA sequences of the COI mitochondrial gene for a range of parasitoids that emerged from Cydia pomonella and Grapholita molesta caterpillars (102 parasitoids; nine species) and a range of potential tortricid hosts (40 moths; five species) damaging fruits. The PCR-RFLP method (digestion by AluI of a 482 bp COI fragment) was very powerful to identify parasitoid adults and their hosts, but failed to detect parasitoid larvae within eggs or within young C. pomonella caterpillars. The PCR method based on specific primers amplified COI fragments of different lengths (131 to 463 bp) for Ascogaster quadridentata (Braconidae); Pristomerus vulnerator (Ichneumonidae); Trichomma enecator (Ichneumonidae); and Perilampus tristis (Perilampidae), and demonstrated a higher level of sensibility than the PCR-RFLP method. Molecular estimations of parasitism levels in a natural C. pomonella population with the specific primers did not differ from traditional estimations based on caterpillar rearing (about 60% parasitism in a non-treated apple orchard). These PCR-based techniques provide information about within-host parasitoid assemblage in the codling moth and preliminary results on the larval parasitism of major tortricid fruit pests. Full article
(This article belongs to the Special Issue Molecular Entomology of Insects of Economic Importance)
Figures

Graphical abstract

Open AccessArticle Viral-Cellular DNA Junctions as Molecular Markers for Assessing Intra-Tumor Heterogeneity in Cervical Cancer and for the Detection of Circulating Tumor DNA
Int. J. Mol. Sci. 2017, 18(10), 2032; https://doi.org/10.3390/ijms18102032
Received: 31 July 2017 / Revised: 6 September 2017 / Accepted: 14 September 2017 / Published: 22 September 2017
PDF Full-text (5981 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The development of cervical cancer is frequently accompanied by the integration of human papillomaviruses (HPV) DNA into the host genome. Viral-cellular junction sequences, which arise in consequence, are highly tumor specific. By using these fragments as markers for tumor cell origin, we examined
[...] Read more.
The development of cervical cancer is frequently accompanied by the integration of human papillomaviruses (HPV) DNA into the host genome. Viral-cellular junction sequences, which arise in consequence, are highly tumor specific. By using these fragments as markers for tumor cell origin, we examined cervical cancer clonality in the context of intra-tumor heterogeneity. Moreover, we assessed the potential of these fragments as molecular tumor markers and analyzed their suitability for the detection of circulating tumor DNA in sera of cervical cancer patients. For intra-tumor heterogeneity analyses tumors of 8 patients with up to 5 integration sites per tumor were included. Tumor islands were micro-dissected from cryosections of several tissue blocks representing different regions of the tumor. Each micro-dissected tumor area served as template for a single junction-specific PCR. For the detection of circulating tumor-DNA (ctDNA) junction-specific PCR-assays were applied to sera of 21 patients. Samples were collected preoperatively and during the course of disease. In 7 of 8 tumors the integration site(s) were shown to be homogenously distributed throughout different tumor regions. Only one tumor displayed intra-tumor heterogeneity. In 5 of 21 analyzed preoperative serum samples we specifically detected junction fragments. Junction-based detection of ctDNA was significantly associated with reduced recurrence-free survival. Our study provides evidence that HPV-DNA integration is as an early step in cervical carcinogenesis. Clonality with respect to HPV integration opens new perspectives for the application of viral-cellular junction sites as molecular biomarkers in a clinical setting such as disease monitoring. Full article
(This article belongs to the Special Issue Human Polyomaviruses and Papillomaviruses)
Figures

Graphical abstract

Open AccessCommunication Spatiotemporal Control of Doxorubicin Delivery from “Stealth-Like” Prodrug Micelles
Int. J. Mol. Sci. 2017, 18(10), 2033; https://doi.org/10.3390/ijms18102033
Received: 30 August 2017 / Revised: 14 September 2017 / Accepted: 18 September 2017 / Published: 22 September 2017
PDF Full-text (1737 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In the treatment of cancer, targeting of anticancer drugs to the tumor microenvironment is highly desirable. Not only does this imply accurate tumor targeting but also minimal drug release en route to the tumor and maximal drug release once there. Here we describe
[...] Read more.
In the treatment of cancer, targeting of anticancer drugs to the tumor microenvironment is highly desirable. Not only does this imply accurate tumor targeting but also minimal drug release en route to the tumor and maximal drug release once there. Here we describe high-loading, “stealth-like” doxorubicin micelles as a pro-drug delivery system, which upon light activation, leads to burst-like doxorbicin release. Through this approach, we show precise spatiotemporal control of doxorubicin delivery to cells in vitro. Full article
(This article belongs to the Special Issue Nanotechnology in Drug Delivery)
Figures

Graphical abstract

Open AccessCommunication A Novel Vav3 Homolog Identified in Lamprey, Lampetra japonica, with Roles in Lipopolysaccharide-Mediated Immune Response
Int. J. Mol. Sci. 2017, 18(10), 2035; https://doi.org/10.3390/ijms18102035
Received: 4 September 2017 / Revised: 19 September 2017 / Accepted: 20 September 2017 / Published: 22 September 2017
PDF Full-text (7434 KB) | HTML Full-text | XML Full-text
Abstract
Vav guanine nucleotide exchange factor 3 (Vav3), a Rho family GTPase, regulates multiple cell signaling pathways including those of T- and B-cell receptors in vertebrates through mediating the activities of the Rho family members. Whether the lamprey possesses Vav3 homolog and what role
[...] Read more.
Vav guanine nucleotide exchange factor 3 (Vav3), a Rho family GTPase, regulates multiple cell signaling pathways including those of T- and B-cell receptors in vertebrates through mediating the activities of the Rho family members. Whether the lamprey possesses Vav3 homolog and what role it plays in immune response remain unknown. Gene cloning, recombinant expression, antibody production and expression pattern analyses were performed to characterize the lamprey Vav3 in the current study. The lamprey Vav3 is closer to jawed vertebrates’ Vav3 molecules (about 53% identities in general) than to Vav2 molecules of jawless and jawed vertebrates (about 51% identities in general) in sequence similarity. Conserved motif analysis showed that the most distinguished parts between Vav3 and Vav2 proteins are their two Src-homology 3 domains. The relative expression levels of lamprey vav3 mRNA and protein were significantly up-regulated in lamprey lymphocytes and supraneural myeloid bodies after mixed-antigens stimulation, respectively. In addition, lamprey Vav3 were up-regulated drastically in lymphocytes and supraneural myeloid bodies after lipopolysaccharide (LPS) rather than phytohemagglutinin (PHA) stimulation. Lamprey Vav3 distributed in the cytoplasm of variable lymphocyte receptor B positive (VLRB+) lymphocytes, and the number of plasmacytes (VLRB and lamprey Vav3 double positive) in blood lymphocytes also increased after LPS stimulation. Our results proved that lamprey Vav3 was involved in the LPS-mediated immune reaction of lamprey and provided a clue for the further study of the precise role lamprey Vav3 played in the signaling pathway of lamprey VLRB+ lymphocytes. Full article
(This article belongs to the Special Issue Kinase Signal Transduction 2017)
Figures

Figure 1a

Open AccessArticle Differential Functional Roles of ALDH1A1 and ALDH1A3 in Mediating Metastatic Behavior and Therapy Resistance of Human Breast Cancer Cells
Int. J. Mol. Sci. 2017, 18(10), 2039; https://doi.org/10.3390/ijms18102039
Received: 5 September 2017 / Revised: 18 September 2017 / Accepted: 18 September 2017 / Published: 22 September 2017
Cited by 2 | PDF Full-text (2308 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Previous studies indicate that breast cancer cells with high aldehyde dehydrogenase (ALDH) activity and CD44 expression (ALDHhiCD44+) contribute to metastasis and therapy resistance, and that ALDH1 correlates with poor outcome in breast cancer patients. The current study hypothesized that
[...] Read more.
Previous studies indicate that breast cancer cells with high aldehyde dehydrogenase (ALDH) activity and CD44 expression (ALDHhiCD44+) contribute to metastasis and therapy resistance, and that ALDH1 correlates with poor outcome in breast cancer patients. The current study hypothesized that ALDH1 functionally contributes to breast cancer metastatic behavior and therapy resistance. Expression of ALDH1A1 or ALDH1A3 was knocked down in MDA-MB-468 and SUM159 human breast cancer cells using siRNA. Resulting impacts on ALDH activity (Aldefluor® assay); metastatic behavior and therapy response in vitro (proliferation/adhesion/migration/colony formation/chemotherapy and radiation) and extravasation/metastasis in vivo (chick choroiallantoic membrane assay) was assessed. Knockdown of ALDH1A3 but not ALDH1A1 in breast cancer cells decreased ALDH activity, and knockdown of ALDH1A1 reduced breast cancer cell metastatic behavior and therapy resistance relative to control (p < 0.05). In contrast, knockdown of ALDH1A3 did not alter proliferation, extravasation, or therapy resistance, but increased adhesion/migration and decreased colony formation/metastasis relative to control (p < 0.05). This is the first study to systematically examine the function of ALDH1 isozymes in individual breast cancer cell behaviors that contribute to metastasis. Our novel results indicate that ALDH1 mediates breast cancer metastatic behavior and therapy resistance, and that different enzyme isoforms within the ALDH1 family differentially impact these cell behaviors. Full article
(This article belongs to the Special Issue Chemical and Molecular Approach to Tumor Metastases)
Figures

Figure 1a

Open AccessArticle Genome-Wide Analysis of CCA1-Like Proteins in Soybean and Functional Characterization of GmMYB138a
Int. J. Mol. Sci. 2017, 18(10), 2040; https://doi.org/10.3390/ijms18102040
Received: 11 August 2017 / Revised: 10 September 2017 / Accepted: 20 September 2017 / Published: 22 September 2017
PDF Full-text (7601 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Plant CIRCADIAN CLOCK ASSOCIATED1 (CCA1)-like proteins are a class of single-repeat MYELOBLASTOSIS ONCOGENE (MYB) transcription factors generally featured by a highly conserved motif SHAQK(Y/F)F, which play important roles in multiple biological processes. Soybean is an important grain legume for seed protein and edible
[...] Read more.
Plant CIRCADIAN CLOCK ASSOCIATED1 (CCA1)-like proteins are a class of single-repeat MYELOBLASTOSIS ONCOGENE (MYB) transcription factors generally featured by a highly conserved motif SHAQK(Y/F)F, which play important roles in multiple biological processes. Soybean is an important grain legume for seed protein and edible vegetable oil. However, essential understandings regarding CCA1-like proteins are very limited in soybean. In this study, 54 CCA1-like proteins were identified by data mining of soybean genome. Phylogenetic analysis indicated that soybean CCA1-like subfamily showed evolutionary conservation and diversification. These CCA1-like genes displayed tissue-specific expression patterns, and analysis of genomic organization and evolution revealed 23 duplicated gene pairs. Among them, GmMYB138a was chosen for further investigation. Our protein–protein interaction studies revealed that GmMYB138a, but not its alternatively spliced isoform, interacts with a 14-3-3 protein (GmSGF14l). Although GmMYB138a was predominately localized in nucleus, the resulting complex of GmMYB138a and GmSGF14l was almost evenly distributed in nucleus and cytoplasm, supporting that 14-3-3s interact with their clients to alter their subcellular localization. Additionally, qPCR analysis suggested that GmMYB138a and GmSGF14l synergistically or antagonistically respond to drought, cold and salt stresses. Our findings will contribute to future research in regard to functions of soybean CCA1-like subfamily, especially regulatory mechanisms of GmMYB138a in response to abiotic stresses. Full article
(This article belongs to the Section Molecular Plant Sciences)
Figures

Graphical abstract

Open AccessArticle Poly(Lactic Acid) Blends with Poly(Trimethylene Carbonate) as Biodegradable Medical Adhesive Material
Int. J. Mol. Sci. 2017, 18(10), 2041; https://doi.org/10.3390/ijms18102041
Received: 16 August 2017 / Revised: 12 September 2017 / Accepted: 13 September 2017 / Published: 28 September 2017
Cited by 4 | PDF Full-text (11152 KB) | HTML Full-text | XML Full-text
Abstract
A novel medical adhesive was prepared by blending poly(lactic acid) (PLA) with poly(trimethylene carbonate) (PTMC) in ethyl acetate, and the two materials were proven to be biodegradable and biocompatible. The medical adhesive was characterized by 1H nuclear magnetic resonance (1HNMR),
[...] Read more.
A novel medical adhesive was prepared by blending poly(lactic acid) (PLA) with poly(trimethylene carbonate) (PTMC) in ethyl acetate, and the two materials were proven to be biodegradable and biocompatible. The medical adhesive was characterized by 1H nuclear magnetic resonance (1HNMR), gel permeation chromatography (GPC), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The water vapor transmission rate (WVTR) of this material was measured to be 7.13 g·cm−2·24 h−1. Its degree of comfortability was confirmed by the extensibility (E) and the permanent set (PS), which were approximately 7.83 N·cm−2 and 18.83%, respectively. In vivo tests regarding rabbit immunoglobulin M (IgM), rabbit immunoglobulin G (IgG), rabbit bone alkaline phosphatase (BALP), rabbit interleukin 6 (IL-6), rabbit interleukin 10 (IL-10), rabbit tumor necrosis factor α(TNFα), glutamic-oxaloacetic transaminase (AST/GOT), glutamic-pyruvic transaminase (ALT/GPT), alkaline phosphatase (AKP), blood urea nitrogen (BUN) and creatinine (Cr) indicated that the PLA-PTMC medical adhesive was not harmful to the liver and kidneys. Finally, pathological sections indicated that PLA-PTMC was more effective than the control group. These data suggest that in addition to having a positive effect on hemostasis and no sensibility to wounds, PLA-PTMC can efficiently prevent infections and has great potential as a medical adhesive. Full article
(This article belongs to the Special Issue Novel Biomaterials for Tissue Engineering 2018)
Figures

Graphical abstract

Open AccessArticle Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson’s Disease Models
Int. J. Mol. Sci. 2017, 18(10), 2043; https://doi.org/10.3390/ijms18102043
Received: 7 August 2017 / Revised: 14 September 2017 / Accepted: 19 September 2017 / Published: 22 September 2017
Cited by 6 | PDF Full-text (7048 KB) | HTML Full-text | XML Full-text
Abstract
The neuroprotective effects of Licochalcone A (Lico.A), a flavonoid isolated from the herb licorice, in Parkinson’s disease (PD) have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia
[...] Read more.
The neuroprotective effects of Licochalcone A (Lico.A), a flavonoid isolated from the herb licorice, in Parkinson’s disease (PD) have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS)-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and nuclear factor κB (NF-κB) p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [3H] dopamine (DA) uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models. Full article
(This article belongs to the Special Issue Natural Anti-Inflammatory Agents)
Figures

Graphical abstract

Open AccessArticle Integration of C1 and C2 Metabolism in Trees
Int. J. Mol. Sci. 2017, 18(10), 2045; https://doi.org/10.3390/ijms18102045
Received: 18 August 2017 / Revised: 16 September 2017 / Accepted: 21 September 2017 / Published: 23 September 2017
Cited by 1 | PDF Full-text (2480 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
C1 metabolism in plants is known to be involved in photorespiration, nitrogen and amino acid metabolism, as well as methylation and biosynthesis of metabolites and biopolymers. Although the flux of carbon through the C1 pathway is thought to be large, its
[...] Read more.
C1 metabolism in plants is known to be involved in photorespiration, nitrogen and amino acid metabolism, as well as methylation and biosynthesis of metabolites and biopolymers. Although the flux of carbon through the C1 pathway is thought to be large, its intermediates are difficult to measure and relatively little is known about this potentially ubiquitous pathway. In this study, we evaluated the C1 pathway and its integration with the central metabolism using aqueous solutions of 13C-labeled C1 and C2 intermediates delivered to branches of the tropical species Inga edulis via the transpiration stream. Delivery of [13C]methanol and [13C]formaldehyde rapidly stimulated leaf emissions of [13C]methanol, [13C]formaldehyde, [13C]formic acid, and 13CO2, confirming the existence of the C1 pathway and rapid interconversion between methanol and formaldehyde. However, while [13C]formate solutions stimulated emissions of 13CO2, emissions of [13C]methanol or [13C]formaldehyde were not detected, suggesting that once oxidation to formate occurs it is rapidly oxidized to CO2 within chloroplasts. 13C-labeling of isoprene, a known photosynthetic product, was linearly related to 13CO2 across C1 and C2 ([13C2]acetate and [2-13C]glycine) substrates, consistent with reassimilation of C1, respiratory, and photorespiratory CO2. Moreover, [13C]methanol and [13C]formaldehyde induced a quantitative labeling of both carbon atoms of acetic acid emissions, possibly through the rapid turnover of the chloroplastic acetyl-CoA pool via glycolate oxidation. The results support a role of the C1 pathway to provide an alternative carbon source for glycine methylation in photorespiration, enhance CO2 concentrations within chloroplasts, and produce key C2 intermediates (e.g., acetyl-CoA) central to anabolic and catabolic metabolism. Full article
(This article belongs to the Section Molecular Plant Sciences)
Figures

Graphical abstract

Open AccessArticle Characterization of Growth Hormone Resistance in Experimental and Ulcerative Colitis
Int. J. Mol. Sci. 2017, 18(10), 2046; https://doi.org/10.3390/ijms18102046
Received: 28 August 2017 / Revised: 14 September 2017 / Accepted: 20 September 2017 / Published: 23 September 2017
PDF Full-text (4282 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Growth hormone (GH) resistance may develop as a consequence of inflammation during conditions such as inflammatory bowel disease, encompassing ulcerative colitis (UC). However, the specific role of the GH–insulin growth factor (IGF)-1-axis and/or the functional consequences of GH resistance in this condition are
[...] Read more.
Growth hormone (GH) resistance may develop as a consequence of inflammation during conditions such as inflammatory bowel disease, encompassing ulcerative colitis (UC). However, the specific role of the GH–insulin growth factor (IGF)-1-axis and/or the functional consequences of GH resistance in this condition are unclear. In situ hybridization targeting the GH receptor (GHR) and relevant transcriptional analyses were performed in patients with UC and in IL-10 knock-out mice with piroxicam accelerated colitis (PAC). Using cultured primary epithelial cells, the effects of inflammation on the molecular mechanisms governing GH resistance was verified. Also, the therapeutic potential of GH on mucosal healing was tested in the PAC model. Inflammation induced intestinal GH resistance in UC and experimental colitis by down-regulating GHR expression and up-regulating suppressor of cytokine signalling (SOCS) proteins. These effects are driven by pro-inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6) as confirmed using primary epithelial cells. Treatment of experimental colitis with GH increased IGF-1 and body weight of the mice, but had no effects on colonic inflammation or mucosal healing. The high transcriptional similarity between UC and experimental colitis accentuates the formation of intestinal GH resistance during inflammation. Inflammation-induced GH resistance not only impairs general growth but induces a state of local resistance, which potentially impairs the actions of GH on mucosal healing during colitis when using long-acting GH therapy. Full article
(This article belongs to the Special Issue Growth Hormone: Therapeutic Possibilities)
Figures

Graphical abstract

Open AccessArticle Podocalyxin-Like Protein 1 Regulates TAZ Signaling and Stemness Properties in Colon Cancer
Int. J. Mol. Sci. 2017, 18(10), 2047; https://doi.org/10.3390/ijms18102047
Received: 9 August 2017 / Revised: 16 September 2017 / Accepted: 19 September 2017 / Published: 23 September 2017
PDF Full-text (3395 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Colon cancer is the third most common cancer in the world and the second most common cause of cancer-related mortality. Molecular biomarkers for colon cancer have undergone vigorous discovery and validation. Recent studies reported that overexpression of podocalyxin-like protein 1 (PODXL) is associated
[...] Read more.
Colon cancer is the third most common cancer in the world and the second most common cause of cancer-related mortality. Molecular biomarkers for colon cancer have undergone vigorous discovery and validation. Recent studies reported that overexpression of podocalyxin-like protein 1 (PODXL) is associated with distant metastasis and poor prognosis across several types of malignancies. Its role and underlying molecular mechanism, however, are not yet fully understood. In the present study, we revealed that the Hippo transducer, the transcriptional coactivator with PDZ-binding motif (TAZ), acts as a downstream mediator of PODXL in colon cancer. Inhibition of PODXL resulted in the suppression of TAZ signaling and the downregulation of Hippo downstream genes. Moreover, PODXL plays a critical role in cancer stemness, invasiveness, and sensitivity to chemotherapies in colon cancer HCT15 cells. Notably, expression of PODXL showed a positive correlation with stem-like and epithelial-mesenchymal transition (EMT) core signatures, and was associated with poor survival outcomes in patients with colon cancer. These findings provide novel insights into the molecular mechanism of PODXL-mediated tumorigenesis in colon cancer. Full article
(This article belongs to the Special Issue Cancer Stem Cells)
Figures

Figure 1

Open AccessArticle E-Learning for Rare Diseases: An Example Using Fabry Disease
Int. J. Mol. Sci. 2017, 18(10), 2049; https://doi.org/10.3390/ijms18102049
Received: 13 September 2017 / Revised: 20 September 2017 / Accepted: 21 September 2017 / Published: 24 September 2017
PDF Full-text (4870 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Background: Rare diseases represent a challenge for physicians because patients are rarely seen, and they can manifest with symptoms similar to those of common diseases. In this work, genetic confirmation of diagnosis is derived from DNA sequencing. We present a tutorial for the
[...] Read more.
Background: Rare diseases represent a challenge for physicians because patients are rarely seen, and they can manifest with symptoms similar to those of common diseases. In this work, genetic confirmation of diagnosis is derived from DNA sequencing. We present a tutorial for the molecular analysis of a rare disease using Fabry disease as an example. Methods: An exonic sequence derived from a hypothetical male patient was matched against human reference data using a genome browser. The missense mutation was identified by running BlastX, and information on the affected protein was retrieved from the database UniProt. The pathogenic nature of the mutation was assessed with PolyPhen-2. Disease-specific databases were used to assess whether the missense mutation led to a severe phenotype, and whether pharmacological therapy was an option. Results: An inexpensive bioinformatics approach is presented to get the reader acquainted with the diagnosis of Fabry disease. The reader is introduced to the field of pharmacological chaperones, a therapeutic approach that can be applied only to certain Fabry genotypes. Conclusion: The principle underlying the analysis of exome sequencing can be explained in simple terms using web applications and databases which facilitate diagnosis and therapeutic choices. Full article
(This article belongs to the Special Issue Rare Diseases: Molecular Mechanisms and Therapeutic Strategies)
Figures

Graphical abstract

Open AccessArticle Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin
Int. J. Mol. Sci. 2017, 18(10), 2052; https://doi.org/10.3390/ijms18102052
Received: 31 August 2017 / Revised: 14 September 2017 / Accepted: 22 September 2017 / Published: 25 September 2017
PDF Full-text (1951 KB) | HTML Full-text | XML Full-text
Abstract
Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs
[...] Read more.
Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging. Full article
Figures

Graphical abstract

Open AccessArticle APE1/Ref-1 Inhibits Phosphate-Induced Calcification and Osteoblastic Phenotype Changes in Vascular Smooth Muscle Cells
Int. J. Mol. Sci. 2017, 18(10), 2053; https://doi.org/10.3390/ijms18102053
Received: 28 August 2017 / Revised: 12 September 2017 / Accepted: 19 September 2017 / Published: 25 September 2017
Cited by 2 | PDF Full-text (3121 KB) | HTML Full-text | XML Full-text
Abstract
Vascular calcification plays a role in the pathogenesis of atherosclerosis, diabetes, and chronic kidney disease; however, the role of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) in inorganic phosphate (Pi)-induced vascular smooth muscle cell (VSMC) calcification remains unknown. In this study, we investigated the possible
[...] Read more.
Vascular calcification plays a role in the pathogenesis of atherosclerosis, diabetes, and chronic kidney disease; however, the role of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) in inorganic phosphate (Pi)-induced vascular smooth muscle cell (VSMC) calcification remains unknown. In this study, we investigated the possible role of APE1/Ref-1 in Pi-induced VSMC calcification. We observed that Pi decreased endogenous APE1/Ref-1 expression and promoter activity in VSMCs, and that adenoviral overexpression of APE1/Ref-1 inhibited Pi-induced calcification in VSMCs and in an ex vivo organ culture of a rat aorta. However, a redox mutant of APE1/Ref-1(C65A/C93A) did not reduce Pi-induced calcification in VSMCs, suggesting APE1/Ref-1-mediated redox function against vascular calcification. Additionally, APE1/Ref-1 overexpression inhibited Pi-induced intracellular and mitochondrial reactive oxygen species production, and APE1/Ref-1 overexpression resulted in decreased Pi-induced lactate dehydrogenase activity, pro-apoptotic Bax levels, and increased anti-apoptotic Bcl-2 protein levels. Furthermore, APE1/Ref-1 inhibited Pi-induced osteoblastic differentiation associated with alkaline phosphatase activity and inhibited Pi-exposure-induced loss of the smooth muscle phenotype. Our findings provided valuable insights into the redox function of APE1/Ref-1 in preventing Pi-induced VSMC calcification by inhibiting oxidative stress and osteoblastic differentiation, resulting in prevention of altered osteoblastic phenotypes in VSMCs. Full article
(This article belongs to the Special Issue Oxidative Stress in Vascular Diseases)
Figures

Graphical abstract

Open AccessArticle Blocking of the Ubiquitin-Proteasome System Prevents Inflammation-Induced Bone Loss by Accelerating M-CSF Receptor c-Fms Degradation in Osteoclast Differentiation
Int. J. Mol. Sci. 2017, 18(10), 2054; https://doi.org/10.3390/ijms18102054
Received: 9 August 2017 / Revised: 20 September 2017 / Accepted: 23 September 2017 / Published: 25 September 2017
PDF Full-text (6494 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Anti-osteoporotic activity of a blocker of the ubiquitin-proteasome system, bortezomib, has known to be achieved by directly opposed action in increased bone formation by osteoblasts and in decreased bone destruction by osteoclasts. However, the mechanisms underlying the proteasome blocker inhibition of osteoclast differentiation
[...] Read more.
Anti-osteoporotic activity of a blocker of the ubiquitin-proteasome system, bortezomib, has known to be achieved by directly opposed action in increased bone formation by osteoblasts and in decreased bone destruction by osteoclasts. However, the mechanisms underlying the proteasome blocker inhibition of osteoclast differentiation and function are not fully understood. Here, we observed that proteasome inhibitors, such as MG132 and bortezomib, in osteoclasts accelerated the degradation of c-Fms, a cognate receptor of macrophage colony-stimulating factor (M-CSF), and did not affect the amount of receptor activator of nuclear factor kappa-B (RANK), a receptor of receptor activator of nuclear factor kappa-B ligand (RANKL). c-Fms degradation induced by proteasome inhibitors was controlled by the activation of p38/tumor necrosis factor-alpha converting enzyme (TACE)-mediated regulated intramembrane proteolysis (RIPping). This was validated through the restoration of c-Fms using specific inhibitors of p38 and TACE, and a stimulation of p38-dependent TACE. In addition, c-Fms degradation by proteasome inhibition completely blocked M-CSF-mediated intrinsic signalling and led to the suppression of osteoclast differentiation and bone resorption. In a mouse model with intraperitoneal administration of lipopolysaccharide (LPS) that stimulates osteoclast formation and leads to bone loss, proteasome blockers prevented LPS-induced inflammatory bone resorption due to a decrease in the number of c-Fms-positive osteoclasts. Our study showed that accelerating c-Fms proteolysis by proteasome inhibitors may be a therapeutic option for inflammation-induced bone loss. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Graphical abstract

Open AccessArticle The Phosphoproteomic Response of Rice Seedlings to Cadmium Stress
Int. J. Mol. Sci. 2017, 18(10), 2055; https://doi.org/10.3390/ijms18102055
Received: 5 September 2017 / Revised: 19 September 2017 / Accepted: 22 September 2017 / Published: 27 September 2017
Cited by 1 | PDF Full-text (3446 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The environmental damage caused by cadmium (Cd) pollution is of increasing concern in China. While the overall plant response to Cd has been investigated in some depth, the contribution (if any) of protein phosphorylation to the detoxification of Cd and the expression of
[...] Read more.
The environmental damage caused by cadmium (Cd) pollution is of increasing concern in China. While the overall plant response to Cd has been investigated in some depth, the contribution (if any) of protein phosphorylation to the detoxification of Cd and the expression of tolerance is uncertain. Here, the molecular basis of the plant response has been explored in hydroponically raised rice seedlings exposed to 10 μΜ and 100 μΜ Cd2+ stress. An analysis of the seedlings’ quantitative phosphoproteome identified 2454 phosphosites, associated with 1244 proteins. A total of 482 of these proteins became differentially phosphorylated as a result of exposure to Cd stress; the number of proteins affected in this way was six times greater in the 100 μΜ Cd2+ treatment than in the 10 μΜ treatment. A functional analysis of the differentially phosphorylated proteins implied that a significant number was involved in signaling, in stress tolerance and in the neutralization of reactive oxygen species, while there was also a marked representation of transcription factors. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Graphical abstract

Open AccessArticle Long-Term Therapy Outcomes When Treating Chronic Kidney Disease Patients with Paricalcitol in German and Austrian Clinical Practice (TOP Study)
Int. J. Mol. Sci. 2017, 18(10), 2057; https://doi.org/10.3390/ijms18102057
Received: 23 August 2017 / Revised: 19 September 2017 / Accepted: 21 September 2017 / Published: 28 September 2017
PDF Full-text (5041 KB) | HTML Full-text | XML Full-text
Abstract
Paricalcitol is approved for prevention and therapy of secondary hyperparathyroidism (sHPT) in patients with chronic kidney disease (CKD), with only short-term data in clinical routine settings. A 12-month observational study was conducted in Germany and Austria (90 centers, 761 patients) from 2008 to
[...] Read more.
Paricalcitol is approved for prevention and therapy of secondary hyperparathyroidism (sHPT) in patients with chronic kidney disease (CKD), with only short-term data in clinical routine settings. A 12-month observational study was conducted in Germany and Austria (90 centers, 761 patients) from 2008 to 2013. Laboratory values, demographical, and clinical data were documented in 629 dialysis patients and 119 predialysis patients. In predialysis patients, median intact parathormone (iPTH) was 180.0 pg/mL (n = 105) at the start of the study, 115.7 pg/mL (n = 105) at last documentation, and 151.8 pg/mL (n = 50) at month 12, with 32.4% of the last documented iPTH values in the KDOQI (Kidney Disease Outcomes Quality Initiative) target range. In dialysis patients, median iPTH was 425.5 pg/mL (n = 569) at study start, 262.3 pg/mL (n = 569) at last documentation, and 266.1 pg/mL (n = 318) at month 12, with 36.5% of dialysis patients in the KDOQI target range. Intravenous paricalcitol showed more homogenous iPTH control than oral treatment. Combined analysis of all dialysis patients indicated comparable and stable mean serum calcium and phosphate levels throughout the study. Clinical symptoms, such as itching, bone pain, and fatigue, were improved compared with study entry. The spectrum and frequency of adverse events mirrored the known pattern for patients on dialysis. Paricalcitol is efficacious and has a consistent safety profile in sHPT over 12 months. Full article
Figures

Graphical abstract

Open AccessArticle Evaluating Changes in Cell-Wall Components Associated with Clubroot Resistance Using Fourier Transform Infrared Spectroscopy and RT-PCR
Int. J. Mol. Sci. 2017, 18(10), 2058; https://doi.org/10.3390/ijms18102058
Received: 18 July 2017 / Revised: 21 September 2017 / Accepted: 22 September 2017 / Published: 26 September 2017
PDF Full-text (4901 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Clubroot disease is a serious threat to canola production in western Canada and many parts of the world. Rcr1 is a clubroot resistance (CR) gene identified recently and its molecular mechanisms in mediating CR have been studied using several omics approaches. The current
[...] Read more.
Clubroot disease is a serious threat to canola production in western Canada and many parts of the world. Rcr1 is a clubroot resistance (CR) gene identified recently and its molecular mechanisms in mediating CR have been studied using several omics approaches. The current study aimed to characterize the biochemical changes in the cell wall of canola roots connecting to key molecular mechanisms of this CR gene identified in prior studies using Fourier transform infrared (FTIR) spectroscopy. The expression of nine genes involved in phenylpropanoid metabolism was also studied using qPCR. Between susceptible (S) and resistance (R) samples, the most notable biochemical changes were related to an increased biosynthesis of lignin and phenolics. These results were supported by the transcription data on higher expression of BrPAL1. The up-regulation of PAL is indicative of an inducible defence response conferred by Rcr1; the activation of this basal defence gene via the phenylpropanoid pathway may contribute to clubroot resistance conferred by Rcr1. The data indicate that several cell-wall components, including lignin and pectin, may play a role in defence responses against clubroot. Principal components analysis of FTIR data separated non-inoculated samples from inoculated samples, but not so much between inoculated S and inoculated R samples. It is also shown that FTIR spectroscopy can be a useful tool in studying plant-pathogen interaction at cellular levels. Full article
(This article belongs to the Section Molecular Biophysics)
Figures

Graphical abstract

Open AccessArticle Mitochondriotropic and Cardioprotective Effects of Triphenylphosphonium-Conjugated Derivatives of the Diterpenoid Isosteviol
Int. J. Mol. Sci. 2017, 18(10), 2060; https://doi.org/10.3390/ijms18102060
Received: 2 August 2017 / Revised: 21 September 2017 / Accepted: 23 September 2017 / Published: 26 September 2017
Cited by 1 | PDF Full-text (2680 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Mitochondria play a crucial role in the cell fate; in particular, reducing the accumulation of calcium in the mitochondrial matrix offers cardioprotection. This affect is achieved by a mild depolarization of the mitochondrial membrane potential, which prevents the assembly and opening of the
[...] Read more.
Mitochondria play a crucial role in the cell fate; in particular, reducing the accumulation of calcium in the mitochondrial matrix offers cardioprotection. This affect is achieved by a mild depolarization of the mitochondrial membrane potential, which prevents the assembly and opening of the mitochondrial permeability transition pore. For this reason, mitochondria are an attractive target for pharmacological interventions that prevent ischaemia/reperfusion injury. Isosteviol is a diterpenoid created from the acid hydrolysis of Stevia rebaudiana Bertoni (fam. Asteraceae) glycosides that has shown protective effects against ischaemia/reperfusion injury, which are likely mediated through the activation of mitochondrial adenosine tri-phosphate (ATP)-sensitive potassium (mitoKATP) channels. Some triphenylphosphonium (triPP)-conjugated derivatives of isosteviol have been developed, and to evaluate the possible pharmacological benefits that result from these synthetic modifications, in this study, the mitochondriotropic properties of isosteviol and several triPP-conjugates were investigated in rat cardiac mitochondria and in the rat heart cell line H9c2. This study’s main findings highlight the ability of isosteviol to depolarize the mitochondrial membrane potential and reduce calcium uptake by the mitochondria, which are typical functions of mitochondrial potassium channel openings. Moreover, triPP-conjugated derivatives showed a similar behavior to isosteviol but at lower concentrations, indicative of their improved uptake into the mitochondrial matrix. Finally, the cardioprotective property of a selected triPP-conjugated derivative was demonstrated in an in vivo model of acute myocardial infarct. Full article
(This article belongs to the Special Issue Natural and Semi-Synthetic Small Molecules in Drug Discovery)
Figures

Graphical abstract

Open AccessArticle Clinically Isolated Syndrome According to McDonald 2010: Intrathecal IgG Synthesis Still Predictive for Conversion to Multiple Sclerosis
Int. J. Mol. Sci. 2017, 18(10), 2061; https://doi.org/10.3390/ijms18102061
Received: 30 August 2017 / Revised: 20 September 2017 / Accepted: 22 September 2017 / Published: 27 September 2017
Cited by 1 | PDF Full-text (1133 KB) | HTML Full-text | XML Full-text
Abstract
While the revised McDonald criteria of 2010 allow for the diagnosis of multiple sclerosis (MS) in an earlier stage, there is still a need to identify the risk factors for conversion to MS in patients with clinically isolated syndrome (CIS). Since the latest
[...] Read more.
While the revised McDonald criteria of 2010 allow for the diagnosis of multiple sclerosis (MS) in an earlier stage, there is still a need to identify the risk factors for conversion to MS in patients with clinically isolated syndrome (CIS). Since the latest McDonald criteria were established, the prognostic role of cerebrospinal fluid (CSF) and visual evoked potentials (VEP) in CIS patients is still poorly defined. We conducted a monocentric investigation including patients with CIS in the time from 2010 to 2015. Follow-ups of 120 patients revealed that 42% converted to MS. CIS patients with positive oligoclonal bands (OCB) were more than twice as likely to convert to MS as OCB negative patients (hazard ratio = 2.6). The probability to develop MS was even higher when a quantitative intrathecal IgG synthesis was detected (hazard ratio = 3.8). In patients with OCB, VEP did not add further information concerning the conversion rate to MS. In patients with optic neuritis and negative OCB, a significantly higher rate converted to MS when VEP were delayed. In conclusion, the detection of an intrathecal IgG synthesis increases the conversion probability to MS. Pathological VEP can help to predict the conversion rate to MS in patients with optic neuritis without an intrathecal IgG synthesis. Full article
(This article belongs to the Special Issue Advances in Multiple Sclerosis 2017)
Figures

Graphical abstract

Open AccessArticle Spaceflight Activates Autophagy Programs and the Proteasome in Mouse Liver
Int. J. Mol. Sci. 2017, 18(10), 2062; https://doi.org/10.3390/ijms18102062
Received: 31 August 2017 / Revised: 13 September 2017 / Accepted: 13 September 2017 / Published: 27 September 2017
Cited by 1 | PDF Full-text (6579 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Increased oxidative stress is an unavoidable consequence of exposure to the space environment. Our previous studies showed that mice exposed to space for 13.5 days had decreased glutathione levels, suggesting impairments in oxidative defense. Here we performed unbiased, unsupervised and integrated multi-‘omic analyses
[...] Read more.
Increased oxidative stress is an unavoidable consequence of exposure to the space environment. Our previous studies showed that mice exposed to space for 13.5 days had decreased glutathione levels, suggesting impairments in oxidative defense. Here we performed unbiased, unsupervised and integrated multi-‘omic analyses of metabolomic and transcriptomic datasets from mice flown aboard the Space Shuttle Atlantis. Enrichment analyses of metabolite and gene sets showed significant changes in osmolyte concentrations and pathways related to glycerophospholipid and sphingolipid metabolism, likely consequences of relative dehydration of the spaceflight mice. However, we also found increased enrichment of aminoacyl-tRNA biosynthesis and purine metabolic pathways, concomitant with enrichment of genes associated with autophagy and the ubiquitin-proteasome. When taken together with a downregulation in nuclear factor (erythroid-derived 2)-like 2-mediated signaling, our analyses suggest that decreased hepatic oxidative defense may lead to aberrant tRNA post-translational processing, induction of degradation programs and senescence-associated mitochondrial dysfunction in response to the spaceflight environment. Full article
Figures

Graphical abstract

Open AccessArticle A Novel Fully Human Agonistic Single Chain Fragment Variable Antibody Targeting Death Receptor 5 with Potent Antitumor Activity In Vitro and In Vivo
Int. J. Mol. Sci. 2017, 18(10), 2064; https://doi.org/10.3390/ijms18102064
Received: 27 July 2017 / Revised: 3 September 2017 / Accepted: 17 September 2017 / Published: 27 September 2017
PDF Full-text (7768 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Agonistic antibodies, which bind specifically to death receptor 5 (DR5), can trigger apoptosis in tumor cells through the extrinsic pathway. In this present study, we describe the use of a phage display to isolate a novel fully human agonistic single chain fragment variable
[...] Read more.
Agonistic antibodies, which bind specifically to death receptor 5 (DR5), can trigger apoptosis in tumor cells through the extrinsic pathway. In this present study, we describe the use of a phage display to isolate a novel fully human agonistic single chain fragment variable (scFv) antibody, which targets DR5. After five rounds of panning a large (1.2 × 108 clones) phage display library on DR5, a total of over 4000 scFv clones were screened by the phage ELISA. After screening for agonism in a cell-viability assay in vitro, a novel DR5-specific scFv antibody TR2-3 was isolated, which inhibited COLO205 and MDA-MB-231 tumor cell growth without any cross-linking agents. The activity of TR2-3 in inducing apoptosis in cancer cells was evaluated by using an Annexin V-PE apoptosis detection kit in combination with flow cytometry and the Hoechst 33342 and propidium iodide double staining analysis. In addition, the activation of caspase-dependent apoptosis was evaluated by Western blot assays. The results indicated that TR2-3 induced robust apoptosis of the COLO205 and MDA-MB-231 cells in a dose-dependent and time-dependent manner, while it remarkably upregulated the cleavage of caspase-3 and caspase-8. Furthermore, TR2-3 suppressed the tumor growth significantly in the xenograft model. Taken together, these data suggest that TR2-3 exhibited potent antitumor activity both in vitro and in vivo. This work provides a novel human antibody, which might be a promising candidate for cancer therapy by targeting DR5. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Graphical abstract

Open AccessArticle Anti-Adipogenic Effects on 3T3-L1 Cells and Zebrafish by Tanshinone IIA
Int. J. Mol. Sci. 2017, 18(10), 2065; https://doi.org/10.3390/ijms18102065
Received: 14 August 2017 / Revised: 15 September 2017 / Accepted: 22 September 2017 / Published: 27 September 2017
Cited by 1 | PDF Full-text (2166 KB) | HTML Full-text | XML Full-text
Abstract
Tanshinone IIA is a diterpene quinone isolated from the roots of Salvia miltiorrhiza bunge that has traditionally been used in China for the treatment of cardiovascular and cerebrovascular disorders. Although there is recent evidence showing that tanshinone IIA has an anti-obesity effect, its
[...] Read more.
Tanshinone IIA is a diterpene quinone isolated from the roots of Salvia miltiorrhiza bunge that has traditionally been used in China for the treatment of cardiovascular and cerebrovascular disorders. Although there is recent evidence showing that tanshinone IIA has an anti-obesity effect, its underlying mechanism of anti-obesity effect is poorly understood. Here, we investigated the effect of tanshinone IIA on lipid accumulation in 3T3-L1 preadipocytes and zebrafish. Notably, tanshinone IIA at 10 μM concentration greatly reduced lipid accumulation and triglyceride (TG) contents during 3T3-L1 preadipocyte differentiation, suggesting its anti-adipogenic effect. On mechanistic levels, tanshinone IIA reduced the expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3/5 (STAT-3/5) in differentiating 3T3-L1 cells. In addition, tanshinone IIA strongly inhibited leptin and resistin mRNA expression in differentiating 3T3-L1 cells. Importantly, the tanshinone IIA’s lipid-reducing effect was also seen in zebrafish. In sum, these findings demonstrate that tanshinone IIA has anti-adipogenic effects on 3T3-L1 cells and zebrafish, and its anti-adipogenic effect on 3T3-L1 cells is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3/5. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Figures

Graphical abstract

Open AccessArticle Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research
Int. J. Mol. Sci. 2017, 18(10), 2066; https://doi.org/10.3390/ijms18102066
Received: 6 September 2017 / Revised: 21 September 2017 / Accepted: 23 September 2017 / Published: 28 September 2017
Cited by 4 | PDF Full-text (7500 KB) | HTML Full-text | XML Full-text
Abstract
Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements
[...] Read more.
Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP) tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2) in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine. Full article
(This article belongs to the Special Issue Laser Application in Life Sciences 2018)
Figures

Figure 1

Open AccessArticle Lipidomics Unravels the Role of Leaf Lipids in Thyme Plant Response to Drought Stress
Int. J. Mol. Sci. 2017, 18(10), 2067; https://doi.org/10.3390/ijms18102067
Received: 30 July 2017 / Revised: 6 September 2017 / Accepted: 20 September 2017 / Published: 28 September 2017
PDF Full-text (2817 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Thymus is one of the best known genera within the Labiatae (Lamiaceae) family, with more than 200 species and many medicinal and culinary uses. The effects of prolonged drought on lipid profile were investigated in tolerant and sensitive thyme plants (Thymus serpyllum
[...] Read more.
Thymus is one of the best known genera within the Labiatae (Lamiaceae) family, with more than 200 species and many medicinal and culinary uses. The effects of prolonged drought on lipid profile were investigated in tolerant and sensitive thyme plants (Thymus serpyllum L. and Thymus vulgaris L., respectively). Non-targeted non-polar metabolite profiling was carried out using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry with one-month-old plants exposed to drought stress, and their morpho-physiological parameters were also evaluated. Tolerant and sensitive plants exhibited clearly different responses at a physiological level. In addition, different trends for a number of non-polar metabolites were observed when comparing stressed and control samples, for both sensitive and tolerant plants. Sensitive plants showed the highest decrease (55%) in main lipid components such as galactolipids and phospholipids. In tolerant plants, the level of lipids involved in signaling increased, while intensities of those induced by stress (e.g., oxylipins) dramatically decreased (50–60%), in particular with respect to metabolites with m/z values of 519.3331, 521.3488, and 581.3709. Partial least square discriminant analysis separated all the samples into four groups: tolerant watered, tolerant stressed, sensitive watered and sensitive stressed. The combination of lipid profiling and physiological parameters represented a promising tool for investigating the mechanisms of plant response to drought stress at non-polar metabolome level. Full article
(This article belongs to the Special Issue Metabolomics in the Plant Sciences 2017)
Figures

Graphical abstract

Open AccessArticle Circadian Rhythms of Retinomotor Movement in a Marine Megapredator, the Atlantic Tarpon, Megalops atlanticus
Int. J. Mol. Sci. 2017, 18(10), 2068; https://doi.org/10.3390/ijms18102068
Received: 28 August 2017 / Revised: 21 September 2017 / Accepted: 21 September 2017 / Published: 28 September 2017
PDF Full-text (2182 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Many ecologically and economically important marine fish species worldwide spend portions of their lives in coastal regions that are increasingly inundated by artificial light at night. However, while extensive research illustrates the harmful effects of inappropriate light exposure on biological timing in humans,
[...] Read more.
Many ecologically and economically important marine fish species worldwide spend portions of their lives in coastal regions that are increasingly inundated by artificial light at night. However, while extensive research illustrates the harmful effects of inappropriate light exposure on biological timing in humans, rodents and birds, comparable studies on marine fish are virtually nonexistent. This study aimed to assess the effects of light on biological clock function in the marine fish retina using the Atlantic tarpon (Megalops atlanticus) as a model. Using anti-opsin immunofluorescence, we observed robust rhythms of photoreceptor outer segment position (retinomotor movement) over the course of the daily light–dark cycle: cone outer segments were contracted toward the inner retina and rods were elongated during the day; the opposite occurred at night. Phase shifting the daily light–dark cycle caused a corresponding shift of retinomotor movement timing, and cone retinomotor movement persisted in constant darkness, indicating control by a circadian clock. Constant light abolished retinomotor movements of both photoreceptor types. Thus, abnormally-timed light exposure may disrupt normal M. atlanticus clock function and harm vision, which in turn may affect prey capture and predator avoidance. These results should help inform efforts to mitigate the effects of coastal light pollution on organisms in marine ecosystems. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Circadian Rhythms)
Figures

Graphical abstract

Open AccessArticle DNA Protecting Activities of Nymphaea nouchali (Burm. f) Flower Extract Attenuate t-BHP-Induced Oxidative Stress Cell Death through Nrf2-Mediated Induction of Heme Oxygenase-1 Expression by Activating MAP-Kinases
Int. J. Mol. Sci. 2017, 18(10), 2069; https://doi.org/10.3390/ijms18102069
Received: 20 May 2017 / Revised: 27 August 2017 / Accepted: 28 August 2017 / Published: 28 September 2017
PDF Full-text (1993 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This study was performed to investigate the antioxidant activities of Nymphaea nouchali flower (NNF) extract and the underlying mechanism using RAW 264.7 cells. The presence of gallic acid, catechin, epicatechin, epigallocatechin, epicatechin gallate, caffeic acid, quercetin, and apigenin in the NNF was confirmed
[...] Read more.
This study was performed to investigate the antioxidant activities of Nymphaea nouchali flower (NNF) extract and the underlying mechanism using RAW 264.7 cells. The presence of gallic acid, catechin, epicatechin, epigallocatechin, epicatechin gallate, caffeic acid, quercetin, and apigenin in the NNF was confirmed by high-performance liquid chromatography (HPLC). The extract had a very potent capacity to scavenge numerous free radicals. NNF extract was also able to prevent DNA damage and quench cellular reactive oxygen species (ROS) generation induced by tert-Butyl hydroperoxide (t-BHP) with no signs of toxicity. The NNF extract was able to augment the expression of both primary and phase II detoxifying enzyme, resulting in combat the oxidative stress. This is accomplished by phosphorylation of mitogen-activated protein kinase (MAP kinase) (p38 kinase and extracellular signal-regulated kinase (ERK)) followed by enhancing the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2). This attenuates cellular ROS generation and confers protection from cell death. Altogether, the results of current study revealed that Nymphaea nouchali flower could be a source of natural phytochemicals that could lead to the development of new therapeutic agents for preventing oxidative stress associated diseases and attenuating disease progression. Full article
Figures

Graphical abstract

Open AccessArticle Patterns of Novel Alleles and Genotype/Phenotype Correlations Resulting from the Analysis of 108 Previously Undetected Mutations in Patients Affected by Neurofibromatosis Type I
Int. J. Mol. Sci. 2017, 18(10), 2071; https://doi.org/10.3390/ijms18102071
Received: 7 July 2017 / Revised: 29 August 2017 / Accepted: 26 September 2017 / Published: 29 September 2017
Cited by 1 | PDF Full-text (973 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Neurofibromatosis type I, a genetic disorder due to mutations in the NF1 gene, is characterized by a high mutation rate (about 50% of the cases are de novo) but, with the exception of whole gene deletions associated with a more severe phenotype, no
[...] Read more.
Neurofibromatosis type I, a genetic disorder due to mutations in the NF1 gene, is characterized by a high mutation rate (about 50% of the cases are de novo) but, with the exception of whole gene deletions associated with a more severe phenotype, no specific hotspots and few solid genotype/phenotype correlations. After retrospectively re-evaluating all NF1 gene variants found in the diagnostic activity, we studied 108 patients affected by neurofibromatosis type I who harbored mutations that had not been previously reported in the international databases, with the aim of analyzing their type and distribution along the gene and of correlating them with the phenotypic features of the affected patients. Out of the 108 previously unreported variants, 14 were inherited by one of the affected parents and 94 were de novo. Twenty-nine (26.9%) mutations were of uncertain significance, whereas 79 (73.2%) were predicted as pathogenic or probably pathogenic. No differential distribution in the exons or in the protein domains was observed and no statistically significant genotype/phenotype correlation was found, confirming previous evidences. Full article
(This article belongs to the Special Issue Exploring the Genotype–Phenotype Map to Explain Complex Traits)
Figures

Figure 1a

Open AccessArticle High Levels of Circulating Type II Collagen Degradation Marker (CTx-II) Are Associated with Specific VDR Polymorphisms in Patients with Adult Vertebral Osteochondrosis
Int. J. Mol. Sci. 2017, 18(10), 2073; https://doi.org/10.3390/ijms18102073
Received: 26 July 2017 / Revised: 12 September 2017 / Accepted: 25 September 2017 / Published: 29 September 2017
PDF Full-text (2085 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Both vitamin D and collagen have roles in osteocartilaginous homeostasis. We evaluated the association between the circulating 25-hydroxyvitamin D (25(OH)D) type I and II collagen degradation products (CTx-I, and CTx-II), and four vitamin D receptor gene (VDR) polymorphisms, in Italian males
[...] Read more.
Both vitamin D and collagen have roles in osteocartilaginous homeostasis. We evaluated the association between the circulating 25-hydroxyvitamin D (25(OH)D) type I and II collagen degradation products (CTx-I, and CTx-II), and four vitamin D receptor gene (VDR) polymorphisms, in Italian males affected by low back pain (LBP) due to herniation/discopathy and/or vertebral osteochondrosis. FokI, BsmI, ApaI, and TaqI VDR-polymorphisms were detected through PCR–restriction fragment length polymorphism (RFLP), and circulating 25(OH)D, CTx-I and CTx-II were measured by immunoassays in 79 patients (of which 26 had osteochondrosis) and 79 age-, sex- and body mass index (BMI)-matched healthy controls. Among all 158 subjects, carriers of FF and Ff genotypes showed lower 25(OH)D than ff, which suggested a higher depletion of vitamin D in F allele carriers. Higher CTx-I concentrations were observed in TT versus Tt among controls, and Tt versus tt among LBP cases, which suggested a higher bone-cartilaginous catabolism in subjects bearing the T allele. Higher CTx-II concentrations were observed in patients with osteochondrosis bearing FF, bb, TT, or Aa genotypes in comparison with hernia/discopathy patients and healthy controls. Vertebral osteochondrosis shows peculiar genotypic and biochemical features related to vitamin D and the osteocartilaginous metabolism. Vitamin D has roles in the pathophysiology of osteochondrosis. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Graphical abstract

Open AccessArticle Fascaplysin Exerts Anti-Cancer Effects through the Downregulation of Survivin and HIF-1α and Inhibition of VEGFR2 and TRKA
Int. J. Mol. Sci. 2017, 18(10), 2074; https://doi.org/10.3390/ijms18102074
Received: 28 August 2017 / Revised: 18 September 2017 / Accepted: 26 September 2017 / Published: 29 September 2017
Cited by 1 | PDF Full-text (4340 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Fascaplysin has been reported to exert anti-cancer effects by inhibiting cyclin-dependent kinase 4 (CDK4); however, the precise mode of action by which fascaplysin suppresses tumor growth is not clear. Here, we found that fascaplysin has stronger anti-cancer effects than other CDK4 inhibitors, including
[...] Read more.
Fascaplysin has been reported to exert anti-cancer effects by inhibiting cyclin-dependent kinase 4 (CDK4); however, the precise mode of action by which fascaplysin suppresses tumor growth is not clear. Here, we found that fascaplysin has stronger anti-cancer effects than other CDK4 inhibitors, including PD0332991 and LY2835219, on lung cancer cells that are wild-type or null for retinoblastoma (RB), indicating that unknown target molecules might be involved in the inhibition of tumor growth by fascaplysin. Fascaplysin treatment significantly decreased tumor angiogenesis and increased cleaved-caspase-3 in xenografted tumor tissues. In addition, survivin and HIF-1α were downregulated in vitro and in vivo by suppressing 4EBP1-p70S6K1 axis-mediated de novo protein synthesis. Kinase screening assays and drug-protein docking simulation studies demonstrated that fascaplysin strongly inhibited vascular endothelial growth factor receptor 2 (VEGFR2) and tropomyosin-related kinase A (TRKA) via DFG-out non-competitive inhibition. Overall, these results suggest that fascaplysin inhibits TRKA and VEGFR2 and downregulates survivin and HIF-1α, resulting in suppression of tumor growth. Fascaplysin, therefore, represents a potential therapeutic approach for the treatment of multiple types of solid cancer. Full article
(This article belongs to the Special Issue Natural Bioactives and Phytochemicals in Cancer Prevention)
Figures

Graphical abstract

Open AccessArticle Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative
Int. J. Mol. Sci. 2017, 18(10), 2075; https://doi.org/10.3390/ijms18102075
Received: 1 September 2017 / Revised: 20 September 2017 / Accepted: 25 September 2017 / Published: 30 September 2017
Cited by 2 | PDF Full-text (1847 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested
[...] Read more.
Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Food Edible Coatings)
Figures

Figure 1

Open AccessCommunication Topical Ocular Delivery of TGF-β1 to the Back of the Eye: Implications in Age-Related Neurodegenerative Diseases
Int. J. Mol. Sci. 2017, 18(10), 2076; https://doi.org/10.3390/ijms18102076
Received: 28 August 2017 / Revised: 22 September 2017 / Accepted: 27 September 2017 / Published: 30 September 2017
PDF Full-text (2351 KB) | HTML Full-text | XML Full-text
Abstract
Dysregulation of the transforming growth factor-β1 (TGF-β1)/selected small mother against decapentaplegic (SMAD) pathway can be implicated in development of age-related macular degeneration (AMD), and the delivery of TGF-β1 could be beneficial for AMD. We developed a new ophthalmic formulation of TGF-β1 assessing the
[...] Read more.
Dysregulation of the transforming growth factor-β1 (TGF-β1)/selected small mother against decapentaplegic (SMAD) pathway can be implicated in development of age-related macular degeneration (AMD), and the delivery of TGF-β1 could be beneficial for AMD. We developed a new ophthalmic formulation of TGF-β1 assessing the ocular pharmacokinetic profile of TGF-β1 in the rabbit eye. Small unilamellar vesicles (SUV) loaded with TGF-β1 were complemented with Annexin V and Ca2+, and the vitreous bioavailability of TGF-β1 was assessed after topical ocular administration by a commercial ELISA kit. We detected high levels of TGF-β1 (Cmax 114.7 ± 12.40 pg/mL) in the vitreous after 60 min (Tmax) from the topical application of the liposomal suspension. Ocular tolerability was also assessed by a modified Draize’s test. The new formulation was well tolerated. In conclusion, we demonstrated that the novel formulation was able to deliver remarkable levels of TGF-β1 into the back of the eye after topical administration. Indeed, this TGF-β1 delivery system may be useful in clinical practice to manage ophthalmic conditions such as age-related macular degeneration, skipping invasive intraocular injections. Full article
(This article belongs to the Special Issue Retinal Diseases: Bridging Basic and Clinical Research)
Figures

Graphical abstract

Open AccessArticle Biofilm Formation by Uropathogenic Escherichia coli Is Favored under Oxygen Conditions That Mimic the Bladder Environment
Int. J. Mol. Sci. 2017, 18(10), 2077; https://doi.org/10.3390/ijms18102077
Received: 27 July 2017 / Revised: 15 September 2017 / Accepted: 19 September 2017 / Published: 30 September 2017
Cited by 2 | PDF Full-text (1674 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
One of the most common urologic problems afflicting millions of people worldwide is urinary tract infection (UTI). The severity of UTIs ranges from asymptomatic bacteriuria to acute cystitis, and in severe cases, pyelonephritis and urosepsis. The primary cause of UTIs is uropathogenic Escherichia
[...] Read more.
One of the most common urologic problems afflicting millions of people worldwide is urinary tract infection (UTI). The severity of UTIs ranges from asymptomatic bacteriuria to acute cystitis, and in severe cases, pyelonephritis and urosepsis. The primary cause of UTIs is uropathogenic Escherichia coli (UPEC), for which current antibiotic therapies often fail. UPEC forms multicellular communities known as biofilms on urinary catheters, as well as on and within bladder epithelial cells. Biofilm formation protects UPEC from environmental conditions, antimicrobial therapy, and the host immune system. Previous studies have investigated UPEC biofilm formation in aerobic conditions (21% oxygen); however, urine oxygen tension is reduced (4–6%), and urine contains molecules that can be used by UPEC as alternative terminal electron acceptors (ATEAs) for respiration. This study was designed to determine whether these different terminal electron acceptors utilized by E. coli influence biofilm formation. A panel of 50 urine-associated E. coli isolates was tested for the ability to form biofilm under anaerobic conditions and in the presence of ATEAs. Biofilm production was reduced under all tested sub-atmospheric levels of oxygen, with the notable exception of 4% oxygen, the reported concentration of oxygen within the bladder. Full article
(This article belongs to the Special Issue Molecular Research on Urology)
Figures

Graphical abstract

Open AccessArticle High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice
Int. J. Mol. Sci. 2017, 18(10), 2081; https://doi.org/10.3390/ijms18102081
Received: 3 August 2017 / Revised: 14 September 2017 / Accepted: 27 September 2017 / Published: 30 September 2017
Cited by 1 | PDF Full-text (4394 KB) | HTML Full-text | XML Full-text
Abstract
Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI). Fat-1 transgenic mice produce ω3-Polyunsaturated fatty acids (ω3-PUFAs) from ω6-Polyunsaturated fatty acids (ω6-PUFAs) without a dietary ω3-PUFAs supplement, leading to a high accumulation of omega-3 in various tissues. ω3-PUFAs show protective
[...] Read more.
Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI). Fat-1 transgenic mice produce ω3-Polyunsaturated fatty acids (ω3-PUFAs) from ω6-Polyunsaturated fatty acids (ω6-PUFAs) without a dietary ω3-PUFAs supplement, leading to a high accumulation of omega-3 in various tissues. ω3-PUFAs show protective effects against various renal injuries and it has recently been reported that ω3-PUFAs regulate autophagy. We assessed whether ω3-PUFAs attenuated IR-induced acute kidney injury (AKI) and evaluated its associated mechanisms. C57Bl/6 background fat-1 mice and wild-type mice (wt) were divided into four groups: wt sham (n = 10), fat-1 sham (n = 10), wt IRI (reperfusion 35 min after clamping both the renal artery and vein; n = 15), and fat-1 IRI (n = 15). Kidneys and blood were harvested 24 h after IRI and renal histological and molecular data were collected. The kidneys of fat-1 mice showed better renal cell survival, renal function, and pathological damage than those of wt mice after IRI. In addition, fat-1 mice showed less oxidative stress and autophagy impairment; greater amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, Beclin-1, and Atg7; lower amounts of p62; and, higher levels of renal cathepsin D and ATP6E than wt kidneys. They also showed more adenosine monophosphate-activated protein kinase (AMPK) activation, which resulted in the inhibition of phosphorylation of the mammalian target of rapamycin (mTOR). Collectively, ω3-PUFAs in fat-1 mice contributed to AMPK mediated autophagy activation, leading to a renoprotective response. Full article
(This article belongs to the Special Issue Omega-3 Fatty Acids in Health and Disease: New Knowledge)
Figures

Graphical abstract

Open AccessArticle Experimental and Kinetic Study on Lignin Depolymerization in Water/Formic Acid System
Int. J. Mol. Sci. 2017, 18(10), 2082; https://doi.org/10.3390/ijms18102082
Received: 4 September 2017 / Revised: 25 September 2017 / Accepted: 28 September 2017 / Published: 1 October 2017
Cited by 2 | PDF Full-text (1340 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Microwave-assisted depolymerization of black-liquor lignin in formic acid was studied, concentrating on the yield of liquid fractions as bio-oil 1 (mainly aromatic monomers) and bio-oil 2 (mainly aromatic oligomers) and the distribution of the specific compositions. Bio-oil 1 (9.69%) and bio-oil 2 (54.39%)
[...] Read more.
Microwave-assisted depolymerization of black-liquor lignin in formic acid was studied, concentrating on the yield of liquid fractions as bio-oil 1 (mainly aromatic monomers) and bio-oil 2 (mainly aromatic oligomers) and the distribution of the specific compositions. Bio-oil 1 (9.69%) and bio-oil 2 (54.39%) achieved their maximum yields under 160 °C with the reaction time of 30 min. The chemical compositions of bio-oil 1 and bio-oil 2 were respectively identified by means of Gas Chromatography-Mass Spectrometer (GC-MS) and Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Ethanone, 1-(4-hydroxy-3-methoxyphenyl) and Ethanone, 1-(4-hydrox-3,5-dimethoxyphenyl) were evidenced to be the two prominent compounds in bio-oil 1. Production of aromatic oligomers with the molecular weight of 328, 342, 358, 378, 394, 424 and 454 identified by MALDI-TOF MS was substantially tuned with the reaction temperature. A two-separate-stage kinetic model was proposed to describe the acidic solvolysis of lignin assisted by microwave heating, where the first stage is dominated by the depolyerization of lignin to monomers and oligomers with the activation energy of 40.27 kJ·mol−1, and the second stage with the activation energy of 49.18 kJ·mol−1 is mainly ascribed to the repolymerization of first-stage produced compounds. Full article
(This article belongs to the Special Issue The Lignin Challenge: Exploring Innovative Applications)
Figures

Graphical abstract

Open AccessArticle H2O2 Is Involved in the Metallothionein-Mediated Rice Tolerance to Copper and Cadmium Toxicity
Int. J. Mol. Sci. 2017, 18(10), 2083; https://doi.org/10.3390/ijms18102083
Received: 5 September 2017 / Revised: 27 September 2017 / Accepted: 27 September 2017 / Published: 1 October 2017
Cited by 1 | PDF Full-text (1582 KB) | HTML Full-text | XML Full-text
Abstract
Cadmium (Cd) and excess copper (Cu) are toxic to plants, causing a wide range of deleterious effects including the formation of reactive oxygen species. Metallothioneins (MTs) may protect plant cells from heavy metal toxicity by chelating heavy metals via cysteine thiol groups. They
[...] Read more.
Cadmium (Cd) and excess copper (Cu) are toxic to plants, causing a wide range of deleterious effects including the formation of reactive oxygen species. Metallothioneins (MTs) may protect plant cells from heavy metal toxicity by chelating heavy metals via cysteine thiol groups. They may also function as antioxidants. The study investigated the relationship of H2O2 production and ricMT expression in rice radicles and rice suspension cells under Cu or Cd stress. The results showed that H2O2 production in the rice radicles increased before Cu-induced ricMT expression, and after Cd-induced ricMT expression. Rice suspension cells of sense- and antisense-ricMT transgenic lines were obtained by an Agrobacterium-mediated transformation. Overexpression of ricMT significantly decreased the death rate of rice cells, which was accompanied by blocked H2O2 accumulation in rice suspension cells subject to Cu and Cd stress. Our findings confirm that H2O2 is involved in the MT-mediated tolerance of Cu and Cd toxicity in rice. Full article
(This article belongs to the Section Molecular Plant Sciences)
Figures

Graphical abstract

Open AccessArticle Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis
Int. J. Mol. Sci. 2017, 18(10), 2084; https://doi.org/10.3390/ijms18102084
Received: 4 September 2017 / Revised: 26 September 2017 / Accepted: 29 September 2017 / Published: 3 October 2017
PDF Full-text (2347 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Metabolism of molecular hydrogen (H2) in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR) formation is still unclear.
[...] Read more.
Metabolism of molecular hydrogen (H2) in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR) formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog) was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA), an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO) by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA) and electron paramagnetic resonance (EPR) analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO) and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme). Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular) and nia1 (two nitrate reductases (NR)-defective mutants) exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis. Full article
(This article belongs to the Section Molecular Plant Sciences)
Figures

Graphical abstract

Open AccessArticle Hydrogen Peroxide Response in Leaves of Poplar (Populus simonii × Populus nigra) Revealed from Physiological and Proteomic Analyses
Int. J. Mol. Sci. 2017, 18(10), 2085; https://doi.org/10.3390/ijms18102085
Received: 29 August 2017 / Revised: 25 September 2017 / Accepted: 26 September 2017 / Published: 2 October 2017
PDF Full-text (29465 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hydrogen peroxide (H2O2) is one of the most abundant reactive oxygen species (ROS), which plays dual roles as a toxic byproduct of cell metabolism and a regulatory signal molecule in plant development and stress response. Populus simonii × Populus
[...] Read more.
Hydrogen peroxide (H2O2) is one of the most abundant reactive oxygen species (ROS), which plays dual roles as a toxic byproduct of cell metabolism and a regulatory signal molecule in plant development and stress response. Populus simonii × Populus nigra is an important cultivated forest species with resistance to cold, drought, insect and disease, and also a key model plant for forest genetic engineering. In this study, H2O2 response in P. simonii × P. nigra leaves was investigated using physiological and proteomics approaches. The seedlings of 50-day-old P. simonii × P. nigra under H2O2 stress exhibited stressful phenotypes, such as increase of in vivo H2O2 content, decrease of photosynthetic rate, elevated osmolytes, antioxidant accumulation, as well as increased activities of several ROS scavenging enzymes. Besides, 81 H2O2-responsive proteins were identified in the poplar leaves. The diverse abundant patterns of these proteins highlight the H2O2-responsive pathways in leaves, including 14-3-3 protein and nucleoside diphosphate kinase (NDPK)-mediated signaling, modulation of thylakoid membrane structure, enhancement of various ROS scavenging pathways, decrease of photosynthesis, dynamics of proteins conformation, and changes in carbohydrate and other metabolisms. This study provides valuable information for understanding H2O2-responsive mechanisms in leaves of P. simonii × P. nigra. Full article
(This article belongs to the Special Issue Selected Papers from the 6th National Plant Protein Research Congress)
Figures

Graphical abstract

Open AccessArticle Detection and Management of Mango Dieback Disease in the United Arab Emirates
Int. J. Mol. Sci. 2017, 18(10), 2086; https://doi.org/10.3390/ijms18102086
Received: 14 September 2017 / Revised: 28 September 2017 / Accepted: 28 September 2017 / Published: 20 October 2017
Cited by 1 | PDF Full-text (4161 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Mango is affected by different decline disorders causing significant losses to mango growers. In the United Arab Emirates (UAE), the pathogen was isolated from all tissues sampled from diseased trees affected by Lasiodiplodia theobromae. Symptoms at early stages of the disease included
[...] Read more.
Mango is affected by different decline disorders causing significant losses to mango growers. In the United Arab Emirates (UAE), the pathogen was isolated from all tissues sampled from diseased trees affected by Lasiodiplodia theobromae. Symptoms at early stages of the disease included general wilting appearance of mango trees, and dieback of twigs. In advanced stages, the disease symptoms were also characterized by the curling and drying of leaves, leading to complete defoliation of the tree and discolouration of vascular regions of the stems and branches. To substantially reduce the devastating impact of dieback disease on mango, the fungus was first identified based on its morphological and cultural characteristics. Target regions of 5.8S rRNA (ITS) and elongation factor 1-α (EF1-α) genes of the pathogen were amplified and sequenced. We also found that the systemic chemical fungicides, Score®, Cidely® Top, and Penthiopyrad®, significantly inhibited the mycelial growth of L. theobromae both in vitro and in the greenhouse. Cidely® Top proved to be a highly effective fungicide against L. theobromae dieback disease also under field conditions. Altogether, the morphology of the fruiting structures, molecular identification and pathogenicity tests confirm that the causal agent of the mango dieback disease in the UAE is L. theobromae. Full article
(This article belongs to the Special Issue Plant Innate Immunity 2.0)
Figures

Graphical abstract

Open AccessArticle Overexpression of Populus trichocarpa Mitogen-Activated Protein Kinase Kinase4 Enhances Salt Tolerance in Tobacco
Int. J. Mol. Sci. 2017, 18(10), 2090; https://doi.org/10.3390/ijms18102090
Received: 10 August 2017 / Revised: 29 September 2017 / Accepted: 29 September 2017 / Published: 18 October 2017
PDF Full-text (5080 KB) | HTML Full-text | XML Full-text
Abstract
Mitogen-activated protein kinase (MAPK) is one of the factors of cascade reactions affecting responses to signal pathway of environmental stimuli. Throughout the life of plants, MAPK family members participate in signal transduction pathways and regulate various intracellular physiological and metabolic reactions. To gain
[...] Read more.
Mitogen-activated protein kinase (MAPK) is one of the factors of cascade reactions affecting responses to signal pathway of environmental stimuli. Throughout the life of plants, MAPK family members participate in signal transduction pathways and regulate various intracellular physiological and metabolic reactions. To gain insights into regulatory function of MAPK kinase (MAPKK) in Populus trichocarpa under salt stress, we obtained full-length cDNA of PtMAPKK4 and analyzed different expression levels of PtMAPKK4 gene in leaves, stems, and root organs. The relationship between PtMAPKK4 and salt stress was studied by detecting expression characteristics of mRNA under 150 mM NaCl stress using real-time quantitative polymerase chain reaction. The results showed that expression of PtMAPKK4 increased under salt (NaCl) stress in leaves but initially reduced and then increased in roots. Thus, salt stress failed to induce PtMAPKK4 expression in stems. PtMAPKK4 possibly participates in regulation of plant growth and metabolism, thereby improving its salt tolerance. We used Saccharomyces cerevisiae strain INVScI to verify subcellular localization of PtMAPKK4 kinase. The yeast strains containing pYES2-PtMAPKK4-GFP plasmid expressed GFP fusion proteins under the induction of d-galactose, and the products were located in nucleus. These results were consistent with network prediction and confirmed location of PtMAPKK4 enzyme in the nucleus. We tested NaCl tolerance in transgenic tobacco lines overexpressing PtMAPKK4 under the control of 35S promoter at germination stage to detect salt tolerance function of PtMAPKK4. Compared withK326 (a wild-type tobacco), lines overexpressing PtMAPKK4 showed a certain degree of improvement in tolerance, germination, and growth. NaCl inhibited growth of overexpressed line and K326 at the seedling stage. However, statistical analysis showed longer root length, higher fresh weight, and lower MDA content in transgenic lines in comparison with that in K326. Full article
(This article belongs to the Section Molecular Plant Sciences)
Figures

Graphical abstract

Open AccessArticle Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies
Int. J. Mol. Sci. 2017, 18(10), 2091; https://doi.org/10.3390/ijms18102091
Received: 22 August 2017 / Revised: 27 September 2017 / Accepted: 28 September 2017 / Published: 3 October 2017
Cited by 1 | PDF Full-text (3445 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Human immunodeficiency virus (HIV) hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR).
[...] Read more.
Human immunodeficiency virus (HIV) hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR). This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS). Quantitative enzyme-linked immunoadsorption assays (ELISA) demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10−8 to 10−9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections. Full article
(This article belongs to the Special Issue Signaling Pathway of Immune Cells and Immune Disorder)
Figures

Graphical abstract

Open AccessArticle CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation
Int. J. Mol. Sci. 2017, 18(10), 2093; https://doi.org/10.3390/ijms18102093
Received: 28 August 2017 / Revised: 29 September 2017 / Accepted: 30 September 2017 / Published: 3 October 2017
PDF Full-text (1740 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Aging is considered the major risk factor for neurodegenerative diseases including Parkinson’s disease (PD). Telomere shortening is associated with cellular senescence. In this regard, pharmacological or genetic inhibition of telomerase activity has been used to model cellular aging. Here, we employed CRISPR-Cas9 technology
[...] Read more.
Aging is considered the major risk factor for neurodegenerative diseases including Parkinson’s disease (PD). Telomere shortening is associated with cellular senescence. In this regard, pharmacological or genetic inhibition of telomerase activity has been used to model cellular aging. Here, we employed CRISPR-Cas9 technology to instantly remove the telomere to induce aging in a neuroblastoma cell line. Expression of both Cas9 and guide RNA targeting telomere repeats ablated the telomere, leading to retardation of cell proliferation. Instant deletion of telomere in SH-SY5Y cells impaired mitochondrial function with diminished mitochondrial respiration and cell viability. Supporting the pathological relevance of cell aging by CRISPR-Cas9 mediated telomere removal, alterations were observed in the levels of PD-associated proteins including PTEN-induced putative kinase 1, peroxisome proliferator-activated receptor γ coactivator 1-α, nuclear respiratory factor 1, parkin, and aminoacyl tRNA synthetase complex interacting multifunctional protein 2. Significantly, α-synuclein expression in the background of telomere removal led to the enhancement of protein aggregation, suggesting positive feed-forward interaction between aging and PD pathogenesis. Collectively, our results demonstrate that CRISPR-Cas9 can be used to efficiently model cellular aging and PD. Full article
(This article belongs to the Special Issue Genome Editing 2018)
Figures

Graphical abstract

Open AccessArticle Chronic Δ9-THC Exposure Differently Affects Histone Modifications in the Adolescent and Adult Rat Brain
Int. J. Mol. Sci. 2017, 18(10), 2094; https://doi.org/10.3390/ijms18102094
Received: 20 July 2017 / Revised: 29 September 2017 / Accepted: 30 September 2017 / Published: 4 October 2017
PDF Full-text (3154 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Adolescence represents a vulnerable period for the psychiatric consequences of delta9-tetrahydrocannabinol (Δ9-THC) exposure, however, the molecular underpinnings of this vulnerability remain to be established. Histone modifications are emerging as important epigenetic mechanisms involved in the etiopathogenesis of psychiatric diseases, thus, we
[...] Read more.
Adolescence represents a vulnerable period for the psychiatric consequences of delta9-tetrahydrocannabinol (Δ9-THC) exposure, however, the molecular underpinnings of this vulnerability remain to be established. Histone modifications are emerging as important epigenetic mechanisms involved in the etiopathogenesis of psychiatric diseases, thus, we investigated the impact of chronic Δ9-THC exposure on histone modifications in different brain areas of female rats. We checked histone modifications associated to both transcriptional repression (H3K9 di- and tri-methylation, H3K27 tri-methylation) and activation (H3K9 and H3K14 acetylation) after adolescent and adult chronic Δ9-THC exposure in the hippocampus, nucleus accumbens, and amygdala. Chronic exposure to increasing doses of Δ9-THC for 11 days affected histone modifications in a region- and age-specific manner. The primary effect in the adolescent brain was represented by changes leading to transcriptional repression, whereas the one observed after adult treatment led to transcriptional activation. Moreover, only in the adolescent brain, the primary effect was followed by a homeostatic response to counterbalance the Δ9-THC-induced repressive effect, except in the amygdala. The presence of a more complex response in the adolescent brain may be part of the mechanisms that make the adolescent brain vulnerable to Δ9-THC adverse effects. Full article
(This article belongs to the Special Issue Cannabinoid Signaling in Nervous System)
Figures

Graphical abstract

Open AccessArticle Prebiotics Mediate Microbial Interactions in a Consortium of the Infant Gut Microbiome
Int. J. Mol. Sci. 2017, 18(10), 2095; https://doi.org/10.3390/ijms18102095
Received: 1 September 2017 / Revised: 28 September 2017 / Accepted: 2 October 2017 / Published: 4 October 2017
Cited by 2 | PDF Full-text (2026 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Composition of the gut microbiome is influenced by diet. Milk or formula oligosaccharides act as prebiotics, bioactives that promote the growth of beneficial gut microbes. The influence of prebiotics on microbial interactions is not well understood. Here we investigated the transformation of prebiotics
[...] Read more.
Composition of the gut microbiome is influenced by diet. Milk or formula oligosaccharides act as prebiotics, bioactives that promote the growth of beneficial gut microbes. The influence of prebiotics on microbial interactions is not well understood. Here we investigated the transformation of prebiotics by a consortium of four representative species of the infant gut microbiome, and how their interactions changed with dietary substrates. First, we optimized a culture medium resembling certain infant gut parameters. A consortium containing Bifidobacterium longum subsp. infantis, Bacteroides vulgatus, Escherichia coli and Lactobacillus acidophilus was grown on fructooligosaccharides (FOS) or 2′-fucosyllactose (2FL) in mono- or co-culture. While Bi. infantis and Ba. vulgatus dominated growth on 2FL, their combined growth was reduced. Besides, interaction coefficients indicated strong competition, especially on FOS. While FOS was rapidly consumed by the consortium, B. infantis was the only microbe displaying significant consumption of 2FL. Acid production by the consortium resembled the metabolism of microorganisms dominating growth in each substrate. Finally, the consortium was tested in a bioreactor, observing similar predominance but more pronounced acid production and substrate consumption. This study indicates that the chemical nature of prebiotics modulate microbial interactions in a consortium of infant gut species. Full article
(This article belongs to the Special Issue Molecular Transformations of Natural Products)
Figures

Figure 1

Open AccessArticle Spot-Bonding and Full-Bonding Techniques for Fiber Reinforced Composite (FRC) and Metallic Retainers
Int. J. Mol. Sci. 2017, 18(10), 2096; https://doi.org/10.3390/ijms18102096
Received: 19 September 2017 / Revised: 1 October 2017 / Accepted: 2 October 2017 / Published: 4 October 2017
PDF Full-text (988 KB) | HTML Full-text | XML Full-text
Abstract
Fiber reinforced Composite (FRC) retainers have been introduced as an aesthetic alternative to conventional metallic splints, but present high rigidity. The purpose of the present investigation was to evaluate bending and fracture loads of FRC splints bonded with conventional full-coverage of the FRC
[...] Read more.
Fiber reinforced Composite (FRC) retainers have been introduced as an aesthetic alternative to conventional metallic splints, but present high rigidity. The purpose of the present investigation was to evaluate bending and fracture loads of FRC splints bonded with conventional full-coverage of the FRC with a composite compared with an experimental bonding technique with a partial (spot-) resin composite cover. Stainless steel rectangular flat, stainless steel round, and FRC retainers were tested at 0.2 and 0.3 mm deflections and at a maximum load. Both at 0.2 and 0.3 mm deflections, the lowest load required to bend the retainer was recorded for spot-bonded stainless steel flat and round wires and for spot-bonded FRCs, and no significant differences were identified among them. Higher force levels were reported for full-bonded metallic flat and round splints and the highest loads were recorded for full-bonded FRCs. At the maximum load, no significant differences were reported among spot- and full-bonded metallic splints and spot-bonded FRCs. The highest loads were reported for full bonded FRCs. The significant decrease in the rigidity of spot-bonded FRC splints if compared with full-bonded retainers suggests further tests in order to propose this technique for clinical use, as they allow physiologic tooth movement, thus presumably reducing the risk of ankylosis. Full article
Figures

Graphical abstract

Open AccessArticle A Unique TGFB1-Driven Genomic Program Links Astrocytosis, Low-Grade Inflammation and Partial Demyelination in Spinal Cord Periplaques from Progressive Multiple Sclerosis Patients
Int. J. Mol. Sci. 2017, 18(10), 2097; https://doi.org/10.3390/ijms18102097
Received: 23 August 2017 / Revised: 25 September 2017 / Accepted: 29 September 2017 / Published: 5 October 2017
PDF Full-text (4601 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We previously reported that, in multiple sclerosis (MS) patients with a progressive form of the disease, spinal cord periplaques extend distance away from plaque borders and are characterized by the co-occurrence of partial demyelination, astrocytosis and low-grade inflammation. However, transcriptomic analyses did not
[...] Read more.
We previously reported that, in multiple sclerosis (MS) patients with a progressive form of the disease, spinal cord periplaques extend distance away from plaque borders and are characterized by the co-occurrence of partial demyelination, astrocytosis and low-grade inflammation. However, transcriptomic analyses did not allow providing a comprehensive view of molecular events in astrocytes vs. oligodendrocytes. Here, we re-assessed our transcriptomic data and performed co-expression analyses to characterize astrocyte vs. oligodendrocyte molecular signatures in periplaques. We identified an astrocytosis-related co-expression module whose central hub was the astrocyte gene Cx43/GJA1 (connexin-43, also named gap junction protein α-1). Such a module comprised GFAP (glial fibrillary acidic protein) and a unique set of transcripts forming a TGFB/SMAD1/SMAD2 (transforming growth factor β/SMAD family member 1/SMAD family member 2) genomic signature. Partial demyelination was characterized by a co-expression network whose central hub was the oligodendrocyte gene NDRG1 (N-myc downstream regulated 1), a gene previously shown to be specifically silenced in the normal-appearing white matter (NAWM) of MS patients. Surprisingly, besides myelin genes, the NDRG1 co-expression module comprised a highly significant number of translation/elongation-related genes. To identify a putative cause of NDRG1 downregulation in periplaques, we then sought to identify the cytokine/chemokine genes whose mRNA levels inversely correlated with those of NDRG1. Following this approach, we found five candidate immune-related genes whose upregulation associated with NDRG1 downregulation: TGFB1 (transforming growth factor β 1), PDGFC (platelet derived growth factor C), IL17D (interleukin 17D), IL33 (interleukin 33), and IL12A (interleukin 12A). From these results, we propose that, in the spinal cord periplaques of progressive MS patients, TGFB1 may limit acute inflammation but concurrently induce astrocytosis and an alteration of the translation/elongation of myelin genes in oligodendrocytes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Graphical abstract

Open AccessArticle Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae
Int. J. Mol. Sci. 2017, 18(10), 2099; https://doi.org/10.3390/ijms18102099
Received: 1 September 2017 / Revised: 27 September 2017 / Accepted: 28 September 2017 / Published: 5 October 2017
Cited by 1 | PDF Full-text (7372 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The rhodopsin-guanylyl cyclase from the nematophagous fungus Catenaria anguillulae belongs to a recently discovered class of enzymerhodopsins and may find application as a tool in optogenetics. Here the rhodopsin domain CaRh of the rhodopsin-guanylyl cyclase from Catenaria anguillulae was studied by absorption and
[...] Read more.
The rhodopsin-guanylyl cyclase from the nematophagous fungus Catenaria anguillulae belongs to a recently discovered class of enzymerhodopsins and may find application as a tool in optogenetics. Here the rhodopsin domain CaRh of the rhodopsin-guanylyl cyclase from Catenaria anguillulae was studied by absorption and emission spectroscopic methods. The absorption cross-section spectrum and excitation wavelength dependent fluorescence quantum distributions of CaRh samples were determined (first absorption band in the green spectral region). The thermal stability of CaRh was studied by long-time attenuation measurements at room temperature (20.5 °C) and refrigerator temperature of 3.5 °C. The apparent melting temperature of CaRh was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 62 ± 2 °C). The photocycle dynamics of CaRh was investigated by sample excitation to the first inhomogeneous absorption band of the CaRhda dark-adapted state around 590 nm (long-wavelength tail), 530 nm (central region) and 470 nm (short-wavelength tail) and following the absorption spectra development during exposure and after exposure (time resolution 0.0125 s). The original protonated retinal Schiff base PRSBall-trans in CaRhda photo-converted reversibly to protonated retinal Schiff base PRSBall-trans,la1 with restructured surroundings (CaRhla1 light-adapted state, slightly blue-shifted and broadened first absorption band, recovery to CaRhda with time constant of 0.8 s) and deprotonated retinal Schiff base RSB13-cis (CaRhla2 light-adapted state, first absorption band in violet to near ultraviolet spectral region, recovery to CaRhda with time constant of 0.35 s). Long-time light exposure of light-adapted CaRhla1 around 590, 530 and 470 nm caused low-efficient irreversible degradation to photoproducts CaRhprod. Schemes of the primary photocycle dynamics of CaRhda and the secondary photocycle dynamics of CaRhla1 are developed. Full article
(This article belongs to the Special Issue Optogenetic Approaches in Neuroscience)
Figures

Graphical abstract

Open AccessArticle Unexpected High Intragenomic Variation in Two of Three Major Pest Thrips Species Does Not Affect Ribosomal Internal Transcribed Spacer 2 (ITS2) Utility for Thrips Identification
Int. J. Mol. Sci. 2017, 18(10), 2100; https://doi.org/10.3390/ijms18102100
Received: 31 August 2017 / Revised: 28 September 2017 / Accepted: 30 September 2017 / Published: 6 October 2017
PDF Full-text (1992 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The mitochondrial cytochrome oxidase I gene (mtCO1) and the ribosomal internal transcribed spacer 2 region (ITS2) are among the most widely used molecular markers for insect taxonomic characterization. Three economically important species of thrips, Scirtothrips dorsalis, Thrips palmi, and