Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 20, Issue 1 (January 2015), Pages 1-1754

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-107
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial Molecules after 20 Years—Looking Back and Looking Forward
Molecules 2015, 20(1), 645-647; doi:10.3390/molecules20010645
Received: 27 December 2014 / Accepted: 5 January 2015 / Published: 6 January 2015
PDF Full-text (611 KB) | HTML Full-text | XML Full-text
Abstract
Twenty years—a long time—so what happens after 20 years? Well if you live in New Zealand, according to [1], if you are adopted you can apply to Births, Deaths and Marriages for a copy of your birth certificate to find the names of
[...] Read more.
Twenty years—a long time—so what happens after 20 years? Well if you live in New Zealand, according to [1], if you are adopted you can apply to Births, Deaths and Marriages for a copy of your birth certificate to find the names of your birth parents, you can apply to adopt a child who is related to you and you can gamble or work in a casino [1], but more seriously, our 20th anniversary is an appropriate time to look back at the history of Molecules and perhaps offer some speculations about its future.[...] Full article
Open AccessEditorial Acknowledgement to Reviewers of Molecules in 2014
Molecules 2015, 20(1), 693-725; doi:10.3390/molecules20010693
Received: 7 January 2015 / Accepted: 7 January 2015 / Published: 7 January 2015
PDF Full-text (704 KB) | HTML Full-text | XML Full-text
Abstract
The editors of Molecules would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2014:[...] Full article
Open AccessEditorial Molecules Best Paper Award 2015
Molecules 2015, 20(1), 1751-1754; doi:10.3390/molecules20011751
Received: 7 January 2015 / Accepted: 9 January 2015 / Published: 20 January 2015
PDF Full-text (606 KB) | HTML Full-text | XML Full-text
Abstract
Molecules instituted some years ago a “Best Paper” award to recognize the most outstanding papers in the area of organic synthesis, natural products, medicinal chemistry and molecular diversity published each year in Molecules. We are pleased to announce the third “Molecules
[...] Read more.
Molecules instituted some years ago a “Best Paper” award to recognize the most outstanding papers in the area of organic synthesis, natural products, medicinal chemistry and molecular diversity published each year in Molecules. We are pleased to announce the third “Molecules Best Paper Award” for 2015. The winners were chosen by the Editor-in-Chief and selected editorial board members from among all the papers published in 2011. Reviews and research papers were evaluated separately. We are pleased to announce that the following eight papers have won the Molecules Best Paper Award for 2015:[...] Full article
Figures

Research

Jump to: Editorial, Review

Open AccessArticle EDTA a Novel Inducer of Pisatin, a Phytoalexin Indicator of the Non-Host Resistance in Peas
Molecules 2015, 20(1), 24-34; doi:10.3390/molecules20010024
Received: 11 October 2014 / Accepted: 17 December 2014 / Published: 23 December 2014
Cited by 9 | PDF Full-text (1847 KB) | HTML Full-text | XML Full-text
Abstract
Pea pod endocarp suppresses the growth of an inappropriate fungus or non-pathogen by generating a “non-host resistance response” that completely suppresses growth of the challenging fungus within 6 h. Most of the components of this resistance response including pisatin production can be elicited
[...] Read more.
Pea pod endocarp suppresses the growth of an inappropriate fungus or non-pathogen by generating a “non-host resistance response” that completely suppresses growth of the challenging fungus within 6 h. Most of the components of this resistance response including pisatin production can be elicited by an extensive number of both biotic and abiotic inducers. Thus this phytoalexin serves as an indicator to be used in evaluating the chemical properties of inducers that can initiate the resistance response. Many of the pisatin inducers are reported to interact with DNA and potentially cause DNA damage. Here we propose that EDTA (ethylenediaminetetraacetic acid) is an elicitor to evoke non-host resistance in plants. EDTA is manufactured as a chelating agent, however at low concentration it is a strong elicitor, inducing the phytoalexin pisatin, cellular DNA damage and defense-responsive genes. It is capable of activating complete resistance in peas against a pea pathogen. Since there is also an accompanying fragmentation of pea DNA and alteration in the size of pea nuclei, the potential biochemical insult as a metal chelator may not be its primary action. The potential effects of EDTA on the structure of DNA within pea chromatin may assist the transcription of plant defense genes. Full article
Open AccessArticle Toxicity of Fatty Acid Autoxidation Products: Highest Anti-Microbial Toxicity in the Initial Oxidative Phase
Molecules 2015, 20(1), 35-42; doi:10.3390/molecules20010035
Received: 17 November 2014 / Accepted: 15 December 2014 / Published: 23 December 2014
Cited by 1 | PDF Full-text (723 KB) | HTML Full-text | XML Full-text
Abstract
The autoxidation-degradation processes of polyunsaturated fatty acids give rise to toxic products, and the relative toxicity at different stages of the process is of great interest. We report here that when methyl α-linolenate is exposed to sunlight and air, its antimicrobial activity against
[...] Read more.
The autoxidation-degradation processes of polyunsaturated fatty acids give rise to toxic products, and the relative toxicity at different stages of the process is of great interest. We report here that when methyl α-linolenate is exposed to sunlight and air, its antimicrobial activity against yeasts and bacteria (as measured by agar diffusion) reaches its maximum during the early oxidative phase when addition of oxygen occurs and the mass increases drastically. Before exposure, the activity is minimal or zero, but it increases rapidly during the first days of the test, simultaneously with the increase of the mass of the material, and begins to decrease while the mass is still increasing and before the mass begins to decrease due to degradation and formation of volatile compounds. Thus, the products formed during the degradation phase of the process are far less toxic to the test organisms than the compounds formed at the early stages when addition of oxygen occurs with maximal rate. Full article
(This article belongs to the Special Issue Antiparasitic Agents)
Figures

Open AccessArticle Synthesis and Anti-Trypanosoma cruzi Activity of Diaryldiazepines
Molecules 2015, 20(1), 43-51; doi:10.3390/molecules20010043
Received: 14 October 2014 / Accepted: 18 November 2014 / Published: 23 December 2014
Cited by 5 | PDF Full-text (711 KB) | HTML Full-text | XML Full-text
Abstract
Chagas disease is a so-called “neglected disease” and endemic to Latin America. Nifurtimox and benznidazole are drugs that have considerable efficacy in the treatment of the acute phase of the disease but cause many significant side effects. Furthermore, in the Chronic Phase its
[...] Read more.
Chagas disease is a so-called “neglected disease” and endemic to Latin America. Nifurtimox and benznidazole are drugs that have considerable efficacy in the treatment of the acute phase of the disease but cause many significant side effects. Furthermore, in the Chronic Phase its efficiency is reduced and their therapeutic effectiveness is dependent on the type of T. cruzi strain. For this reason, the present work aims to drive basic research towards the discovery of new chemical entities to treat Chagas disease. Differently substituted 5,7-diaryl-2,3-dihydro-1,4-diazepines were synthesized by cyclocondensation of substituted flavones with ethylenediamine and tested as anti-Trypanosoma cruzi candidates. Epimastigotes of the Y strain from T. cruzi were used in this study and the number of parasites was determined in a Neubauer chamber. The most potent diaryldiazepine that reduced epimastigote proliferation exhibited an IC50 value of 0.25 μM, which is significantly more active than benznidazole. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Effect of Monomer Dosing Rate in the Preparation of Mesoporous Polystyrene Nanoparticles by Semicontinuous Heterophase Polymerization
Molecules 2015, 20(1), 52-69; doi:10.3390/molecules20010052
Received: 15 October 2014 / Accepted: 15 December 2014 / Published: 23 December 2014
PDF Full-text (1462 KB) | HTML Full-text | XML Full-text
Abstract
The semicontinuous heterophase polymerization of styrene in the presence of cross-linking and porogen agents was carried out. Latexes with close to 20% solid content, which contained mesoporous nanoparticles with 28 nm in average diameters, up to 0.5 cm3/g in porosity and
[...] Read more.
The semicontinuous heterophase polymerization of styrene in the presence of cross-linking and porogen agents was carried out. Latexes with close to 20% solid content, which contained mesoporous nanoparticles with 28 nm in average diameters, up to 0.5 cm3/g in porosity and 6–8 nm in pore diameters were obtained. By varying the monomer dosing rate over the micellar solution, an unexpected direct dependence of instantaneous conversion on the monomer dosing rate was found. This was ascribed to the higher average number of radicals per particle attained in the polymerization at the higher dosing rate, which in turn would arise from the higher gel percentage in the polymer. It is believed that the cross-linked chains prevent encounters between radicals, delaying the bimolecular termination reactions and allowing the existence of more than one radical inside the particles, which in turn increases the propagation rate. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Open AccessArticle Comparison of the Separation Performances of Cinchona Alkaloid-Based Zwitterionic Stationary Phases in the Enantioseparation of β2- and β3-Amino Acids
Molecules 2015, 20(1), 70-87; doi:10.3390/molecules20010070
Received: 10 November 2014 / Accepted: 15 December 2014 / Published: 23 December 2014
Cited by 10 | PDF Full-text (874 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The enantiomers of twelve unusual β2- and β3-homoamino acids containing the same side-chains were separated on chiral stationary phases containing a quinine- or quinidine-based zwitterionic ion-exchanger as chiral selector. The effects of the mobile phase composition, the nature and
[...] Read more.
The enantiomers of twelve unusual β2- and β3-homoamino acids containing the same side-chains were separated on chiral stationary phases containing a quinine- or quinidine-based zwitterionic ion-exchanger as chiral selector. The effects of the mobile phase composition, the nature and concentration of the acid and base additives and temperature on the separations were investigated. The changes in standard enthalpy, ∆(∆H°), entropy, ∆(∆S°), and free energy, ∆(∆G°), were calculated from the linear van’t Hoff plots derived from the ln α vs. 1/T curves in the studied temperature range (10–50 °C). The values of the thermodynamic parameters depended on the nature of the selectors, the structures of the analytes, and the positions of the substituents on the analytes. A comparison of the zwitterionic stationary phases revealed that the quinidine-based ZWIX(−)™ column exhibited much better selectivity for both β2- and β3-amino acids than the quinine-based ZWIX(+)™ column, and the separation performances of both the ZWIX(+)™ and ZWIX(−)™ columns were better for β2-amino acids. The elution sequence was determined in some cases and was observed to be R < S and S < R on the ZWIX(+)™ and ZWIX(−)™ columns, respectively. Full article
(This article belongs to the Special Issue Dynamic Stereochemistry)
Open AccessArticle 3β-O-Tigloylmelianol from Guarea kunthiana: A New Potential Agent to Control Rhipicephalus (Boophilus) microplus, a Cattle Tick of Veterinary Significance
Molecules 2015, 20(1), 111-126; doi:10.3390/molecules20010111
Received: 6 November 2014 / Accepted: 12 December 2014 / Published: 23 December 2014
Cited by 5 | PDF Full-text (812 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chemical investigation of Guarea kunthiana fruits, guided by their effect on the reproductive cycle of engorged females of the cattle tick Rhipicephalus (Boophilus) microplus—a major economic problem to the livestock industry worldwide—led to isolation of 3β-O-tigloylmelianol, a new protolimonoid, from
[...] Read more.
Chemical investigation of Guarea kunthiana fruits, guided by their effect on the reproductive cycle of engorged females of the cattle tick Rhipicephalus (Boophilus) microplus—a major economic problem to the livestock industry worldwide—led to isolation of 3β-O-tigloylmelianol, a new protolimonoid, from the bioactive hexane phase obtained by partitioning the crude ethanol extract. An adult immersion test was performed. The compound strongly inhibited egg-laying and hatchability (99.2% effectiveness at a 0.01% concentration). Melianone, isolated from the same phase, yielded unremarkable results in the adult immersion test. From the dichloromethane phase, melianol, melianodiol, meliantriol, and a new protolimonoid, 3β-O-tigloylmeliantriol, were isolated, all of which, in the same manner as melianone, exhibited unremarkable results in the test. The structures of new and known compounds were mostly established by 1D- and 2D-NMR analyses and mass spectrometry data. This is the first report on the bioactivity of protolimonoids on the reproductive cycle of engorged females of R. (B.) microplus. 3β-O-Tigloylmelianol proved a promising candidate for the development of a biocontrol agent against the cattle tick investigated, as an alternative to environmentally hazardous synthetic acaricides. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Xanthones from the Roots of Moutabea guianensis Aubl.
Molecules 2015, 20(1), 127-134; doi:10.3390/molecules20010127
Received: 16 September 2014 / Accepted: 28 November 2014 / Published: 23 December 2014
Cited by 3 | PDF Full-text (515 KB) | HTML Full-text | XML Full-text
Abstract
The phytochemical investigation of Moutabea guianensis roots led to the isolation of five polyoxygenated xanthones, including two new ones named moutabeone B (1,8-dihydroxy-4,5,6,7-tetramethoxyxanthone) and moutabeone C (1-hydroxy-4,5,6,7,8-pentamethoxyxanthone), along with the three known xanthones, 1,8-dihydroxy-4,6-dimethoxyxanthone, 1,8-dihydroxy-4,5,6-trimethoxyxanthone and augustin A (1,8-dihydroxy-4,6,7-trimethoxyxanthone). Structural characterization of all
[...] Read more.
The phytochemical investigation of Moutabea guianensis roots led to the isolation of five polyoxygenated xanthones, including two new ones named moutabeone B (1,8-dihydroxy-4,5,6,7-tetramethoxyxanthone) and moutabeone C (1-hydroxy-4,5,6,7,8-pentamethoxyxanthone), along with the three known xanthones, 1,8-dihydroxy-4,6-dimethoxyxanthone, 1,8-dihydroxy-4,5,6-trimethoxyxanthone and augustin A (1,8-dihydroxy-4,6,7-trimethoxyxanthone). Structural characterization of all compounds was established on the basis of spectroscopic methods, mainly 1D and 2D nuclear magnetic resonance (NMR) and comparison with literature data. The antioxidant activity of compounds was tested through a thin layer chromatography (TLC) bioautography assay using 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH·) as detection reagent. All tested compounds were more active (DL < 0.13–0.03 µg) than Trolox (DL < 0.15 µg), used as reference standard. Full article
(This article belongs to the Section Natural Products)
Open AccessArticle In Silico Affinity Profiling of Neuroactive Polyphenols for Post-Traumatic Calpain Inactivation: A Molecular Docking and Atomistic Simulation Sensitivity Analysis
Molecules 2015, 20(1), 135-168; doi:10.3390/molecules20010135
Received: 11 October 2014 / Accepted: 16 December 2014 / Published: 23 December 2014
Cited by 5 | PDF Full-text (2539 KB) | HTML Full-text | XML Full-text
Abstract
Calcium-activated nonlysosomal neutral proteases, calpains, are believed to be early mediators of neuronal damage associated with neuron death and axonal degeneration after traumatic neural injuries. In this study, a library of biologically active small molecular weight calpain inhibitors was used for model validation
[...] Read more.
Calcium-activated nonlysosomal neutral proteases, calpains, are believed to be early mediators of neuronal damage associated with neuron death and axonal degeneration after traumatic neural injuries. In this study, a library of biologically active small molecular weight calpain inhibitors was used for model validation and inhibition site recognition. Subsequently, two natural neuroactive polyphenols, curcumin and quercetin, were tested for their sensitivity and activity towards calpain’s proteolytic sequence and compared with the known calpain inhibitors via detailed molecular mechanics (MM), molecular dynamics (MD), and docking simulations. The MM and MD energy profiles (SJA6017 < AK275 < AK295 < PD151746 < quercetin < leupeptin < PD150606 < curcumin < ALLN < ALLM < MDL-28170 < calpeptin) and the docking analysis (AK275 < AK295 < PD151746 < ALLN < PD150606 < curcumin < leupeptin < quercetin < calpeptin < SJA6017 < MDL-28170 < ALLM) demonstrated that polyphenols conferred comparable calpain inhibition profiling. The modeling paradigm used in this study provides the first detailed account of corroboration of enzyme inhibition efficacy of calpain inhibitors and the respective calpain–calpain inhibitor molecular complexes’ energetic landscape and in addition stimulates the polyphenol bioactive paradigm for post-SCI intervention with implications reaching to experimental in vitro, in cyto, and in vivo studies. Full article
Figures

Open AccessArticle Steric Stabilization of “Charge-Free” Cellulose Nanowhiskers by Grafting of Poly(ethylene glycol)
Molecules 2015, 20(1), 169-184; doi:10.3390/molecules20010169
Received: 26 November 2014 / Accepted: 17 December 2014 / Published: 24 December 2014
Cited by 5 | PDF Full-text (4376 KB) | HTML Full-text | XML Full-text
Abstract
A sterically stabilized aqueous suspension of “charge-free” cellulose nanowhiskers was prepared by hydrochloric acid hydrolysis of cotton powders and subsequent surface grafting of monomethoxy poly(ethylene glycol) (mPEG). The preparation scheme included carboxylation of the terminal hydroxyl groups in mPEG via oxidation with silica
[...] Read more.
A sterically stabilized aqueous suspension of “charge-free” cellulose nanowhiskers was prepared by hydrochloric acid hydrolysis of cotton powders and subsequent surface grafting of monomethoxy poly(ethylene glycol) (mPEG). The preparation scheme included carboxylation of the terminal hydroxyl groups in mPEG via oxidation with silica gel particles carrying 2,2,6,6-tetramethyl-1-pyperidinyloxyl (TEMPO) moieties and subsequent esterification between terminal carboxyls in mPEG and surface hydroxyl groups of cellulose nanowhiskers, mediated by 1,1'-carbonyldiimidazole (CDI) in dimethyl sulfoxide or dimethylacetamide. Some of the prepared PEG-grafted samples showed remarkable flow birefringence and enhanced stability after 24 h, even in 0.1 M NaCl, suggesting successful steric stabilization by efficient mPEG grafting. Actual PEG grafting via ester linkages was confirmed by attenuated total reflectance-Fourier transform infrared spectrometry. In a typical example, the amount of grafted mPEG was estimated as ca. 0.3 g/g cellulose by two measurements, i.e., weight increase after grafting and weight loss after alkali cleavage of ester linkages. Transmission electron microscopy indicated unchanged nanowhisker morphology after mPEG grafting. Full article
(This article belongs to the Special Issue New Trends in Cellulose and Chitin Chemistry)
Figures

Open AccessArticle Structure-Based Virtual Screening of Novel Natural Alkaloid Derivatives as Potential Binders of h-telo and c-myc DNA G-Quadruplex Conformations
Molecules 2015, 20(1), 206-223; doi:10.3390/molecules20010206
Received: 7 November 2014 / Accepted: 15 December 2014 / Published: 24 December 2014
Cited by 9 | PDF Full-text (2183 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Several ligands can bind to the non-canonical G-quadruplex DNA structures thereby stabilizing them. These molecules can act as effective anticancer agents by stabilizing the telomeric regions of DNA or by regulating oncogene expression. In order to better interact with the quartets of G-quadruplex
[...] Read more.
Several ligands can bind to the non-canonical G-quadruplex DNA structures thereby stabilizing them. These molecules can act as effective anticancer agents by stabilizing the telomeric regions of DNA or by regulating oncogene expression. In order to better interact with the quartets of G-quadruplex structures, G-binders are generally characterized by a large aromatic core involved in π-π stacking. Some natural flexible cyclic molecules from Traditional Chinese Medicine have shown high binding affinity with G-quadruplex, such as berbamine and many other alkaloids. Using the structural information available on G-quadruplex structures, we performed a high throughput in silico screening of commercially available alkaloid derivative databases by means of a structure-based approach based on docking and molecular dynamics simulations against the human telomeric sequence d[AG3(T2AG3)3] and the c-myc promoter structure. We identified 69 best hits reporting an improved theoretical binding affinity with respect to the active set. Among them, a berberine derivative, already known to remarkably inhibit telomerase activity, was related to a better theoretical affinity versus c-myc. Full article
(This article belongs to the Special Issue Alkaloids: Novel Therapeutic Perspectives)
Open AccessArticle Phenolic Profile of Potentilla anserina L. (Rosaceae) Herb of Siberian Origin and Development of a Rapid Method for Simultaneous Determination of Major Phenolics in P. anserina Pharmaceutical Products by Microcolumn RP-HPLC-UV
Molecules 2015, 20(1), 224-248; doi:10.3390/molecules20010224
Received: 20 November 2014 / Accepted: 22 December 2014 / Published: 24 December 2014
Cited by 5 | PDF Full-text (970 KB) | HTML Full-text | XML Full-text
Abstract
A chemical study of Potentilla anserina L. herb (Rosaceae) of Siberian origin led to the isolation of 17 compounds. Three ellagitannins—potentillin, agrimonic acid A and B—are reported for the first time in this species. With a view to rapid quantitative analysis, a new
[...] Read more.
A chemical study of Potentilla anserina L. herb (Rosaceae) of Siberian origin led to the isolation of 17 compounds. Three ellagitannins—potentillin, agrimonic acid A and B—are reported for the first time in this species. With a view to rapid quantitative analysis, a new method was developed for simultaneous determination of major phenolic compounds in P. anserina, including caffeic acid, myricetin-3-O-glucuronide, agrimoniin, ellagic acid, miquelianin, isorhamnetin-3-O-glucuronide, and kaempferol-3-O-rhamnoside. The quantitative determination was conducted by microcolumn reversed phase high-performance liquid chromatography with UV detection. Separation was performed using a ProntoSIL-120-5-C18 AQ column (60 mm × 1 mm × 5 μm) with six-step gradient elution of aqueous 0.2 М LiClO4 in 0.006 M HClO4 and acetonitrile as mobile phases. The components were quantified by HPLC-UV at 270 nm. All calibration curves showed good linearity (r2 > 0.999) within test ranges. The reproducibility was evaluated by intra- and inter-day assays, and RSD values were less than 2.8%. The recoveries were between 97.15 and 102.38%. The limits of detection ranged from 0.21 to 1.94 μg/mL, and limits of quantification ranged from 0.65 to 5.88 μg/mL, respectively. Various solvents, extraction methods, temperatures, and times were evaluated to obtain the best extraction efficiency. The developed method was successfully applied for the analysis of selected pharmaceutical products: 12 batches of P. anserina herb collected from three Siberian regions (Yakutia, Buryatia, Irkutsk), two commercial samples of P. anserina herb, and some preparations (liquid extract, tincture, decoction, infusion, and dry extract). Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Protective Effects of Lycium barbarum Polysaccharide on 6-OHDA-Induced Apoptosis in PC12 Cells through the ROS-NO Pathway
Molecules 2015, 20(1), 293-308; doi:10.3390/molecules20010293
Received: 12 November 2014 / Accepted: 19 December 2014 / Published: 24 December 2014
Cited by 18 | PDF Full-text (1039 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Oxidative stress plays an important role in Parkinson’s disease and other neurodegenerative disorders. Lycium barbarum polysaccharides (LBP), the main active ingredients extracted from the fruits of Lycium barbarum L., have been shown to be a potent antioxidant. In the present study, we investigated
[...] Read more.
Oxidative stress plays an important role in Parkinson’s disease and other neurodegenerative disorders. Lycium barbarum polysaccharides (LBP), the main active ingredients extracted from the fruits of Lycium barbarum L., have been shown to be a potent antioxidant. In the present study, we investigated the protective effects, and the possible mechanism of action of LBP against 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells. Our data demonstrated that LBP significantly reversed the 6-OHDA-induced decrease in cell viability, prevented 6-OHDA-induced changes in condensed nuclei and decreased the percentage of apoptotic cells in a dose-dependent manner. Furthermore, LBP also slowed the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), decreased the level of protein-bound 3-nitrotyrosine (3-NT) and intracellular free Ca2+, and inhibiting the overexpression of nuclear factor κB (NF-κB), neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS). These results demonstrate that LBP prevents 6-OHDA-induced apoptosis in PC12 cells, at least in part through the ROS-NO pathway. Full article
(This article belongs to the Section Medicinal Chemistry)
Open AccessArticle Ag+ as a More Effective Elicitor for Production of Tanshinones than Phenolic Acids in Salvia miltiorrhiza Hairy Roots
Molecules 2015, 20(1), 309-324; doi:10.3390/molecules20010309
Received: 3 October 2014 / Accepted: 5 December 2014 / Published: 24 December 2014
Cited by 13 | PDF Full-text (3960 KB) | HTML Full-text | XML Full-text
Abstract
Phenolic acids and tanshinones are two groups of bioactive ingredients in Salvia miltiorrhiza Bunge. As a heavy metal elicitor, it has been reported that Ag+ can induce accumulations of both phenolic acids and tanshinones in S. miltiorrhiza hairy roots. In this study,
[...] Read more.
Phenolic acids and tanshinones are two groups of bioactive ingredients in Salvia miltiorrhiza Bunge. As a heavy metal elicitor, it has been reported that Ag+ can induce accumulations of both phenolic acids and tanshinones in S. miltiorrhiza hairy roots. In this study, the effects of Ag+ treatment on accumulations of six phenolic acids and four tanshinones in S. miltiorrhiza hairy roots were investigated. To further elucidate the molecular mechanism, expressions of key genes involved in the biosynthesis of these ingredients were also detected. The results showed that although the total phenolic acids content was almost not affected by Ag+, accumulations of rosmarinic acid (RA), caffeic acid and ferulic acid were significantly increased, while accumulations of salvianolic acid B (LAB), danshensu (DSU) and cinnamic acid were decreased. We speculate that LAB probably derived from the branch pathway of DSU biosynthesis. Contents of four tanshinones were enhanced by Ag+ and their accumulations were more sensitive to Ag+ than phenolic acids. Genes in the upstream biosynthetic pathways of these ingredients responded to Ag+ earlier than those in the downstream biosynthetic pathways. Ag+ probably induced the whole pathways, upregulated gene expressions from the upstream pathways to the downstream pathways, and finally resulted in the enhancement of ingredient production. Compared with phenolic acids, tanshinone production was more sensitive to Ag+ treatments. This study will help us understand how secondary metabolism in S. miltiorrhiza responds to elicitors and provide a reference for the improvement of the production of targeted compounds in the near future. Full article
Figures

Open AccessArticle Asperaculanes A and B, Two Sesquiterpenoids from the Fungus Aspergillus aculeatus
Molecules 2015, 20(1), 325-334; doi:10.3390/molecules20010325
Received: 27 October 2014 / Accepted: 2 December 2014 / Published: 25 December 2014
Cited by 5 | PDF Full-text (848 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Six sesquiterpenoids 16, including two new ones, an ent-daucane-type sesquiterpenoid, asperaculane A (1), and a nordaucane one, asperaculane B (2), and four known nordaucane derivatives, aculenes A–D 36, together with the known
[...] Read more.
Six sesquiterpenoids 16, including two new ones, an ent-daucane-type sesquiterpenoid, asperaculane A (1), and a nordaucane one, asperaculane B (2), and four known nordaucane derivatives, aculenes A–D 36, together with the known secalonic acid D (7), were isolated from a fermentation culture of the fungus Aspergillus aculeatus. Their structures and absolute configurations were established by analyses of their spectroscopic data, including 1D and 2D-NMR spectra, HR-ESIMS, electronic circular dichroism (ECD) data, and quantum chemical calculations. These metabolites were evaluated for in vitro cytotoxic activity against two cell lines, human cancer cell lines (HeLa) and one normal hamster cell line (CHO). Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Open AccessCommunication Flavonoids from Symplocos racemosa
Molecules 2015, 20(1), 358-365; doi:10.3390/molecules20010358
Received: 14 October 2014 / Accepted: 22 December 2014 / Published: 26 December 2014
Cited by 7 | PDF Full-text (884 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A novel isoflavone glycoside, peseudobatigenin 7-O-[β-d-apiofuranosyl-(1''''→5''')-O-β-d-apiofuranosyl-(1'''→6'')]-β-d-glucopyranoside, namely sympracemoside (1), was isolated from the aerial parts of Symplocos racemosa along with 15 known flavonoids (216). Their structures were characterized by Q-TOF mass, optical rotation,
[...] Read more.
A novel isoflavone glycoside, peseudobatigenin 7-O-[β-d-apiofuranosyl-(1''''→5''')-O-β-d-apiofuranosyl-(1'''→6'')]-β-d-glucopyranoside, namely sympracemoside (1), was isolated from the aerial parts of Symplocos racemosa along with 15 known flavonoids (216). Their structures were characterized by Q-TOF mass, optical rotation, UV, 1D and 2D-NMR spectroscopic data. Compounds 3, 9, 16 showed moderate inhibitory activities against NO production with IC50 value of 88.2, 42.1 and 74.3 μM, respectively. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle New Coumarin Derivative as an Eco-Friendly Inhibitor of Corrosion of Mild Steel in Acid Medium
Molecules 2015, 20(1), 366-383; doi:10.3390/molecules20010366
Received: 4 September 2014 / Accepted: 8 December 2014 / Published: 29 December 2014
Cited by 11 | PDF Full-text (2230 KB) | HTML Full-text | XML Full-text
Abstract
The anticorrosion ability of a synthesized coumarin, namely 2-(coumarin-4-yloxy)acetohydrazide (EFCI), for mild steel (MS) in 1 M hydrochloric acid solution has been studied using a weight loss method. The effect of temperature on the corrosion rate was investigated, and some thermodynamic parameters were
[...] Read more.
The anticorrosion ability of a synthesized coumarin, namely 2-(coumarin-4-yloxy)acetohydrazide (EFCI), for mild steel (MS) in 1 M hydrochloric acid solution has been studied using a weight loss method. The effect of temperature on the corrosion rate was investigated, and some thermodynamic parameters were calculated. The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. The IE value reaches 94.7% at the highest used concentration of the new eco-friendly inhibitor. The adsorption of inhibitor on MS surface was found to obey a Langmuir adsorption isotherm. Scanning electron microscopy (SEM) was performed on inhibited and uninhibited mild steel samples to characterize the surface. The Density Function theory (DFT) was employed for quantum-chemical calculations such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy) and μ (dipole moment), and the obtained results were found to be consistent with the experimental findings. The synthesized inhibitor was characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic studies. Full article
(This article belongs to the Section Molecular Diversity)
Figures

Open AccessCommunication Characterization of Ambrette Seed Oil and Its Mode of Action in Bacteria
Molecules 2015, 20(1), 384-395; doi:10.3390/molecules20010384
Received: 20 November 2014 / Accepted: 23 December 2014 / Published: 29 December 2014
Cited by 4 | PDF Full-text (1504 KB) | HTML Full-text | XML Full-text
Abstract
In the present study, chemical composition and the antibacterial mechanism of ambrette seed oil are investigated. Chemical composition of the oil was analysed by gas chromatography-mass spectrometry (GC-MS). Thirty-five compounds were identified and the major compounds were found to be farnesol acetate (51.45%)
[...] Read more.
In the present study, chemical composition and the antibacterial mechanism of ambrette seed oil are investigated. Chemical composition of the oil was analysed by gas chromatography-mass spectrometry (GC-MS). Thirty-five compounds were identified and the major compounds were found to be farnesol acetate (51.45%) and ambrettolide (12.96%). The antibacterial activity was performed by well diffusion assay and the mechanisms were studied by measuring the alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and protein leakage assays. The antibacterial effect of the ambrette seed oil showed inhibitory effect against Bacillus subtilis, Staphylococcus aureus and Enterococcus faecalis. The LDH activity was high in all tested bacteria compared with control, whereas the ALP and protein concentrations were also increased in E. faecalis. Molecular docking revealed the ligands farnesol acetate and ambrettolide had satisfactory binding energy towards the beta lactamase TEM-72 and dihydrofolate reductase (DHFR) protein. Due to its better antibacterial properties, the ambrette seed oil could be used as a source of antibacterial agents. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Open AccessArticle Photoreduction of Carbon Dioxide to Formic Acid in Aqueous Suspension: A Comparison between Phthalocyanine/TiO2 and Porphyrin/TiO2 Catalysed Processes
Molecules 2015, 20(1), 396-415; doi:10.3390/molecules20010396
Received: 15 November 2014 / Accepted: 22 December 2014 / Published: 30 December 2014
Cited by 15 | PDF Full-text (804 KB) | HTML Full-text | XML Full-text
Abstract
Composite materials prepared by loading polycrystalline TiO2 powders with lipophilic highly branched Cu(II)- and metal-free phthalocyanines or porphyrins, which have been used in the past as photocatalysts for photodegradative processes, have been successfully tested for the efficient photoreduction of carbon dioxide in
[...] Read more.
Composite materials prepared by loading polycrystalline TiO2 powders with lipophilic highly branched Cu(II)- and metal-free phthalocyanines or porphyrins, which have been used in the past as photocatalysts for photodegradative processes, have been successfully tested for the efficient photoreduction of carbon dioxide in aqueous suspension affording significant amounts of formic acid. The results indicated that the presence of the sensitizers is beneficial for the photoactivity, confirming the important role of Cu(II) co-ordinated in the middle of the macrocycles. A comparison between Cu(II) phthalocyanines and Cu(II) porphyrins indicated that the Cu(II)- phthalocyanine sensitizer was more efficient in the photoreduction of CO2 to formic acid, probably due to its favorable reduction potential. Full article
(This article belongs to the Special Issue Tetrapyrroles, Porphyrins and Phthalocyanines)
Open AccessArticle Stem Bark Extract and Fraction of Persea americana (Mill.) Exhibits Bactericidal Activities against Strains of Bacillus cereus Associated with Food Poisoning
Molecules 2015, 20(1), 416-429; doi:10.3390/molecules20010416
Received: 8 October 2014 / Accepted: 18 December 2014 / Published: 30 December 2014
Cited by 2 | PDF Full-text (708 KB) | HTML Full-text | XML Full-text
Abstract
The study investigates the in vitro antibacterial potentials of stem bark extracts of Persea americana on strains of Bacillus cereus implicated in food poisoning. The crude stem bark extracts and butanolic fraction at a concentration of 25 mg/mL and 10 mg/mL, respectively, exhibited
[...] Read more.
The study investigates the in vitro antibacterial potentials of stem bark extracts of Persea americana on strains of Bacillus cereus implicated in food poisoning. The crude stem bark extracts and butanolic fraction at a concentration of 25 mg/mL and 10 mg/mL, respectively, exhibited antibacterial activities against test isolates. The zones of inhibition exhibited by the crude extract and the fraction ranged between 10 mm and 26 mm, while the minimum inhibitory concentration values ranged between 0.78 and 5.00 mg/mL. The minimum bactericidal concentrations ranged between 3.12 mg/mL–12.5 mg/mL and 1.25–10 mg/mL for the extract and the fraction, respectively. The butanolic fraction killed 91.49% of the test isolates at a concentration of 2× MIC after 60 min of contact time, while a 100% killing was achieved after the test bacterial cells were exposed to the butanolic fraction at a concentration of 3× MIC after 90 min contact time. Intracellular protein and potassium ion leaked out of the test bacterial cells when exposed to certain concentrations of the fraction; this is an indication of bacterial cell wall disruptions by the extract’s butanolic fraction and, thus, caused a biocidal effect on the cells, as evident in the killing rate test results. Full article
Open AccessArticle An Effective Vacuum Assisted Extraction Method for the Optimization of Labdane Diterpenoids from Andrographis paniculata by Response Surface Methodology
Molecules 2015, 20(1), 430-445; doi:10.3390/molecules20010430
Received: 29 November 2014 / Accepted: 23 December 2014 / Published: 31 December 2014
Cited by 3 | PDF Full-text (4254 KB) | HTML Full-text | XML Full-text
Abstract
An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained
[...] Read more.
An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications. Full article
(This article belongs to the Section Natural Products)
Open AccessArticle 4-[18F]Fluorophenylpiperazines by Improved Hartwig-Buchwald N-Arylation of 4-[18F]fluoroiodobenzene, Formed via Hypervalent λ3-Iodane Precursors: Application to Build-Up of the Dopamine D4 Ligand [18F]FAUC 316
Molecules 2015, 20(1), 470-486; doi:10.3390/molecules20010470
Received: 24 September 2014 / Accepted: 18 December 2014 / Published: 31 December 2014
Cited by 9 | PDF Full-text (923 KB) | HTML Full-text | XML Full-text
Abstract
Substituted phenylpiperazines are often neuropharmacologically active compounds and in many cases are essential pharmacophores of neuroligands for different receptors such as D2-like dopaminergic, serotoninergic and other receptors. Nucleophilic, no-carrier-added (n.c.a.) 18F-labelling of these ligands in an aromatic position is desirable
[...] Read more.
Substituted phenylpiperazines are often neuropharmacologically active compounds and in many cases are essential pharmacophores of neuroligands for different receptors such as D2-like dopaminergic, serotoninergic and other receptors. Nucleophilic, no-carrier-added (n.c.a.) 18F-labelling of these ligands in an aromatic position is desirable for studying receptors with in vivo molecular imaging. 1-(4-[18F]Fluorophenyl)piperazine was synthesized in two reaction steps starting by 18F-labelling of a iodobenzene-iodonium precursor, followed by Pd-catalyzed N-arylation of the intermediate 4-[18F]fluoro-iodobenzene. Different palladium catalysts and solvents were tested with particular attention to the polar solvents dimethylformamide (DMF) and dimethylsulfoxide (DMSO). Weak inorganic bases like potassium phosphate or cesium carbonate seem to be essential for the arylation step and lead to conversation rates above 70% in DMF which is comparable to those in typically used toluene. In DMSO even quantitative conversation was observed. Overall radiochemical yields of up to 40% and 60% in DMF and DMSO, respectively, were reached depending on the labelling yield of the first step. The fluorophenylpiperazine obtained was coupled in a third reaction step with 2-formyl-1H-indole-5-carbonitrile to yield the highly selective dopamine D4 ligand [18F]FAUC 316. Full article
(This article belongs to the Section Organic Synthesis)
Open AccessArticle Synthesis and X-ray Structural Studies of a Substituted 2,3,4,5-Tetrahydro-1H-3-benzazonine and a 1,2,3,5-Tetrahydro-4,3-benzoxazonine
Molecules 2015, 20(1), 487-502; doi:10.3390/molecules20010487
Received: 9 November 2014 / Accepted: 29 December 2014 / Published: 31 December 2014
Cited by 1 | PDF Full-text (2676 KB) | HTML Full-text | XML Full-text
Abstract
Using a common 1-(1-phenylethenyl)-1,2,3,4-tetrahydroisoquinoline precursor to the required ylide or N-oxide intermediate, the Stevens [2,3] and analogous Meisenheimer [2,3] sigmatropic rearrangements have been applied to afford concise syntheses of phenyl -substituted representatives of each of the reduced 1H-3-benzazonine and 4,3-benzoxazonine
[...] Read more.
Using a common 1-(1-phenylethenyl)-1,2,3,4-tetrahydroisoquinoline precursor to the required ylide or N-oxide intermediate, the Stevens [2,3] and analogous Meisenheimer [2,3] sigmatropic rearrangements have been applied to afford concise syntheses of phenyl -substituted representatives of each of the reduced 1H-3-benzazonine and 4,3-benzoxazonine systems, respectively. Single crystal X-ray structure determinations were employed to define the conformational characteristics for each ring type. Full article
Figures

Open AccessArticle A Comparison of the Environmental Impact of Different AOPs: Risk Indexes
Molecules 2015, 20(1), 503-518; doi:10.3390/molecules20010503
Received: 17 September 2014 / Accepted: 24 December 2014 / Published: 31 December 2014
PDF Full-text (783 KB) | HTML Full-text | XML Full-text
Abstract
Today, environmental impact associated with pollution treatment is a matter of great concern. A method is proposed for evaluating environmental risk associated with Advanced Oxidation Processes (AOPs) applied to wastewater treatment. The method is based on the type of pollution (wastewater, solids, air
[...] Read more.
Today, environmental impact associated with pollution treatment is a matter of great concern. A method is proposed for evaluating environmental risk associated with Advanced Oxidation Processes (AOPs) applied to wastewater treatment. The method is based on the type of pollution (wastewater, solids, air or soil) and on materials and energy consumption. An Environmental Risk Index (E), constructed from numerical criteria provided, is presented for environmental comparison of processes and/or operations. The Operation Environmental Risk Index (EOi) for each of the unit operations involved in the process and the Aspects Environmental Risk Index (EAj) for process conditions were also estimated. Relative indexes were calculated to evaluate the risk of each operation (E/NOP) or aspect (E/NAS) involved in the process, and the percentage of the maximum achievable for each operation and aspect was found. A practical application of the method is presented for two AOPs: photo-Fenton and heterogeneous photocatalysis with suspended TiO2 in Solarbox. The results report the environmental risks associated with each process, so that AOPs tested and the operations involved with them can be compared. Full article
(This article belongs to the Special Issue Photocatalysis) Printed Edition available
Figures

Open AccessArticle Phenolic Composition from Different Loquat (Eriobotrya japonica Lindl.) Cultivars Grown in China and Their Antioxidant Properties
Molecules 2015, 20(1), 542-555; doi:10.3390/molecules20010542
Received: 8 December 2014 / Accepted: 25 December 2014 / Published: 5 January 2015
Cited by 10 | PDF Full-text (1165 KB) | HTML Full-text | XML Full-text
Abstract
China is one of the most important centers of diversity for Eriobotrya japonica Lindl. in the world. In this study, seven loquat cultivars grown in China were evaluated for their phenolic compounds and antioxidant activity. Eleven phenolic compounds, i.e., 3-p-coumaroylquinincacid
[...] Read more.
China is one of the most important centers of diversity for Eriobotrya japonica Lindl. in the world. In this study, seven loquat cultivars grown in China were evaluated for their phenolic compounds and antioxidant activity. Eleven phenolic compounds, i.e., 3-p-coumaroylquinincacid (3-p-CoQA), 5-caffeoylquinic acid (5-CQA), 4-caffeoylquinic acid (4-CQA), 3-caffeoylquinic acid (3-CQA), 5-feruloylquinic acid (5-FQA), quercetin-3-O-galactoside (Q-3-Gal), quercetin-3-O-glucoside (Q-3-Glu), quercetin-3-O-rhamnoside (Q-3-Rha), kaempferol-3-O-galactoside (K-3-Gal), kaempferol-3-O-rhamnoside (K-3-Rha), and kaempferol-3-O-glucoside (K-3-Glu) were identified and quantified in the peel and pulp of the cultivars tested. 3-CQA and 5-CQA were the predominant components in both fruit parts. 2,2-Diphenyl-1-picrylhydrazyl radicals (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate (ABTS), and ferric reducing antioxidant power (FRAP) assays were used for the antioxidant evaluation. Results showed that peel extracts had higher antioxidant activities than their pulp counterparts in all the cultivars tested, which was correlated with their higher total phenolic contents. The antioxidant potency composite (APC) index showed obvious variations ranging from 64.15 to 100 in the peel and from 59.49 to 97.95 in the pulp of different cultivars, where “Dahongpao” (DHP) and “Luoyangqing” (LYQ) had the highest APC index in the peel and pulp, respectively. Overall, loquat cultivars rich in hydroxycinnamic acids (HCAs) such as 3-p-CoQA, 5-CQA, 4-CQA, 3-CQA and 5-FQA showed relatively higher antioxidant activities, and may be excellent sources of phytochemicals and natural antioxidants. Full article
(This article belongs to the Section Natural Products)
Open AccessArticle Decreasing pH Results in a Reduction of Anthocyanin Coprecipitation during Cold Stabilization of Purple Grape Juice
Molecules 2015, 20(1), 556-572; doi:10.3390/molecules20010556
Received: 28 September 2014 / Accepted: 24 December 2014 / Published: 5 January 2015
PDF Full-text (2008 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Anthocyanin pigments in grape juice can coprecipitate with potassium bitartrate (KHT) crystals during cold stabilization, but factors that reduce these adsorptive losses are not well understood. We hypothesized that coprecipitation on a % w/w basis should be decreased at lower pH. In initial
[...] Read more.
Anthocyanin pigments in grape juice can coprecipitate with potassium bitartrate (KHT) crystals during cold stabilization, but factors that reduce these adsorptive losses are not well understood. We hypothesized that coprecipitation on a % w/w basis should be decreased at lower pH. In initial experiments, model juice solutions containing an anthocyanin monoglucoside extract and varying pH values were subjected to cold-storage to induce KHT crystallization, and anthocyanins in the resulting precipitant were characterized by HPLC. The pH of the model juice was directly correlated with the % w/w concentration of anthocyanins in the KHT crystals, with a maximum observed at pH 3.40 (0.20% w/w) and a minimum at pH 2.35 (0.01% w/w). A pH dependency was also observed for anthocyanin-KHT coprecipitation in purple Concord grape juice, although the effect was smaller. Coprecipitation was significantly greater for anthocyanin monoglucosides and acylated anthocyanins as compared to anthocyanin diglucosides at pH > 3.05, but coprecipitation of mono- and acylated forms declined more sharply at lower pH values. Full article
(This article belongs to the Special Issue Anthocyanins) Printed Edition available
Figures

Open AccessArticle Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(lactic acid)
Molecules 2015, 20(1), 595-607; doi:10.3390/molecules20010595
Received: 25 October 2014 / Accepted: 18 December 2014 / Published: 5 January 2015
Cited by 9 | PDF Full-text (1696 KB) | HTML Full-text | XML Full-text
Abstract
Poly(lactic acid) (PLA) was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA)
[...] Read more.
Poly(lactic acid) (PLA) was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA) was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3) was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications. Full article
(This article belongs to the Section Medicinal Chemistry)
Open AccessArticle Plasmin Regulation through Allosteric, Sulfated, Small Molecules
Molecules 2015, 20(1), 608-624; doi:10.3390/molecules20010608
Received: 30 October 2014 / Accepted: 26 December 2014 / Published: 5 January 2015
Cited by 9 | PDF Full-text (1465 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an
[...] Read more.
Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an in-house library of 55 sulfated, small glycosaminoglycan mimetics based on nine distinct scaffolds and varying number and positions of sulfate groups to discover several promising hits. Of these, a pentasulfated flavonoid-quinazolinone dimer 32 was found to be the most potent sulfated small inhibitor of plasmin (IC50 = 45 μM, efficacy = 100%). Michaelis-Menten kinetic studies revealed an allosteric inhibition of plasmin by these inhibitors. Studies also indicated that the most potent inhibitors are selective for plasmin over thrombin and factor Xa, two serine proteases in coagulation cascade. Interestingly, different inhibitors exhibited different levels of efficacy (40%–100%), an observation alluding to the unique advantage offered by an allosteric process. Overall, our work presents the first small, synthetic allosteric plasmin inhibitors for further rational design. Full article
(This article belongs to the Special Issue Glycosaminoglycans and Their Mimetics)
Figures

Open AccessArticle Optimization of Astilbin Extraction from the Rhizome of Smilax glabra, and Evaluation of Its Anti-Inflammatory Effect and Probable Underlying Mechanism in Lipopolysaccharide-Induced RAW264.7 Macrophages
Molecules 2015, 20(1), 625-644; doi:10.3390/molecules20010625
Received: 6 November 2014 / Accepted: 25 December 2014 / Published: 6 January 2015
Cited by 11 | PDF Full-text (1081 KB) | HTML Full-text | XML Full-text
Abstract
Astilbin, a dihydroflavonol derivative found in many food and medicine plants, exhibited multiple pharmacological functions. In the present study, the ethanol extraction of astilbin from the rhizome of smilax glabra Roxb was optimized by response surface methodology (RSM) using Box-Behnken design. Results indicated
[...] Read more.
Astilbin, a dihydroflavonol derivative found in many food and medicine plants, exhibited multiple pharmacological functions. In the present study, the ethanol extraction of astilbin from the rhizome of smilax glabra Roxb was optimized by response surface methodology (RSM) using Box-Behnken design. Results indicated that the obtained experimental data was well fitted to a second-order polynomial equation by using multiple regression analysis, and the optimal extraction conditions were identified as an extraction time of 40 min, ethanol concentration of 60%, temperature of 73.63 °C, and liquid-solid ratio of 29.89 mL/g for the highest predicted yield of astilbin (15.05 mg/g), which was confirmed through validation experiments. In addition, the anti-inflammatory efficiency of astilbin was evaluated in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Results showed that astilbin, at non-cytotoxicity concentrations, significantly suppressed the production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the mRNA expression of inducible nitric oxide synthase (iNOS) and TNF-α in LPS-induced RAW 264.7 cells, but did not affect interleukin-6 (IL-6) release or its mRNA expression. These effects may be related to its up-regulation of the phosphorylation of p65, extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Full article
(This article belongs to the Section Natural Products)
Open AccessArticle Salvianolic Acid Y: A New Protector of PC12 Cells against Hydrogen Peroxide-Induced Injury from Salvia officinalis
Molecules 2015, 20(1), 683-692; doi:10.3390/molecules20010683
Received: 17 November 2014 / Accepted: 31 December 2014 / Published: 6 January 2015
Cited by 3 | PDF Full-text (1334 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Salvianolic acid Y (TSL 1), a new phenolic acid with the same planar structure as salvianolic acid B, was isolated from Salvia officinalis. The structural elucidation and stereochemistry determination were achieved by spectroscopic and chemical methods, including 1D, 2D-NMR (1H-
[...] Read more.
Salvianolic acid Y (TSL 1), a new phenolic acid with the same planar structure as salvianolic acid B, was isolated from Salvia officinalis. The structural elucidation and stereochemistry determination were achieved by spectroscopic and chemical methods, including 1D, 2D-NMR (1H-1H COSY, HMQC and HMBC) and circular dichroism (CD) experiments. The biosynthesis pathway of salvianolic acid B and salvianolic acid Y (TSL 1) was proposed based on structural analysis. The protection of PC12 cells from injury induced by H2O2 was assessed in vitro using a cell viability assay. Salvianolic acid Y (TSL 1) protected cells from injury by 54.2%, which was significantly higher than salvianolic acid B (35.2%). Full article
(This article belongs to the Section Natural Products)
Open AccessArticle On the Antimicrobial Activity of Various Peptide-Based Dendrimers of Similar Architecture
Molecules 2015, 20(1), 738-753; doi:10.3390/molecules20010738
Received: 25 November 2014 / Accepted: 22 December 2014 / Published: 7 January 2015
Cited by 10 | PDF Full-text (1302 KB) | HTML Full-text | XML Full-text
Abstract
Antimicrobial drug resistance is a major human health threat. Among the many attempts to tackle this problem, the synthesis of antimicrobial compounds that mimic natural antimicrobial peptides appears as a promising approach. Peptide-based dendrimers can be designed to have higher potency than natural
[...] Read more.
Antimicrobial drug resistance is a major human health threat. Among the many attempts to tackle this problem, the synthesis of antimicrobial compounds that mimic natural antimicrobial peptides appears as a promising approach. Peptide-based dendrimers can be designed to have higher potency than natural antimicrobial peptides and at the same time they can evade the bacterial defense system. Novel dendrimers with similar chemical structure but varying potency in terms of minimum inhibitory concentration were designed. The dependency between dendrimer structure and antibacterial activity as well as their capacity to attack model cell membranes was studied. The data suggests that supramolecular structure in terms of charge distribution and amphiphilicity, rather than net charge, is the main driver for disruption of cellular membranes and this correlates well with dendrimer hemolytic activity. Full article
(This article belongs to the Section Organic Synthesis)
Open AccessArticle A Novel One-Pot Green Synthesis of Dispirooxindolo-pyrrolidines via 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides
Molecules 2015, 20(1), 780-791; doi:10.3390/molecules20010780
Received: 1 December 2014 / Accepted: 30 December 2014 / Published: 7 January 2015
Cited by 14 | PDF Full-text (787 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A facile synthesis of dispirooxindolopyrrolidines has been accomplished via a one-pot three component 1,3-dipolar cycloaddition reaction. The reaction of azomethine ylides generated in situ from L-phenylalanine and substituted isatins with a series of unusual (E)-2-oxoindolino-3-ylidene acetophenone dipolarophiles in the ionic liquid
[...] Read more.
A facile synthesis of dispirooxindolopyrrolidines has been accomplished via a one-pot three component 1,3-dipolar cycloaddition reaction. The reaction of azomethine ylides generated in situ from L-phenylalanine and substituted isatins with a series of unusual (E)-2-oxoindolino-3-ylidene acetophenone dipolarophiles in the ionic liquid 1-butyl-3-methylimidazolium bromide [bmim]BF4, furnished the cycloadducts in good yields, with the regioisomers 5af being obtained with high selectivity. Furthermore, the recyclability of [bmim]BF4, up to five times, was also investigated. Full article
Figures

Open AccessArticle Pinelliae Rhizoma, a Toxic Chinese Herb, Can Significantly Inhibit CYP3A Activity in Rats
Molecules 2015, 20(1), 792-806; doi:10.3390/molecules20010792
Received: 24 November 2014 / Accepted: 31 December 2014 / Published: 7 January 2015
Cited by 6 | PDF Full-text (929 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Raw Pinelliae Rhizoma (RPR) is a representative toxic herb that is widely used for eliminating phlegm or treating cough and vomiting. Given its irritant toxicity, its processed products, including Pinelliae Rhizoma Praeparatum (PRP) and Pinelliae Rhizoma Praeparatum cum Zingibere et Alumine (PRPZA), are
[...] Read more.
Raw Pinelliae Rhizoma (RPR) is a representative toxic herb that is widely used for eliminating phlegm or treating cough and vomiting. Given its irritant toxicity, its processed products, including Pinelliae Rhizoma Praeparatum (PRP) and Pinelliae Rhizoma Praeparatum cum Zingibere et Alumine (PRPZA), are more commonly applied and administered concomitantly with other chemical drugs, such as cough medications. This study aimed to investigate the effects of RPR, PRP, and PRPZA on CYP3A activity. Testosterone (Tes) and buspirone (BP) were used as specific probe substrates ex vivo and in vivo, respectively. CYP3A activity was determined by the metabolite formation ratios from the substrates. Ex vivo results show that the metabolite formation ratios from Tes significantly decreased, indicating that RPR, PRP, and PRPZA could inhibit CYP3A activity in rats. CYP3A protein and mRNA levels were determined to explore the underlying mechanism. These levels showed marked and consistent down-regulation with CYP3A activity. A significant decrease in metabolite formation ratios from BP was also found in PRPZA group in vivo, implying that PRPZA could inhibit CYP3A activity. Conclusively, co-administration of PR with other CYP3A-metabolizing drugs may cause drug–drug interactions. Clinical use of PR-related formulae should be monitored carefully to avoid adverse interactions. Full article
Open AccessArticle Design, Synthesis and Anti-Tobacco Mosaic Virus (TMV) Activity of 5-Chloro-N-(4-cyano-1-aryl-1H-pyrazol-5-yl)-1-aryl-3-methyl-1H-pyrazole-4-carboxamide Derivatives
Molecules 2015, 20(1), 807-821; doi:10.3390/molecules20010807
Received: 28 October 2014 / Accepted: 29 December 2014 / Published: 7 January 2015
Cited by 8 | PDF Full-text (1514 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of novel pyrazole amide derivatives 3a3p which take TMV PC protein as the target has been designed and synthesized by the reactions of 5-chloro-1-aryl-3-methyl-1H-pyrazole-4-carboxylic acids with 5-amino-1-aryl-1H-pyrazole-4-carbonitriles. All the compounds were characterized by 1H-NMR,
[...] Read more.
A series of novel pyrazole amide derivatives 3a3p which take TMV PC protein as the target has been designed and synthesized by the reactions of 5-chloro-1-aryl-3-methyl-1H-pyrazole-4-carboxylic acids with 5-amino-1-aryl-1H-pyrazole-4-carbonitriles. All the compounds were characterized by 1H-NMR, mass spectroscopy and elemental analysis. Preliminary bioassays indicated that all the compounds acted against the tobacco mosaic virus (TMV) with different in vivo and in vitro modes at 500 μg/mL and were found to possess promising activity. Especially, compound 3p showed the most potent biological activity against tobacco mosaic virus (TMV) compared to ningnanmycin, and a molecular docking study was performed and the binding model revealed that the pyrazole amide moiety was tightly embedded in the binding sites of TMV PC (PDB code: 2OM3). Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Synthesis of some new Thieno[2,3-b]pyridines, Pyrimidino[4',5':4,5]thieno[2,3-b]pyridine and Pyridines Incorporating 5-Bromobenzofuran-2-yl Moiety
Molecules 2015, 20(1), 822-838; doi:10.3390/molecules20010822
Received: 6 December 2014 / Accepted: 29 December 2014 / Published: 7 January 2015
Cited by 2 | PDF Full-text (778 KB) | HTML Full-text | XML Full-text
Abstract
2-Sulfanyl-6-(2-thienyl)pyridine-3-carbonitrile, 1-Amino-6-(5-bromo-benzofuran-2-yl)-2-oxo-1,2-dihydro-pyridine-3-carbonitrile, thieno[2,3-b]pyridins, pyrimidino[4',5':4,5] thieno[2,3-b]pyridine, quinazoline and carbamate derivatives were synthesized from sodium 3-(5-bromobenzofuran-2-yl)-3-oxoprop-1-en-1-olate with. The newly synthesized compounds were elucidated by elemental analysis, spectral data, and alternative synthesis whenever possible and chemical transportation. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Open AccessCommunication Isoleojaponin, a New Halimane Diterpene Isolated from Leonurus japonicus
Molecules 2015, 20(1), 839-845; doi:10.3390/molecules20010839
Received: 6 November 2014 / Accepted: 6 January 2015 / Published: 7 January 2015
Cited by 4 | PDF Full-text (891 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Leojaponin (2), a labdane diterpene, was isolated from the EtOH extract of the herb of Leonurus japonicus together with a new halimane diterpene named isoleojaponin (1). Isoleojaponin has a new diterpene skeleton with a unique cross-conjugated α,β-unsaturated ketone
[...] Read more.
Leojaponin (2), a labdane diterpene, was isolated from the EtOH extract of the herb of Leonurus japonicus together with a new halimane diterpene named isoleojaponin (1). Isoleojaponin has a new diterpene skeleton with a unique cross-conjugated α,β-unsaturated ketone system, Their structures were elucidated by physical and spectroscopic analysis, and the relative configuration of the chiral C-9 carbon was determined by a computational method, and analysis of its possible biogenesis pathways. Full article
(This article belongs to the Section Natural Products)
Open AccessArticle 2-Keto-D-Gluconate-Yielding Membrane-Bound D-Glucose Dehydrogenase from Arthrobacter globiformis C224: Purification and Characterization
Molecules 2015, 20(1), 846-862; doi:10.3390/molecules20010846
Received: 14 November 2014 / Accepted: 4 January 2015 / Published: 8 January 2015
Cited by 2 | PDF Full-text (1022 KB) | HTML Full-text | XML Full-text
Abstract
Glucose dehydrogenase (GlcDH) is the rate-limiting catalyst for microbial conversion of glucose to the important organic acid 2-ketogluconic acid (2KGlcA). In this study, a D-glucose dehydrogenase was purified from the industrial 2KGlcA producer Arthrobacter globiformis C224. After four purification steps, the GlcDH was
[...] Read more.
Glucose dehydrogenase (GlcDH) is the rate-limiting catalyst for microbial conversion of glucose to the important organic acid 2-ketogluconic acid (2KGlcA). In this study, a D-glucose dehydrogenase was purified from the industrial 2KGlcA producer Arthrobacter globiformis C224. After four purification steps, the GlcDH was successfully purified over 180 folds and specific activity of 88.1 U/mg. A single protein band of 87 kDa was detected by SDS-PAGE. The purified GlcDH had the broad substrate specificity with the Km values for D-glucose, D-xylose, D-galactose and maltose of 0.21 mM, 0.34 mM, 0.46 mM and 0.59 mM, respectively. The kinetic studies proved that A. globiformis GlcDH followed the ping-pong kinetic mechanism. The GlcDH showed an optimum catalytic activity at pH 5.0 and 45 °C with the stable activity at temperature of 20–40 °C and pH of 6.0–7.0. Organic solvents, metal ions or EDTA could significantly influence the GlcDH activity to different degrees. Full article
(This article belongs to the Section Natural Products)
Open AccessArticle Inhibition of the NF-κB Signaling Pathway by a Novel Heterocyclic Curcumin Analogue
Molecules 2015, 20(1), 863-878; doi:10.3390/molecules20010863
Received: 30 September 2014 / Accepted: 16 December 2014 / Published: 8 January 2015
Cited by 8 | PDF Full-text (2392 KB) | HTML Full-text | XML Full-text
Abstract
In this study a series of curcumin analogues were evaluated for their ability to inhibit the activation of NF-κΒ, a transcription factor at the crossroads of cancer-inflammation. Our novel curcumin analogue BAT3 was identified to be the most potent NF-κB inhibitor and EMSA
[...] Read more.
In this study a series of curcumin analogues were evaluated for their ability to inhibit the activation of NF-κΒ, a transcription factor at the crossroads of cancer-inflammation. Our novel curcumin analogue BAT3 was identified to be the most potent NF-κB inhibitor and EMSA assays clearly showed inhibition of NF-κB/DNA-binding in the presence of BAT3, in agreement with reporter gene results. Immunofluorescence experiments demonstrated that BAT3 did not seem to prevent nuclear p65 translocation, so our novel analogue may interfere with NF-κB/DNA-binding or transactivation, independently of IKK2 regulation and NF-κB-translocation. Gene expression studies on endogenous NF-κB target genes revealed that BAT3 significantly inhibited TNF-dependent transcription of IL6, MCP1 and A20 genes, whereas an NF-κB independent target gene heme oxygenase-1 remained unaffected. In conclusion, we demonstrate that BAT3 seems to inhibit different cancer-related inflammatory targets in the NF-κB signaling pathway through a different mechanism in comparison to similar analogues, previously reported. Full article
(This article belongs to the Special Issue Curcumin, Inflammation, and Chronic Diseases: How are They Linked?)
Open AccessArticle Development of Sulfadiazine-Decorated PLGA Nanoparticles Loaded with 5-Fluorouracil and Cell Viability
Molecules 2015, 20(1), 879-899; doi:10.3390/molecules20010879
Received: 24 October 2014 / Accepted: 29 December 2014 / Published: 8 January 2015
Cited by 9 | PDF Full-text (9103 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The aim of this work was to synthesize sulfadiazine-poly(lactide-co-glycolide) (SUL-PLGA) nanoparticles (NPs) for the efficient delivery of 5-fluorouracil to cancer cells. The SUL-PLGA conjugation was assessed using FTIR, 1H-NMR, 13C-NMR, elemental analysis and TG and DTA analysis. The SUL-PLGA NPs were
[...] Read more.
The aim of this work was to synthesize sulfadiazine-poly(lactide-co-glycolide) (SUL-PLGA) nanoparticles (NPs) for the efficient delivery of 5-fluorouracil to cancer cells. The SUL-PLGA conjugation was assessed using FTIR, 1H-NMR, 13C-NMR, elemental analysis and TG and DTA analysis. The SUL-PLGA NPs were characterized using transmission and scanning electron microscopy and dynamic light scattering. Additionally, the zeta potential, drug content, and in vitro 5-FU release were evaluated. We found that for the SUL-PLGA NPs, Dh = 114.0 nm, ZP = −32.1 mV and the encapsulation efficiency was 49%. The 5-FU was released for up to 7 days from the NPs. Cytotoxicity evaluations of 5-FU-loaded NPs (5-FU-SUL-PLGA and 5-FU-PLGA) on two cancer cell lines (Caco-2, A431) and two normal cell lines (fibroblast, osteoblast) were compared. Higher cytotoxicity of 5-FU-SUL-PLGA NPs were found to both cancer cell lines when compared to normal cell lines, demonstrating that the presence of SUL could significantly enhance the cytotoxicity of the 5-FU-SUL-PLGA NPs when compared with 5-FU-PLGA NPs. Thus, the development of 5-FU-SUL-PLGA NPs to cancer cells is a promising strategy for the 5-FU antitumor formulation in the future. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle The Role of Selected Flavonols in Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor–1 (TRAIL-R1) Expression on Activated RAW 264.7 Macrophages
Molecules 2015, 20(1), 900-912; doi:10.3390/molecules20010900
Received: 24 November 2014 / Accepted: 5 January 2015 / Published: 8 January 2015
Cited by 3 | PDF Full-text (1782 KB) | HTML Full-text | XML Full-text
Abstract
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptors (TRAIL-R) are an important factor of apoptosis in cancer cells. There are no data about the effect of flavonols on the receptor expression on a surface of macrophage like cells. In this study, the expression level of
[...] Read more.
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptors (TRAIL-R) are an important factor of apoptosis in cancer cells. There are no data about the effect of flavonols on the receptor expression on a surface of macrophage like cells. In this study, the expression level of TRAIL-R1 on murine RAW264.7 macrophages in the presence of selected flavonols: galangin, kaempferol, kaempferide and quercetin, which differ from their phenyl ring substituents, were studied. The expression of TRAIL-R1 death receptors on non-stimulated and lipopolysaccharide (LPS)-stimulated macrophages was determined using flow cytometry. The results suggested that compounds being tested can modulate TRAIL-R1 expression and can enhance TRAIL-mediated apoptosis. Full article
Open AccessArticle Phenolic Profiling of the South American “Baylahuen” Tea (Haplopappus spp., Asteraceae) by HPLC-DAD-ESI-MS
Molecules 2015, 20(1), 913-928; doi:10.3390/molecules20010913
Received: 18 November 2014 / Accepted: 30 December 2014 / Published: 8 January 2015
Cited by 3 | PDF Full-text (1007 KB) | HTML Full-text | XML Full-text
Abstract
The aerial parts of several Haplopappus species (Asteraceae), known under the common name “baylahuen”, are used as herbal teas in Chile and Argentina. In Chile, “baylahuen” comprises H. multifolius, H. taeda, H. baylahuen and H. rigidus. Little is known
[...] Read more.
The aerial parts of several Haplopappus species (Asteraceae), known under the common name “baylahuen”, are used as herbal teas in Chile and Argentina. In Chile, “baylahuen” comprises H. multifolius, H. taeda, H. baylahuen and H. rigidus. Little is known about the chemical identity of the infusion constituents in spite of widespread consumption. The aim of the present work was the characterization of phenolics occurring in the infusions and methanol extracts of “baylahuen” by HPLC-DAD-ESI-MS. A simple HPLC-DAD-ESI-MS method was developed for the fast identification and differentiation of Haplopappus spp. used as a tea source, based on the phenolics from the tea and methanol extracts. Some 27 phenolics were tentatively identified in the infusions and methanol extract, including 10 caffeoyl quinic and feruloyl quinic acid derivatives and 17 flavonoids. The HPLC patterns of the Haplopappus tea and methanol extract allow a clear differentiation at the species level. The occurrence of hydroxycinnamic acid derivatives and flavonoids can explain the reputed nutraceutical and health beneficial properties of this herbal tea. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Antinociceptive Effect of Hydantoin 3-Phenyl-5-(4-ethylphenyl)-imidazolidine-2,4-dione in Mice
Molecules 2015, 20(1), 974-986; doi:10.3390/molecules20010974
Received: 31 October 2014 / Accepted: 5 January 2015 / Published: 8 January 2015
Cited by 4 | PDF Full-text (1088 KB) | HTML Full-text | XML Full-text
Abstract
Imidazolidine derivatives, or hydantoins, are synthetic compounds with different therapeutic applications. Many imidazolidine derivatives have psychopharmacological properties, such as phenytoin, famous for its anticonvulsant efficacy, but also effective in the treatment of neuropathic pain. The hydantoin, 3-phenyl-5-(4-ethylphenyl)-imidazolidine-2,4-dione (IM-3), synthesized from the amino acid,
[...] Read more.
Imidazolidine derivatives, or hydantoins, are synthetic compounds with different therapeutic applications. Many imidazolidine derivatives have psychopharmacological properties, such as phenytoin, famous for its anticonvulsant efficacy, but also effective in the treatment of neuropathic pain. The hydantoin, 3-phenyl-5-(4-ethylphenyl)-imidazolidine-2,4-dione (IM-3), synthesized from the amino acid, glycine, was selected for psychopharmacological studies in mice on the basis of its chemical and structural similarity with phenytoin. The first step of this study was to define the LD50, which determined the doses of 50, 100 and 200 mg/kg for subsequent tests. The results obtained from the behavioral screening indicated that IM-3 produces decreased ambulation and analgesia in mice. Motor coordination and anxiety behavior were not affected by treatment with IM-3, as observed in the rotarod and elevated plus-maze tests, respectively. Regarding its antinociceptive properties, IM-3 showed efficacy in the acetic acid-induced writhing test by increasing the latency of the first writhe and reducing the number of writhes, as well as reducing the paw licking time in the second phase of the formalin test. The behavior of treated animals exposed to the hot plate test, however, did not differ from that of the control group. These data suggest that IM-3 has antinociceptive effects in mice, which is probably mediated by anti-inflammatory mechanisms. Full article
(This article belongs to the Section Medicinal Chemistry)
Open AccessArticle Isolation and Biochemical Characterization of Apios Tuber Lectin
Molecules 2015, 20(1), 987-1002; doi:10.3390/molecules20010987
Received: 30 November 2014 / Accepted: 5 January 2015 / Published: 9 January 2015
Cited by 7 | PDF Full-text (1674 KB) | HTML Full-text | XML Full-text
Abstract
Apios tuber lectin, named ATL, was isolated from Apios americana Medikus by two chromatography steps, hydrophobic chromatography and anion-exchange chromatography. The minimum concentration required for the hemagglutination activity toward rabbit erythrocytes of ATL was 4 μg/mL. ATL was composed of a homodimer of
[...] Read more.
Apios tuber lectin, named ATL, was isolated from Apios americana Medikus by two chromatography steps, hydrophobic chromatography and anion-exchange chromatography. The minimum concentration required for the hemagglutination activity toward rabbit erythrocytes of ATL was 4 μg/mL. ATL was composed of a homodimer of 28.4 kDa subunits. The amino acid sequence of ATL was similar to those of other legume lectins. The lectin showed moderate stability toward heating and acidic pH, and the binding affinity against several monosaccharides, such as D-glucosamine and D-galactosamine. ATL also bound to desialylated or agalactosylated glycoproteins such as asialo and agalacto transferrin. ATL decreased the transepithelial electrical resistance across human intestinal Caco-2 cell monolayers, suggesting the effect on the tight junction-mediated paracellular transport. Full article
(This article belongs to the Special Issue Lectins)
Open AccessArticle Neuroprotective and Neuroregenerative Effects of Nimodipine in a Model System of Neuronal Differentiation and Neurite Outgrowth
Molecules 2015, 20(1), 1003-1013; doi:10.3390/molecules20011003
Received: 19 November 2014 / Accepted: 30 December 2014 / Published: 9 January 2015
Cited by 8 | PDF Full-text (1517 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Nimodipine is a Ca2+-channel antagonist mainly used for the management of aneurysmal subarachnoid hemorrhage (aSAH) to prevent cerebral vasospasms. However, it is not clear if the better outcome of nimodipine-treated patients is mainly due to vasodilatation or whether other cellular neuroprotective
[...] Read more.
Nimodipine is a Ca2+-channel antagonist mainly used for the management of aneurysmal subarachnoid hemorrhage (aSAH) to prevent cerebral vasospasms. However, it is not clear if the better outcome of nimodipine-treated patients is mainly due to vasodilatation or whether other cellular neuroprotective or neuregenerative effects of nimodipine are involved. We analysed PC12 cells after different stress stimuli with or without nimodipine pretreatment. Cytotoxicity of 200 mM EtOH and osmotic stress (450 mosmol/L) was significantly reduced with nimodipine pretreatment, while nimodipine has no influence on the hypoxia-induced cytotoxicity in PC12 cells. The presence of nimodipine also increased the NGF-induced neurite outgrowth in PC12 cells. However, nimodipine alone was not able to induce neurite outgrowth in PC12 cells. These results support the idea that nimodipine has general neuroprotective or neuregenerative effect beside its role in vasodilatation and is maybe useful also in other clinical applications beside aSAH. Full article
(This article belongs to the Section Medicinal Chemistry)
Open AccessArticle Combined Pharmacophore Modeling, 3D-QSAR, Homology Modeling and Docking Studies on CYP11B1 Inhibitors
Molecules 2015, 20(1), 1014-1030; doi:10.3390/molecules20011014
Received: 11 September 2014 / Accepted: 29 November 2014 / Published: 9 January 2015
Cited by 6 | PDF Full-text (2411 KB) | HTML Full-text | XML Full-text
Abstract
The mitochondrial cytochrome P450 enzymes inhibitor steroid 11β-hydroxylase (CYP11B1) can decrease the production of cortisol. Therefore, these inhibitors have an effect in the treatment of Cushing’s syndrome. A pharmacophore model generated by Genetic Algorithm with Linear Assignment for Hypermolecular Alignment of Datasets (GALAHAD)
[...] Read more.
The mitochondrial cytochrome P450 enzymes inhibitor steroid 11β-hydroxylase (CYP11B1) can decrease the production of cortisol. Therefore, these inhibitors have an effect in the treatment of Cushing’s syndrome. A pharmacophore model generated by Genetic Algorithm with Linear Assignment for Hypermolecular Alignment of Datasets (GALAHAD) was used to align the compounds and perform comparative molecular field analysis (CoMFA) with Q2 = 0.658, R2 = 0.959. The pharmacophore model contained six hydrophobic regions and one acceptor atom, and electropositive and bulky substituents would be tolerated at the A and B sites, respectively. A three-dimensional quantitative structure-activity relationship (3D-QSAR) study based on the alignment with the atom root mean square (RMS) was applied using comparative molecular field analysis (CoMFA) with Q2 = 0.666, R2 = 0.978, and comparative molecular similarity indices analysis (CoMSIA) with Q2 = 0.721, R2 = 0.972. These results proved that all the models have good predictability of the bioactivities of inhibitors. Furthermore, the QSAR models indicated that a hydrogen bond acceptor substituent would be disfavored at the A and B groups, while hydrophobic groups would be favored at the B site. The three-dimensional (3D) model of the CYP11B1 was generated based on the crystal structure of the CYP11B2 (PDB code 4DVQ). In order to probe the ligand-binding modes, Surflex-dock was employed to dock CYP11B1 inhibitory compounds into the active site of the receptor. The docking result showed that the imidazolidine ring of CYP11B1 inhibitors form H bonds with the amino group of residue Arg155 and Arg519, which suggested that an electronegative substituent at these positions could enhance the activities of compounds. All the models generated by GALAHAD QSAR and Docking methods provide guidance about how to design novel and potential drugs for Cushing’s syndrome treatment. Full article
(This article belongs to the Special Issue In-Silico Drug Design and In-Silico Screening)
Open AccessArticle Synthesis and in Vitro Screening of Phenylbipyridinylpyrazole Derivatives as Potential Antiproliferative Agents
Molecules 2015, 20(1), 1031-1045; doi:10.3390/molecules20011031
Received: 10 December 2014 / Accepted: 4 January 2015 / Published: 9 January 2015
Cited by 1 | PDF Full-text (970 KB) | HTML Full-text | XML Full-text
Abstract
A series of phenylbipyridinylpyrazoles was synthesized through the reaction of 2-(4-(2-chloropyridin-4-yl)-3-(3-methoxy-5-methylphenyl)-1H-pyrazol-1-yl)acetonitrile (4) with different 6-substituted pyridine-3-ylboronic acids. The final compounds 5aj were screened at 10 µM against over 60 tumor cell lines at the U.S. National Cancer
[...] Read more.
A series of phenylbipyridinylpyrazoles was synthesized through the reaction of 2-(4-(2-chloropyridin-4-yl)-3-(3-methoxy-5-methylphenyl)-1H-pyrazol-1-yl)acetonitrile (4) with different 6-substituted pyridine-3-ylboronic acids. The final compounds 5aj were screened at 10 µM against over 60 tumor cell lines at the U.S. National Cancer Institute (NCI). In light of the NCI results, compounds 5c and 5h showed a broad spectrum of activity against NCI cell lines with mean growth of 53% and 58%, respectively. Compound 5e behaved differently as it showed high degree of selectivity and potency by inhibiting 96% of growth of leukemia SR cell line at 10 µM. Standard COMPARE analyses were performed at the GI50 level and the results exhibit high correlation in the form of pairwise correlation coefficient (PCC) of more than 0.6 between three of the current compounds and three standard known anticancer agents. Compound 5e demonstrated high correlation levels with merbarone (NSC S336628) with a PCC value of 0.631. Compound 5h showed a considerably high PCC value of 0.626 with dichloroallyl lawsone, while compound 5i, showed PCC values of 0.601 and 0.604 with both dichloroallyl lawsone and N,N-dibenzyldaunomycin (NSC S268242), respectively. These three standard agents have anticancer activity via two major mechanism of actions, inhibition of topoisomerase II and inhibition of biosynthesis of pyrimidine nucleotides, therefore, compounds 5aj are promising therapeutic agents for targeting different human malignancies. Prediction of drug-likeness and toxicity of these newly synthesized derivatives were also considered. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting
Molecules 2015, 20(1), 1046-1058; doi:10.3390/molecules20011046
Received: 5 November 2014 / Accepted: 9 December 2014 / Published: 9 January 2015
Cited by 24 | PDF Full-text (4971 KB) | HTML Full-text | XML Full-text
Abstract
Titanium oxide (TiO2) and iron oxide (α-Fe2O3) hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g.,
[...] Read more.
Titanium oxide (TiO2) and iron oxide (α-Fe2O3) hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g., sol-gel and High Power Impulse Magnetron Sputtering (HiPIMS) and judged on the basis of physical properties such as crystalline structure and surface topography and functional properties such as simulated photoelectrochemical (PEC) water splitting conditions. It was revealed that the HiPIMS method already provides crystalline structures of anatase TiO2 and hematite Fe2O3 during the deposition, whereas to finalize the sol-gel route the as-deposited films must always be annealed to obtain the crystalline phase. Regarding the PEC activity, both TiO2 films show similar photocurrent density, but only when illuminated by UV light. A different situation was observed for hematite films where plasmatic films showed a tenfold enhancement of the stable photocurrent density over the sol-gel hematite films for both UV and visible irradiation. The superior properties of plasmatic films could be explained by ability to address some of the hematite drawbacks by the deposition of very thin films (25 nm) consisting of small densely packed particles and by doping with Sn. Full article
(This article belongs to the Special Issue Photocatalysis) Printed Edition available
Open AccessArticle An Improved HPLC-DAD Method for Quantitative Comparisons of Triterpenes in Ganoderma lucidum and Its Five Related Species Originating from Vietnam
Molecules 2015, 20(1), 1059-1077; doi:10.3390/molecules20011059
Received: 25 November 2014 / Accepted: 5 January 2015 / Published: 9 January 2015
Cited by 4 | PDF Full-text (1532 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
An HPLC-DAD method for the quality control of wild and cultivated Ganoderma lucidum (Linhzhi) and related species samples was developed and validated. The quantitative determination of G. lucidum and its related species using 14 triterpene constituents, including nine ganoderma acids (compounds 4
[...] Read more.
An HPLC-DAD method for the quality control of wild and cultivated Ganoderma lucidum (Linhzhi) and related species samples was developed and validated. The quantitative determination of G. lucidum and its related species using 14 triterpene constituents, including nine ganoderma acids (compounds 412), four alcohols (compounds 1316), and one sterol (ergosterol, 17) were reported. The standard curves were linear over the concentration range of 7.5–180 µg/mL. The LOD and LOQ values for the analyses varied from 0.34 to 1.41 µg/mL and from 1.01 to 4.23 µg/mL, respectively. The percentage recovery of each reference compound was found to be from 97.09% to 100.79%, and the RSD (%) was less than 2.35%. The precision and accuracy ranged from 0.81%–3.20% and 95.38%–102.19% for intra-day, and from 0.43%–3.67% and 96.63%–103.09% for inter-day, respectively. The study disclosed in detail significant differences between the quantities of analyzed compounds in different samples. The total triterpenes in wild Linhzhi samples were significantly higher than in cultivated ones. The total constituent contents of the five related Linhzhi samples were considerably lower than that in the G. lucidum specimens, except for G. australe as its constituent content outweighed wild Linhzhi’s content by 4:1. Full article
(This article belongs to the Section Natural Products)
Open AccessArticle Development of New 1,3-Diazaphenoxazine Derivatives (ThioG-Grasp) to Covalently Capture 8-Thioguanosine
Molecules 2015, 20(1), 1078-1087; doi:10.3390/molecules20011078
Received: 9 December 2014 / Accepted: 7 January 2015 / Published: 9 January 2015
Cited by 2 | PDF Full-text (887 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The derivatives of 8-thioguanosine are thought to be included in the signal transduction system related to 8-nitroguanosine. In this study, we attempted to develop new 1,3-diazaphenoxazine (G-clamp) derivatives to covalently capture 8-thioguanosine (thioG-grasp). It was expected that the chlorine atom at the end
[...] Read more.
The derivatives of 8-thioguanosine are thought to be included in the signal transduction system related to 8-nitroguanosine. In this study, we attempted to develop new 1,3-diazaphenoxazine (G-clamp) derivatives to covalently capture 8-thioguanosine (thioG-grasp). It was expected that the chlorine atom at the end of the linker would be displaced by the nucleophilic attack by the sulfur atom of 8-thioguanosine via multiple hydrogen-bonded complexes. The thioG-grasp derivative with a propyl linker reacted efficiently with 8-thioguanosine to form the corresponding adduct. Full article
(This article belongs to the Special Issue Nucleoside Modifications) Printed Edition available
Figures

Open AccessArticle Synthesis and Herbicidal Activity of Novel 1-(Diethoxy-phosphoryl)-3-(4-one-1H-1,2,3-triazol-1-yl)-propan-2-yl Carboxylic Esters
Molecules 2015, 20(1), 1088-1103; doi:10.3390/molecules20011088
Received: 14 November 2014 / Accepted: 16 December 2014 / Published: 12 January 2015
Cited by 4 | PDF Full-text (717 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of novel compounds, namely 1-(diethoxyphosphoryl)-3-(4-ones-1H-1,2,3-triazol-1-yl)propan-2-yl carboxylic esters, were designed on the basis of the diazafulvene intermediate of imidazole glycerol phosphate dehydratase (IGPD) and high-activity inhibitors of IGPD, and synthesized as inhibitors targeting IGPD in plants. Their structures were confirmed
[...] Read more.
A series of novel compounds, namely 1-(diethoxyphosphoryl)-3-(4-ones-1H-1,2,3-triazol-1-yl)propan-2-yl carboxylic esters, were designed on the basis of the diazafulvene intermediate of imidazole glycerol phosphate dehydratase (IGPD) and high-activity inhibitors of IGPD, and synthesized as inhibitors targeting IGPD in plants. Their structures were confirmed by 1H-NMR, 13C-NMR, 31P-NMR and HR-MS. The herbicidal evaluation performed by a Petri dish culture method showed that most compounds possessed moderate to good herbicidal activities. Six compounds were chosen for further herbicidal evaluation on barnyard grass by pot experiments. 1-(Diethoxyphosphoryl)-3-(4-phenyl-1H-1,2,3-triazol-1-yl)propan-2-yl 2-(naphthalen-1-yl)acetate (5-A3) and ethyl 1-(2-acetoxy-3-(diethoxyphosphoryl)propyl)-1H-1,2,3-triazole-4-carboxylate (5-B4) showed good herbicidal activities. Compared with the compounds with the best herbicidal activity ever reported, both compounds 5-A3 and 5-B4, which can inhibit the growth of barnyard grass at the concentration of 250g/hm2, efficiently gave rise to a nearly 4-fold increase of the herbicidal potency. However, their herbicidal activities were lower than that of acetochlor (62.5 g/hm2) in the pot experiments. Full article
(This article belongs to the Section Organic Synthesis)
Open AccessArticle Novel Pyrazine Analogs of Chalcones: Synthesis and Evaluation of Their Antifungal and Antimycobacterial Activity
Molecules 2015, 20(1), 1104-1117; doi:10.3390/molecules20011104
Received: 5 November 2014 / Accepted: 6 January 2015 / Published: 12 January 2015
Cited by 7 | PDF Full-text (714 KB) | HTML Full-text | XML Full-text
Abstract
Infectious diseases, such as tuberculosis and invasive mycoses, represent serious health problems. As a part of our long-term efforts to find new agents for the treatment of these diseases, a new series of pyrazine analogs of chalcones bearing an isopropyl group in position
[...] Read more.
Infectious diseases, such as tuberculosis and invasive mycoses, represent serious health problems. As a part of our long-term efforts to find new agents for the treatment of these diseases, a new series of pyrazine analogs of chalcones bearing an isopropyl group in position 5 of the pyrazine ring was prepared. The structures of the compounds were corroborated by IR and NMR spectroscopy and their purity confirmed by elemental analysis. The susceptibility of eight fungal strains to the studied compounds was tested. The results have been compared with the activity of some previously reported propyl derivatives. The only strain that was susceptible to the studied compounds was Trichophyton mentagrophytes. It was found that replacing a non-branched propyl with a branched isopropyl did not have a decisive and unequivocal influence on the in vitro antifungal activity against T. mentagrophytes. In vitro activity against Trichophyton mentagrophytes comparable with that of fluconazole was exhibited by nitro-substituted derivatives. Unfortunately, no compound exhibited efficacy comparable with that of terbinafine, which is the most widely used agent for treating mycoses caused by dermatophytes. Some of the prepared compounds were assayed for antimycobacterial activity against M. tuberculosis H37Rv. The highest potency was also displayed by nitro-substituted compounds. The results of the present study are in a good agreement with our previous findings and confirm the positive influence of electron-withdrawing groups on the B-ring of chalcones on the antifungal and antimycobacterial activity of these compounds. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Phenolic Content and Antioxidant Capacity in Algal Food Products
Molecules 2015, 20(1), 1118-1133; doi:10.3390/molecules20011118
Received: 13 November 2014 / Accepted: 6 January 2015 / Published: 12 January 2015
Cited by 30 | PDF Full-text (729 KB) | HTML Full-text | XML Full-text
Abstract
The study objective was to investigate total phenolic content using Folin-Ciocalteu’s method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW) by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products
[...] Read more.
The study objective was to investigate total phenolic content using Folin-Ciocalteu’s method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW) by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida) and red (Porphyra tenera, Palmaria palmata) seaweed, green freshwater algae (Chlorella pyrenoidosa), and cyanobacteria (Spirulina platensis). HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g−1 GAE; 7.53 µmol AA·g−1, respectively). A linear relationship existed between ACW and phenolic contents (r = 0.99). Some algal products seem to be promising functional foods rich in polyphenols. Full article
(This article belongs to the Section Natural Products)
Open AccessArticle Synthesis of Chromonylthiazolidines and Their Cytotoxicity to Human Cancer Cell Lines
Molecules 2015, 20(1), 1151-1160; doi:10.3390/molecules20011151
Received: 5 December 2014 / Accepted: 6 January 2015 / Published: 12 January 2015
Cited by 5 | PDF Full-text (719 KB) | HTML Full-text | XML Full-text
Abstract
Nine new chromonylthiazolidine derivatives were successfully semi-synthesized from paeonol. All of the compounds, including starting materials, the intermediate compound and products, were evaluated for their cytotoxic effects toward eight human cancer cell lines. The synthesized chromonylthiazolidines displayed weak cytotoxic effects against the tested
[...] Read more.
Nine new chromonylthiazolidine derivatives were successfully semi-synthesized from paeonol. All of the compounds, including starting materials, the intermediate compound and products, were evaluated for their cytotoxic effects toward eight human cancer cell lines. The synthesized chromonylthiazolidines displayed weak cytotoxic effects against the tested cancer cell lines, but selective cytotoxic effects were observed. Compounds 3a and 3b showed the most selective cytotoxic effects against human epidermoid carcinoma (IC50 44.1 ± 3.6 μg/mL) and breast cancer (IC50 32.8 ± 1.4 μg/mL) cell lines, respectively. The results suggest that chromoylthiazolidines are potential low-cost, and selective anticancer agents. Full article
Open AccessArticle Degradation Dynamics of Glyphosate in Different Types of Citrus Orchard Soils in China
Molecules 2015, 20(1), 1161-1175; doi:10.3390/molecules20011161
Received: 22 October 2014 / Accepted: 6 January 2015 / Published: 12 January 2015
Cited by 10 | PDF Full-text (1381 KB) | HTML Full-text | XML Full-text
Abstract
Glyphosate formulations that are used as a broad-spectrum systemic herbicide have been widely applied in agriculture, causing increasing concerns about residues in soils. In this study, the degradation dynamics of glyphosate in different types of citrus orchard soils in China were evaluated under
[...] Read more.
Glyphosate formulations that are used as a broad-spectrum systemic herbicide have been widely applied in agriculture, causing increasing concerns about residues in soils. In this study, the degradation dynamics of glyphosate in different types of citrus orchard soils in China were evaluated under field conditions. Glyphosate soluble powder and aqueous solution were applied at 3000 and 5040 g active ingredient/hm2, respectively, in citrus orchard soils, and periodically drawn soil samples were analyzed by high performance liquid chromatography. The results showed that the amount of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in soils was reduced with the increase of time after application of glyphosate formulations. Indeed, the amount of glyphosate in red soil from Hunan and Zhejiang Province, and clay soil from Guangxi Province varied from 0.13 to 0.91 µg/g at 42 days after application of aqueous solution. Furthermore, the amount of glyphosate in medium loam from Zhejiang and Guangdong Province, and brown loam from Guizhou Province varied from less than 0.10 to 0.14 µg/g, while the amount of AMPA varied from less than 0.10 to 0.99 µg/g at 42 days after application of soluble powder. Overall, these findings demonstrated that the degradation dynamics of glyphosate aqueous solution and soluble powder as well as AMPA depend on the physicochemical properties of the applied soils, in particular soil pH, which should be carefully considered in the application of glyphosate herbicide. Full article
Open AccessArticle Kinase Inhibitor Profile for Human Nek1, Nek6, and Nek7 and Analysis of the Structural Basis for Inhibitor Specificity
Molecules 2015, 20(1), 1176-1191; doi:10.3390/molecules20011176
Received: 4 November 2014 / Accepted: 5 January 2015 / Published: 13 January 2015
Cited by 6 | PDF Full-text (8567 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and
[...] Read more.
Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors. Full article
Figures

Open AccessArticle Chemical Composition and Antioxidant Activity in Different Tissues of Brassica Vegetables
Molecules 2015, 20(1), 1228-1243; doi:10.3390/molecules20011228
Received: 26 November 2014 / Accepted: 5 January 2015 / Published: 13 January 2015
Cited by 20 | PDF Full-text (703 KB) | HTML Full-text | XML Full-text
Abstract
This research was conducted to evaluate glucosinolate profiles, vitamin C, total phenol, total flavonoid, and free sugar (glucose, fructose, and sucrose) content, fatty acid composition, and antioxidant activity in floret and leaf of six cauliflower and broccoli cultivars. The level of chemical constituents
[...] Read more.
This research was conducted to evaluate glucosinolate profiles, vitamin C, total phenol, total flavonoid, and free sugar (glucose, fructose, and sucrose) content, fatty acid composition, and antioxidant activity in floret and leaf of six cauliflower and broccoli cultivars. The level of chemical constituents as well as antioxidants significantly varied among crop types, cultivars, and their different parts, in that phytochemicals such as glucosinolate were statistically higher in florets compared with leaves in both broccoli and cauliflower cultivars. In contrast, total flavonoid and free sugar were found at higher levels in the leaf parts. The Asia purple cultivar exhibited statistically higher vitamin C (649.7 mg·100 g−1), total phenol (1345.2 mg·GAE 100 g−1), and total flavonoid (632.7 mg·CE 100 g−1) contents and consequently had the highest antioxidant activity (1.12 mg·mL−1) in its florets, while Baeridom and Bridal had the highest total glucosinolate (9.66 µmol·g−1) and free sugar (318.6 mg·g−1) contents, respectively compared with other cultivars. Likewise, the major fatty acids were palmitic (23.52%–38.42%), linoleic (13.09%–18.97%), and linolenic (26.32%–51.80%) acids, which comprised the highest compositional ratio (more than 50%) of polyunsaturated fatty acids (PUFAs) in most cultivars. Among the antioxidants, total phenol exhibited the most significant positive correlation (r = 0.698 **) with antioxidant activity, followed by vitamin C (r = 0.522 **) and total flavonoid (r = 0.494 **), indicating their significant contributions to total antioxidant activity. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Preparation and Application of Crosslinked Poly(sodium acrylate)-Coated Magnetite Nanoparticles as Corrosion Inhibitors for Carbon Steel Alloy
Molecules 2015, 20(1), 1244-1261; doi:10.3390/molecules20011244
Received: 5 December 2014 / Accepted: 7 January 2015 / Published: 14 January 2015
Cited by 9 | PDF Full-text (1702 KB) | HTML Full-text | XML Full-text
Abstract
This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core
[...] Read more.
This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate) as shell. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM) was used to examine the morphology of the modified poly(sodium acrylate) magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance. Full article
(This article belongs to the Section Molecular Diversity)
Open AccessArticle TDAE Strategy in the Benzoxazolone Series: Synthesis and Reactivity of a New Benzoxazolinonic Anion
Molecules 2015, 20(1), 1262-1276; doi:10.3390/molecules20011262
Received: 11 December 2014 / Accepted: 8 January 2015 / Published: 14 January 2015
Cited by 2 | PDF Full-text (753 KB) | HTML Full-text | XML Full-text
Abstract
We describe an original pathway to produce new 5-substituted 3-methyl-6-nitro-benzoxazolones by the reaction of aromatic carbonyl and α-carbonyl ester derivatives with a benzoxazolinonic anion formed exclusively via the TDAE strategy. Full article
(This article belongs to the Section Organic Synthesis)
Open AccessArticle Bisdemethoxycurcumin Induces Apoptosis in Activated Hepatic Stellate Cells via Cannabinoid Receptor 2
Molecules 2015, 20(1), 1277-1292; doi:10.3390/molecules20011277
Received: 21 November 2014 / Accepted: 9 January 2015 / Published: 14 January 2015
Cited by 4 | PDF Full-text (1026 KB) | HTML Full-text | XML Full-text
Abstract
Activated Hepatic Stellate Cells (HSCs), major fibrogenic cells in the liver, undergo apoptosis when liver injuries cease, which may contribute to the resolution of fibrosis. Bisdemethoxycurcumin (BDMC) is a natural derivative of curcumin with anti-inflammatory and anti-cancer activities. The therapeutic potential of BDMC
[...] Read more.
Activated Hepatic Stellate Cells (HSCs), major fibrogenic cells in the liver, undergo apoptosis when liver injuries cease, which may contribute to the resolution of fibrosis. Bisdemethoxycurcumin (BDMC) is a natural derivative of curcumin with anti-inflammatory and anti-cancer activities. The therapeutic potential of BDMC in hepatic fibrosis has not been studied thus far in the context of the apoptosis in activated HSCs. In the current study, we compared the activities of BDMC and curcumin in the HSC-T6 cell line and demonstrated that BDMC relatively induced a potent apoptosis. BDMC-induced apoptosis was mediated by a combinatory inhibition of cytoprotective proteins, such as Bcl2 and heme oxygenase-1 and increased generation of reactive oxygen species. Intriguingly, BDMC-induced apoptosis was reversed with co-treatment of sr144528, a cannabinoid receptor (CBR) 2 antagonist, which was confirmed with genetic downregulation of the receptor using siCBR2. Additionally, incubation with BDMC increased the formation of death-induced signaling complex in HSC-T6 cells. Treatment with BDMC significantly diminished total intracellular ATP levels and upregulated ATP inhibitory factor-1. Collectively, the results demonstrate that BDMC induces apoptosis in activated HSCs, but not in hepatocytes, by impairing cellular energetics and causing a downregulation of cytoprotective proteins, likely through a mechanism that involves CBR2. Full article
(This article belongs to the Special Issue Curcumin, Inflammation, and Chronic Diseases: How are They Linked?)
Open AccessArticle Ginsenoside Rc Promotes Anti-Adipogenic Activity on 3T3-L1 Adipocytes by Down-Regulating C/EBPα and PPARγ
Molecules 2015, 20(1), 1293-1303; doi:10.3390/molecules20011293
Received: 19 November 2014 / Accepted: 9 January 2015 / Published: 14 January 2015
Cited by 12 | PDF Full-text (1006 KB) | HTML Full-text | XML Full-text
Abstract
Panax ginseng and its major components, the ginsenosides, are widely used in oriental medicine for the prevention of various disorders. In the present study, the inhibitory activity of ginsenoside Rc on adipogenesis was investigated using the 3T3-L1 cell line. The results obtained showed
[...] Read more.
Panax ginseng and its major components, the ginsenosides, are widely used in oriental medicine for the prevention of various disorders. In the present study, the inhibitory activity of ginsenoside Rc on adipogenesis was investigated using the 3T3-L1 cell line. The results obtained showed that Rc reduced the proliferation and viability of 3T3-L1 preadipocytes in a dose-dependent manner. Treatment with Rc decreased the number of adipocytes and reduced lipid accumulation in maturing 3T3-L1 preadipocytes, demonstrating an inhibitory effect on lipogenesis. Moreover, it was found that Rc directly induced lipolysis in adipocytes and down-regulated the expression of major transcription factors of the adipogenesis pathway, such as PPARγ and C/EBPα. These findings indicate that Rc is capable of suppressing adipogenesis and therefore they seem to be natural bioactive factors effective in adipose tissue mass modulation. Full article
(This article belongs to the Section Medicinal Chemistry)
Open AccessArticle Synthesis and Evaluation of Paeonol Derivatives as Potential Multifunctional Agents for the Treatment of Alzheimer’s Disease
Molecules 2015, 20(1), 1304-1318; doi:10.3390/molecules20011304
Received: 10 November 2014 / Accepted: 7 January 2015 / Published: 14 January 2015
Cited by 8 | PDF Full-text (2672 KB) | HTML Full-text | XML Full-text
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative brain disorder characterized by memory loss, language impairment, personality changes and intellectual decline. Taking into account the key pathological features of AD, such as low levels of acetylcholine, beta-amyloid (Aβ) aggregation, oxidative stress and dyshomeostasis of
[...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative brain disorder characterized by memory loss, language impairment, personality changes and intellectual decline. Taking into account the key pathological features of AD, such as low levels of acetylcholine, beta-amyloid (Aβ) aggregation, oxidative stress and dyshomeostasis of biometals, a new series of paeonol derivatives 5a5d merging three different functions, i.e., antioxidant, anti-acetylcholinesterase (AChE) activity, metal chelating agents for AD treatment have been synthesized and characterized. Biological assays revealed that compared with paeonol (309.7 μM), 5a5d had a lower DPPH IC50 value (142.8–191.6 μM). 5a5d could significantly inhibit hydrogen peroxide-induced neuronal PC12 cell death assessed by MTT assay in the concentration range of 5–40 μM. AChE activity was effectively inhibited by 5a5d, with IC50 values in the range of 0.61–7.04 μM. 5a5d also exhibited good metal-chelating ability. All the above results suggested that paeonol derivatives may be promising multifunctional agents for AD treatment. Full article
(This article belongs to the Section Organic Synthesis)
Open AccessArticle Synthesis and Cytotoxicity Evaluation of Some Novel Thiazoles, Thiadiazoles, and Pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-ones Incorporating Triazole Moiety
Molecules 2015, 20(1), 1357-1376; doi:10.3390/molecules20011357
Received: 10 December 2014 / Accepted: 31 December 2014 / Published: 14 January 2015
Cited by 30 | PDF Full-text (959 KB) | HTML Full-text | XML Full-text
Abstract
Reactions of hydrazonoyl halides and each of methyl 2-(1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)ethylidene)hydrazine-1-carbodithioate and 2-(1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)ethylidene)hydrazine-1-carbothioamide afforded 2-(1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)ethylidene)hydrazono)-3-phenyl-5-substituted-2,3-dihydro-1,3,4-thiadiazoles and 5-(4-substituted)diazenyl)-2-(2-(1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl)-4-arylthiazoles, respectively. Analogously, the reactions of hydrazonoyl halides with 7-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-5-phenyl-2-thioxo-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one gave 3-(4-substituted)-8-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-6-phenyl-1-arylpyrido[2,3-d
[...] Read more.
Reactions of hydrazonoyl halides and each of methyl 2-(1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)ethylidene)hydrazine-1-carbodithioate and 2-(1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)ethylidene)hydrazine-1-carbothioamide afforded 2-(1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)ethylidene)hydrazono)-3-phenyl-5-substituted-2,3-dihydro-1,3,4-thiadiazoles and 5-(4-substituted)diazenyl)-2-(2-(1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)ethylidene)hydrazinyl)-4-arylthiazoles, respectively. Analogously, the reactions of hydrazonoyl halides with 7-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-5-phenyl-2-thioxo-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one gave 3-(4-substituted)-8-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-6-phenyl-1-arylpyrido[2,3-d]-[1,2,4]-triazolo-[4,3-a]pyrimidin- 5(1H)-ones in a good yield. The structures of the newly synthesized were elucidated via elemental analysis, spectral data and alternative synthesis routes whenever possible. Twelve of the newly synthesized compounds have been evaluated for their antitumor activity against human breast carcinoma (MCF-7) and human hepatocellular carcinoma (HepG2) cell lines. Their structure activity relationships (SAR) were also studied. The 1,3,4-thiadiazole derivative 9b (IC50 = 2.94 µM) has promising antitumor activity against the human hepatocellular carcinoma cell line and the thiazole derivative 12a has promising inhibitory activity against both the human hepatocellular carcinoma cell line and the breast carcinoma cell line (IC50 = 1.19, and 3.4 µM, respectively). Full article
(This article belongs to the Section Organic Synthesis)
Open AccessArticle An Alkaloid and a Steroid from the Endophytic Fungus Aspergillus fumigatus
Molecules 2015, 20(1), 1424-1433; doi:10.3390/molecules20011424
Received: 27 October 2014 / Accepted: 5 January 2015 / Published: 14 January 2015
Cited by 7 | PDF Full-text (705 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Two new compounds, fumitremorgin 12-methoxy-13-[5'-hydroxy-2'-(1''-hydroxy-3''-methoxy-5''-methylbenzoyl)-3'-methoxy]benzoic acid methyl ester (fumitremorgin D, 1) and 4,8,10,14-tetramethyl-6-acetoxy-14-[16-acetoxy-19-(20,21-dimethyl)-18-ene]-phenanthrene-1-ene-3,7-dione (2) were isolated from the cultured endophytic isolated fungus Aspergillus fumigatus, together with fourteen known compounds. Their structures were elucidated by 1-D and 2-D NMR analyses.
[...] Read more.
Two new compounds, fumitremorgin 12-methoxy-13-[5'-hydroxy-2'-(1''-hydroxy-3''-methoxy-5''-methylbenzoyl)-3'-methoxy]benzoic acid methyl ester (fumitremorgin D, 1) and 4,8,10,14-tetramethyl-6-acetoxy-14-[16-acetoxy-19-(20,21-dimethyl)-18-ene]-phenanthrene-1-ene-3,7-dione (2) were isolated from the cultured endophytic isolated fungus Aspergillus fumigatus, together with fourteen known compounds. Their structures were elucidated by 1-D and 2-D NMR analyses. The cytotoxicity profile of the compound against the human hepatocellular carcinoma cell line HepG2 was evaluated by MTT antiproliferative assays. Full article
(This article belongs to the Section Natural Products)
Open AccessArticle Seven-Membered Rings through Metal-Free Rearrangement Mediated by Hypervalent Iodine
Molecules 2015, 20(1), 1475-1494; doi:10.3390/molecules20011475
Received: 2 December 2014 / Accepted: 8 January 2015 / Published: 15 January 2015
Cited by 2 | PDF Full-text (1111 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A versatile and metal-free approach for the synthesis of carbocycles and of heterocycles bearing seven- and eight-membered rings is described. The strategy is based on ring expansion of 1-vinylcycloalkanols (or the corresponding silyl or methyl ether) mediated by the hypervalent iodine reagent HTIB
[...] Read more.
A versatile and metal-free approach for the synthesis of carbocycles and of heterocycles bearing seven- and eight-membered rings is described. The strategy is based on ring expansion of 1-vinylcycloalkanols (or the corresponding silyl or methyl ether) mediated by the hypervalent iodine reagent HTIB (PhI(OH)OTs). Reaction conditions can be easily adjusted to give ring expansion products bearing different functional groups. A route to medium-ring lactones was also developed. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Open AccessCommunication Synthesis of Novel bis-1,5-Disubstituted-1H-Tetrazoles by an Efficient Catalyst-Free Ugi-Azide Repetitive Process
Molecules 2015, 20(1), 1519-1526; doi:10.3390/molecules20011519
Received: 26 November 2014 / Accepted: 25 December 2014 / Published: 16 January 2015
Cited by 7 | PDF Full-text (735 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of five novel bis-1,5-disubstituted-1H-tetrazoles (bis-1,5-DS-1H-T) were quickly prepared by a catalyst-free Ugi-azide repetitive process from easily accessible starting materials in excellent yields, either at room temperature (88%–95%) or using mild MW-heating conditions (80%–91%). These
[...] Read more.
A series of five novel bis-1,5-disubstituted-1H-tetrazoles (bis-1,5-DS-1H-T) were quickly prepared by a catalyst-free Ugi-azide repetitive process from easily accessible starting materials in excellent yields, either at room temperature (88%–95%) or using mild MW-heating conditions (80%–91%). These molecules may have a wide range of applications, such as chelating agents, organocatalysts and luminescent materials, and mainly as bioactive compounds. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Open AccessArticle Energy and Molecules from Photochemical/Photocatalytic Reactions. An Overview
Molecules 2015, 20(1), 1527-1542; doi:10.3390/molecules20011527
Received: 5 November 2014 / Accepted: 7 January 2015 / Published: 16 January 2015
Cited by 5 | PDF Full-text (1112 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Photocatalytic reactions have been defined as those processes that require both a (not consumed) catalyst and light. A previous definition was whether such reactions brought a system towards or away from the (thermal) equilibrium. This consideration brings in the question whether a part
[...] Read more.
Photocatalytic reactions have been defined as those processes that require both a (not consumed) catalyst and light. A previous definition was whether such reactions brought a system towards or away from the (thermal) equilibrium. This consideration brings in the question whether a part of the photon energy is incorporated into the photochemical reaction products. Data are provided for representative organic reactions involving or not molecular catalysts and show that energy storage occurs only when a heavily strained structure is generated, and in that case only a minor part of photon energy is actually stored (ΔG up to 25 kcal·mol−1). The green role of photochemistry/photocatalysis is rather that of forming highly reactive intermediates under mild conditions. Full article
(This article belongs to the Special Issue Photocatalysis) Printed Edition available
Figures

Open AccessCommunication Cross-Amplification of Vicia sativa subsp. sativa Microsatellites across 22 Other Vicia Species
Molecules 2015, 20(1), 1543-1550; doi:10.3390/molecules20011543
Received: 6 October 2014 / Accepted: 14 January 2015 / Published: 16 January 2015
Cited by 4 | PDF Full-text (781 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The temperate and herbaceous genus Vicia L. is a member of the legume tribe Fabeae of the subfamily Papilionoideae. The genus Vicia comprises 166 annual or perennial species distributed mainly in Europe, Asia, and North America, but also extending to the temperate regions
[...] Read more.
The temperate and herbaceous genus Vicia L. is a member of the legume tribe Fabeae of the subfamily Papilionoideae. The genus Vicia comprises 166 annual or perennial species distributed mainly in Europe, Asia, and North America, but also extending to the temperate regions of South America and tropical Africa. The use of simple sequence repeat (SSR) markers for Vicia species has not been investigated as extensively as for other crop species. In this study, we assessed the potential for cross-species amplification of cDNA microsatellite markers developed from common vetch (Vicia sativa subsp. sativa). For cross-species amplification of the SSRs, amplification was carried out with genomic DNA isolated from two to eight accessions of 22 different Vicia species. For individual species or subspecies, the transferability rates ranged from 33% for V. ervilia to 82% for V. sativa subsp. nigra with an average rate of 52.0%. Because the rate of successful SSR marker amplification generally correlates with genetic distance, these SSR markers are potentially useful for analyzing genetic relationships between or within Vicia species. Full article
(This article belongs to the Section Molecular Diversity)
Open AccessArticle New Sesquiterpenoids and a Diterpenoid from Alpinia oxyphylla
Molecules 2015, 20(1), 1551-1559; doi:10.3390/molecules20011551
Received: 4 December 2014 / Accepted: 31 December 2014 / Published: 16 January 2015
Cited by 7 | PDF Full-text (753 KB) | HTML Full-text | XML Full-text
Abstract
The new compounds 2-methyl-6-isopropyl-7-hydroxymethyl naphthalene (1), oxyphyllenone H (2), epi-oxyphyllenone (6), (E)-labda-12,14-dien-15(16)-olide-17-oic acid (3), and two new natural products 4 and 5 were isolated from the ethyl acetate part of 95% ethanol
[...] Read more.
The new compounds 2-methyl-6-isopropyl-7-hydroxymethyl naphthalene (1), oxyphyllenone H (2), epi-oxyphyllenone (6), (E)-labda-12,14-dien-15(16)-olide-17-oic acid (3), and two new natural products 4 and 5 were isolated from the ethyl acetate part of 95% ethanol extract of Alpinia oxyphylla, together with six known compounds 712. The inhibitory effects of compounds 112 on α-glucosidase were evaluated, and compounds 1, 3 and 6 showed moderate bioactive effect, with inhibitory rates of 10.3%, 10.0% and 11.5%, respectively, compared to the positive control acarbose (41.9%) at 20 µg/mL. Full article
(This article belongs to the Section Natural Products)
Open AccessArticle Comparative Pharmacokinetics of Hypaconitine after Oral Administration of Pure Hypaconitine, Aconitum carmichaelii Extract and Sini Decoction to Rats
Molecules 2015, 20(1), 1560-1570; doi:10.3390/molecules20011560
Received: 22 October 2014 / Accepted: 7 January 2015 / Published: 16 January 2015
Cited by 11 | PDF Full-text (959 KB) | HTML Full-text | XML Full-text
Abstract
Hypaconitine (HC) is one of the main aconitum alkaloids in Aconitum carmichaelii (AC), which is considered to be effective on cardiovascular disease, although it also has high toxicity. Sini Decoction (SND), composed of Aconitum carmichaelii, Glycyrrhiza uralensis and Zingiber officinale, is
[...] Read more.
Hypaconitine (HC) is one of the main aconitum alkaloids in Aconitum carmichaelii (AC), which is considered to be effective on cardiovascular disease, although it also has high toxicity. Sini Decoction (SND), composed of Aconitum carmichaelii, Glycyrrhiza uralensis and Zingiber officinale, is a traditional Chinese multi-herbal formula for recuperating the depleted yang. The aim of this study was to compare the pharmacokinetics of HC in rat plasma after oral administration of HC, AC extract and SND, and investigate the effect of other two herbal ingredients on absorption, metabolism and elimination of HC. A sensitive and specific LC-MS/MS method was developed to determine HC in rat plasma. Eighteen male Sprague-Dawley rats were randomly assigned to three groups: HC, AC and SND group. Plasma concentrations of HC were determined at designated points after oral administration, and main pharmacokinetic parameters were estimated. It was found that there was obvious difference (p < 0.05) on the pharmacokinetic parameters among three groups. Compared with AC group, Tmax, Cmax, k, AUC(0-24) and AUC(0-∞) decreased in SND group, while t1/2 and MRT had been lengthened, which indicated that the ingredients in other two herbs could influence the pharmacokinetic behavior of HC. Full article
(This article belongs to the Section Medicinal Chemistry)
Open AccessArticle Cytotoxic Activity and Composition of Petroleum Ether Extract from Magydaris tomentosa (Desf.) W. D. J. Koch (Apiaceae)
Molecules 2015, 20(1), 1571-1578; doi:10.3390/molecules20011571
Received: 30 October 2014 / Accepted: 9 January 2015 / Published: 16 January 2015
Cited by 9 | PDF Full-text (669 KB) | HTML Full-text | XML Full-text
Abstract
The petroleum ether extract of Magydaris tomentosa flowers (Desf.) W. D. J. Koch has been analyzed by GC-MS. It is mainly constituted by furanocoumarins such as xanthotoxin, xanthotoxol, isopimpinellin, and bergaptene. Other coumarins such as 7-methoxy-8-(2-formyl-2-methylpropyl) coumarin and osthole also occurred. The antiproliferative
[...] Read more.
The petroleum ether extract of Magydaris tomentosa flowers (Desf.) W. D. J. Koch has been analyzed by GC-MS. It is mainly constituted by furanocoumarins such as xanthotoxin, xanthotoxol, isopimpinellin, and bergaptene. Other coumarins such as 7-methoxy-8-(2-formyl-2-methylpropyl) coumarin and osthole also occurred. The antiproliferative activity of Magydaris tomentosa flower extract has been evaluated in vitro on murine monocye/macrophages (J774A.1), human melanoma (A375) and human breast cancer (MCF-7) tumor cell lines, showing a major activity against the latter. Full article
(This article belongs to the collection Bioactive Compounds)
Open AccessArticle Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid)
Molecules 2015, 20(1), 1579-1593; doi:10.3390/molecules20011579
Received: 28 November 2014 / Accepted: 13 January 2015 / Published: 19 January 2015
Cited by 20 | PDF Full-text (825 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK
[...] Read more.
The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates) were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid) (PDLA) acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA) indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young’s modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization. Full article
(This article belongs to the Section Organic Synthesis)
Open AccessArticle Identification and Quantitative Characterization of PSORI-CM01, a Chinese Medicine Formula for Psoriasis Therapy, by Liquid Chromatography Coupled with an LTQ Orbitrap Mass Spectrometer
Molecules 2015, 20(1), 1594-1609; doi:10.3390/molecules20011594
Received: 17 December 2014 / Accepted: 12 January 2015 / Published: 19 January 2015
Cited by 9 | PDF Full-text (777 KB) | HTML Full-text | XML Full-text
Abstract
PSORI-CM01 is a Chinese medicine formula prepared from medicinal herbs and used in China for the treatment of psoriasis. However, the chemical constituents in PSORI-CM01 have not been clarified yet. In order to quickly define the chemical profiles and control the quality of
[...] Read more.
PSORI-CM01 is a Chinese medicine formula prepared from medicinal herbs and used in China for the treatment of psoriasis. However, the chemical constituents in PSORI-CM01 have not been clarified yet. In order to quickly define the chemical profiles and control the quality of PSORI-CM01 preparations, ultra-high liquid chromatography coupled with electrospray ionization hybrid linear trap quadrupole Orbitrap mass spectrometry (UHPLC-ESI-LTQ/Orbitrap-MS) was applied for simultaneous identification and quantification of multiple constituents. A total of 108 compounds, including organic acids, phenolic acids, flavonoids, and terpenoids, were identified or tentatively deduced on the base of their retention behaviors, MS and MSn data, or by comparing with reference substances and literature data. In addition, an optimized UHPLC-ESI-MS method was established for the quantitative determination of 14 marker compounds in different dosage forms of PSORI-CM01 preparations. The validation of the method, including spike recoveries, linearity, sensitivity (LOQ), precision, and repeatability, was carried out and demonstrated to be satisfied the requirements of quantitative analysis. This is the first report on the comprehensive determination of chemical constituents in PSORI-CM01 preparations by UHPLC-ESI-LTQ/Orbitrap mass spectrometry. The results suggested that the established methods would be a powerful and reliable analytical tool for the characterization of multi-constituents in complex chemical system and quality control of TCM preparations. Full article
(This article belongs to the Section Natural Products)
Open AccessArticle Inhibition of Urinary Macromolecule Heparin on Aggregation of Nano-COM and Nano-COD Crystals
Molecules 2015, 20(1), 1626-1642; doi:10.3390/molecules20011626
Received: 28 November 2014 / Accepted: 29 December 2014 / Published: 19 January 2015
Cited by 4 | PDF Full-text (7626 KB) | HTML Full-text | XML Full-text
Abstract
Purpose: This research aims to study the influences of heparin (HP) on the aggregation of nano calcium oxalate monohydrate (COM) and nano calcium oxalate dihydrate (COD) with mean diameter of about 50 nm. Method: The influences of different concentrations of HP
[...] Read more.
Purpose: This research aims to study the influences of heparin (HP) on the aggregation of nano calcium oxalate monohydrate (COM) and nano calcium oxalate dihydrate (COD) with mean diameter of about 50 nm. Method: The influences of different concentrations of HP on the mean diameter and Zeta potential of nano COM and nano COD were investigated using a nanoparticle size Zeta potential analyzer. Results: HP could be adsorbed on the surface of nano COM and nano COD crystals, leading to an increase in the absolute value of Zeta potential on the crystals and an increase in the electrostatic repulsion force between crystals. Consequently, the aggregation of the crystals is reduced and the stability of the system is improved. The strong adsorption ability of HP was closely related to the -OSO3 and -COO groups contained in the HP molecules. X-ray photoelectron spectroscopy confirmed the coordination of HP with Ca2+ ions of COM and COD crystals. Conclusion: HP could inhibit the aggregation of nano COM and nano COD crystals and increase their stability in aqueous solution, which is conducive in inhibiting the formation of calcium oxalate stones. Full article
(This article belongs to the Special Issue Glycosaminoglycans and Their Mimetics)
Open AccessArticle Stability of the Human Hsp90-p50Cdc37 Chaperone Complex against Nucleotides and Hsp90 Inhibitors, and the Influence of Phosphorylation by Casein Kinase 2
Molecules 2015, 20(1), 1643-1660; doi:10.3390/molecules20011643
Received: 1 December 2014 / Accepted: 12 January 2015 / Published: 19 January 2015
Cited by 4 | PDF Full-text (2579 KB) | HTML Full-text | XML Full-text
Abstract
The molecular chaperone Hsp90 is regulated by co-chaperones such as p50Cdc37, which recruits a wide selection of client protein kinases. Targeted disruption of the Hsp90-p50Cdc37 complex by protein–protein interaction (PPI) inhibitors has emerged as an alternative strategy to treat diseases
[...] Read more.
The molecular chaperone Hsp90 is regulated by co-chaperones such as p50Cdc37, which recruits a wide selection of client protein kinases. Targeted disruption of the Hsp90-p50Cdc37 complex by protein–protein interaction (PPI) inhibitors has emerged as an alternative strategy to treat diseases characterized by aberrant Hsp90 activity. Using isothermal microcalorimetry, ELISA and GST-pull down assays we evaluated reported Hsp90 inhibitors and nucleotides for their ability to inhibit formation of the human Hsp90β-p50Cdc37 complex, reconstituted in vitro from full-length proteins. Hsp90 inhibitors, including the proposed PPI inhibitors gedunin and H2-gamendazole, did not affect the interaction of Hsp90 with p50Cdc37 in vitro. Phosphorylation of Hsp90 and p50Cdc37 by casein kinase 2 (CK2) did not alter the thermodynamic signature of complex formation. However, the phosphorylated complex was vulnerable to disruption by ADP (IC50 = 32 µM), while ATP, AMPPNP and Hsp90 inhibitors remained largely ineffective. The differential inhibitory activity of ADP suggests that phosphorylation by CK2 primes the complex for dissociation in response to a drop in ATP/ADP levels. The approach applied herein provides robust assays for a comprehensive biochemical evaluation of potential effectors of the Hsp90-p50Cdc37 complex, such as phosphorylation by a kinase or the interaction with small molecule ligands. Full article
(This article belongs to the Special Issue Design and Study of Kinase Inhibitors)
Figures

Open AccessArticle Deoxypodophyllotoxin Induces G2/M Cell Cycle Arrest and Apoptosis in SGC-7901 Cells and Inhibits Tumor Growth in Vivo
Molecules 2015, 20(1), 1661-1675; doi:10.3390/molecules20011661
Received: 21 December 2014 / Revised: 4 January 2015 / Accepted: 13 January 2015 / Published: 20 January 2015
Cited by 14 | PDF Full-text (4892 KB) | HTML Full-text | XML Full-text
Abstract
Deoxypodophyllotoxin (DPT), a natural microtubule destabilizer, was isolated from Anthriscus sylvestris, and a few studies have reported its anti-cancer effect. However, the in vivo antitumor efficacy of DPT is currently indeterminate. In this study, we investigated the anti-gastric cancer effects of DPT
[...] Read more.
Deoxypodophyllotoxin (DPT), a natural microtubule destabilizer, was isolated from Anthriscus sylvestris, and a few studies have reported its anti-cancer effect. However, the in vivo antitumor efficacy of DPT is currently indeterminate. In this study, we investigated the anti-gastric cancer effects of DPT both in vitro and in vivo. Our data showed that DPT inhibited cancer cell proliferation and induced G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. In addition, DPT caused cyclin B1, Cdc2 and Cdc25C to accumulate, decreased the expression of Bcl-2 and activated caspase-3 and PARP, suggesting that caspase-mediated pathways were involved in DPT-induced apoptosis. Animal studies revealed that DPT significantly inhibited tumor growth and decreased microvessel density (MVD) in a xenograft model of gastric cancer. Taken together, our findings provide a framework for further exploration of DPT as a novel chemotherapeutic for human gastric cancer. Full article
Open AccessArticle Contact Toxicity and Repellency of the Essential Oil of Liriope muscari (DECN.) Bailey against Three Insect Tobacco Storage Pests
Molecules 2015, 20(1), 1676-1685; doi:10.3390/molecules20011676
Received: 13 December 2014 / Accepted: 15 January 2015 / Published: 20 January 2015
Cited by 1 | PDF Full-text (685 KB) | HTML Full-text | XML Full-text
Abstract
In order to find and develop new botanical pesticides against tobacco storage pests, bioactivity screening was performed. The essential oil obtained from the aerial parts of Liriope muscari was investigated by GC/MS and GC/FID. A total of 14 components representing 96.12% of the
[...] Read more.
In order to find and develop new botanical pesticides against tobacco storage pests, bioactivity screening was performed. The essential oil obtained from the aerial parts of Liriope muscari was investigated by GC/MS and GC/FID. A total of 14 components representing 96.12% of the oil were identified and the main compounds in the oil were found to be methyl eugenol (42.15%) and safrole (17.15%), followed by myristicin (14.18%) and 3,5-dimethoxytoluene (10.60%). After screening, the essential oil exhibit potential insecticidal activity. In the progress of assay, it showed that the essential oil exhibited potent contact toxicity against Tribolium castaneum, Lasioderma serricorne and Liposcelis bostrychophila adults, with LD50 values of 13.36, 11.28 µg/adult and 21.37 µg/cm2, respectively. The essential oil also exhibited strong repellency against the three stored product insects. At the same concentrations, the essential oil was more repellent to T. castaneum than to L. serricorne adults. The results indicate that the essential oil of Liriope muscari has potential to be developed into a natural insecticide or repellent for controlling insects in stored tobacco and traditional Chinese medicinal materials. Full article
(This article belongs to the collection Recent Advances in Flavors and Fragrances)
Open AccessArticle Hybrids of Salicylalkylamides and Mannich Bases: Control of the Amide Conformation by Hydrogen Bonding in Solution and in the Solid State
Molecules 2015, 20(1), 1686-1711; doi:10.3390/molecules20011686
Received: 27 November 2014 / Revised: 4 January 2015 / Accepted: 12 January 2015 / Published: 20 January 2015
Cited by 2 | PDF Full-text (4793 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
3-Aminomethylation of salicylalkylamides afforded hybrids with a Mannich base. In addition, it triggered the rotation of the amide bond. The observed conformational switch is driven by strong intramolecular hydrogen bonding between the Mannich base and phenolic group. Crystal structure analysis reveals the stabilization
[...] Read more.
3-Aminomethylation of salicylalkylamides afforded hybrids with a Mannich base. In addition, it triggered the rotation of the amide bond. The observed conformational switch is driven by strong intramolecular hydrogen bonding between the Mannich base and phenolic group. Crystal structure analysis reveals the stabilization of the hybrid molecules by double hydrogen bonding of the phenolic OH, which acts as an acceptor and donor simultaneously. The molecules contain an amide site and a Mannich base site in an orthogonal spatial arrangement. The intramolecular hydrogen bonds are persistent in a nonpolar solvent (e.g., chloroform). The conformational change can be reversed upon protection or protonation of the Mannich base nitrogen. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Open AccessArticle Synthesis and in Silico Evaluation of Novel Compounds for PET-Based Investigations of the Norepinephrine Transporter
Molecules 2015, 20(1), 1712-1730; doi:10.3390/molecules20011712
Received: 20 November 2014 / Revised: 7 January 2015 / Accepted: 14 January 2015 / Published: 20 January 2015
Cited by 4 | PDF Full-text (1308 KB) | HTML Full-text | XML Full-text
Abstract
Since the norepinephrine transporter (NET) is involved in a variety of diseases, the investigation of underlying dysregulation-mechanisms of the norepinephrine (NE) system is of major interest. Based on the previously described highly potent and selective NET ligand 1-(3-(methylamino)-1-phenylpropyl)-3-phenyl-1,3-dihydro-2H-benzimidaz- ol-2-one (Me@APPI), this
[...] Read more.
Since the norepinephrine transporter (NET) is involved in a variety of diseases, the investigation of underlying dysregulation-mechanisms of the norepinephrine (NE) system is of major interest. Based on the previously described highly potent and selective NET ligand 1-(3-(methylamino)-1-phenylpropyl)-3-phenyl-1,3-dihydro-2H-benzimidaz- ol-2-one (Me@APPI), this paper aims at the development of several fluorinated methylamine-based analogs of this compound. The newly synthesized compounds were computationally evaluated for their interactions with the monoamine transporters and represent reference compounds for PET-based investigation of the NET. Full article
(This article belongs to the Special Issue Preparation of Radiopharmaceuticals and Their Use in Drug Development)
Open AccessArticle Glutathione-Garlic Sulfur Conjugates: Slow Hydrogen Sulfide Releasing Agents for Therapeutic Applications
Molecules 2015, 20(1), 1731-1750; doi:10.3390/molecules20011731
Received: 13 December 2014 / Revised: 31 December 2014 / Accepted: 13 January 2015 / Published: 20 January 2015
Cited by 17 | PDF Full-text (2121 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Natural organosulfur compounds (OSCs) from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the
[...] Read more.
Natural organosulfur compounds (OSCs) from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the proliferation of tumor cells. In the present study, we optimized a new protocol for the extraction of water-soluble compounds from garlic at low temperatures and the production of glutathionyl-OSC conjugates during the extraction. Spontaneously, Cys/GSH-mixed-disulfide conjugates are produced by in vivo metabolism of OSCs and represent active molecules able to affect cellular metabolism. Water-soluble extracts, with (GSGaWS) or without (GaWS) glutathione conjugates, were here produced and tested for their ability to release hydrogen sulfide (H2S), also in the presence of reductants and of thiosulfate:cyanide sulfurtransferase (TST) enzyme. Thus, the TST catalysis of the H2S-release from garlic OSCs and their conjugates has been investigated by molecular in vitro experiments. The antiproliferative properties of these extracts on the human T-cell lymphoma cell line, HuT 78, were observed and related to histone hyperacetylation and downregulation of GAPDH expression. Altogether, the results presented here pave the way for the production of a GSGaWS as new, slowly-releasing hydrogen sulfide extract for potential therapeutic applications. Full article
(This article belongs to the Special Issue Sulfur Atom: Element for Adaptation to an Oxidative Environment)
Figures

Review

Jump to: Editorial, Research

Open AccessReview Enzymatic Polymerization of Cyclic Monomers in Ionic Liquids as a Prospective Synthesis Method for Polyesters Used in Drug Delivery Systems
Molecules 2015, 20(1), 1-23; doi:10.3390/molecules20010001
Received: 15 October 2014 / Accepted: 16 December 2014 / Published: 23 December 2014
Cited by 12 | PDF Full-text (752 KB) | HTML Full-text | XML Full-text
Abstract
Biodegradable or bioresorbable polymers are commonly used in various pharmaceutical fields (e.g., as drug delivery systems, therapeutic systems or macromolecular drug conjugates). Polyesters are an important class of polymers widely utilized in pharmacy due to their biodegradability and biocompatibility features. In recent years,
[...] Read more.
Biodegradable or bioresorbable polymers are commonly used in various pharmaceutical fields (e.g., as drug delivery systems, therapeutic systems or macromolecular drug conjugates). Polyesters are an important class of polymers widely utilized in pharmacy due to their biodegradability and biocompatibility features. In recent years, there has been increased interest in enzyme-catalyzed ring-opening polymerization (e-ROP) of cyclic esters as an alternative method of preparation of biodegradable or bioresorbable polymers. Ionic liquids (ILs) have been presented as green solvents in enzymatic ring-opening polymerization. The activity, stability, selectivity of enzymes in ILs and the ability to catalyze polyester synthesis under these conditions are discussed. Overall, the review demonstrates that e-ROP of lactones or lactides could be an effective method for the synthesis of useful biomedical polymers. Full article
(This article belongs to the Special Issue Ring-Opening Polymerization)
Open AccessReview Using Dyes for Evaluating Photocatalytic Properties: A Critical Review
Molecules 2015, 20(1), 88-110; doi:10.3390/molecules20010088
Received: 11 November 2014 / Accepted: 12 December 2014 / Published: 23 December 2014
Cited by 41 | PDF Full-text (1579 KB) | HTML Full-text | XML Full-text
Abstract
This brief review aims at analyzing the use of dyestuffs for evaluating the photocatalytic properties of novel photocatalysts. It is shown that the use of dyes as predictors for photocatalytic activity has its roots in the pre visible-light activity era, when the aim
[...] Read more.
This brief review aims at analyzing the use of dyestuffs for evaluating the photocatalytic properties of novel photocatalysts. It is shown that the use of dyes as predictors for photocatalytic activity has its roots in the pre visible-light activity era, when the aim was to treat effluents streams containing hazardous dyes. The main conclusion of this review is that, in general, dyes are inappropriate as model compounds for the evaluation of photocatalytic activity of novel photocatalysts claimed to operate under visible light. Their main advantage, the ability to use UV-Vis spectroscopy, is severely limited by a variety of factors, most of which are related to the presence of other species. The presence of a second mechanism, sensitization, diminishes the generality required from a model contaminant used for testing a novel photocatalyst. While it is recommended not to use dyes for general testing of novel photocatalysts, it is still understandable that a model system consisting of a dye and a semiconductor can be of large importance if the degradation of a specific dye is the main aim of the research, or, alternatively, if the abilities of a specific dye to induce the degradation of a different type of contaminant are under study. Full article
(This article belongs to the Special Issue Photocatalysis) Printed Edition available
Figures

Open AccessReview Curcumin Differs from Tetrahydrocurcumin for Molecular Targets, Signaling Pathways and Cellular Responses
Molecules 2015, 20(1), 185-205; doi:10.3390/molecules20010185
Received: 24 October 2014 / Accepted: 16 December 2014 / Published: 24 December 2014
Cited by 36 | PDF Full-text (1040 KB) | HTML Full-text | XML Full-text
Abstract
Curcumin (diferuloylmethane), a golden pigment from turmeric, has been linked with antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antidiabetic properties. Most of the these activities have been assigned to methoxy, hydroxyl, α,β-unsaturated carbonyl moiety or to diketone groups present in curcumin. One of the
[...] Read more.
Curcumin (diferuloylmethane), a golden pigment from turmeric, has been linked with antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antidiabetic properties. Most of the these activities have been assigned to methoxy, hydroxyl, α,β-unsaturated carbonyl moiety or to diketone groups present in curcumin. One of the major metabolites of curcumin is tetrahydrocurcumin (THC), which lacks α,β-unsaturated carbonyl moiety and is white in color. Whether THC is superior to curcumin on a molecular level is unclear and thus is the focus of this review. Various studies suggest that curcumin is a more potent antioxidant than THC; curcumin (but not THC) can bind and inhibit numerous targets including DNA (cytosine-5)-methyltransferase-1, heme oxygenase-1, Nrf2, β-catenin, cyclooxygenase-2, NF-kappaB, inducible nitric oxide synthase, nitric oxide, amyloid plaques, reactive oxygen species, vascular endothelial growth factor, cyclin D1, glutathione, P300/CBP, 5-lipoxygenase, cytosolic phospholipase A2, prostaglandin E2, inhibitor of NF-kappaB kinase-1, -2, P38MAPK, p-Tau, tumor necrosis factor-α, forkhead box O3a, CRAC; curcumin can inhibit tumor cell growth and suppress cellular entry of viruses such as influenza A virus and hepatitis C virus much more effectively than THC; curcumin affects membrane mobility; and curcumin is also more effective than THC in suppressing phorbol-ester-induced tumor promotion. Other studies, however, suggest that THC is superior to curcumin for induction of GSH peroxidase, glutathione-S-transferase, NADPH: quinone reductase, and quenching of free radicals. Most studies have indicated that THC exhibits higher antioxidant activity, but curcumin exhibits both pro-oxidant and antioxidant properties. Full article
(This article belongs to the Special Issue Curcumin, Inflammation, and Chronic Diseases: How are They Linked?)
Open AccessReview Eliminating the Heart from the Curcumin Molecule: Monocarbonyl Curcumin Mimics (MACs)
Molecules 2015, 20(1), 249-292; doi:10.3390/molecules20010249
Received: 29 October 2014 / Accepted: 10 December 2014 / Published: 24 December 2014
Cited by 9 | PDF Full-text (1461 KB) | HTML Full-text | XML Full-text
Abstract
Curcumin is a natural product with several thousand years of heritage. Its traditional Asian application to human ailments has been subjected in recent decades to worldwide pharmacological, biochemical and clinical investigations. Curcumin’s Achilles heel lies in its poor aqueous solubility and rapid degradation
[...] Read more.
Curcumin is a natural product with several thousand years of heritage. Its traditional Asian application to human ailments has been subjected in recent decades to worldwide pharmacological, biochemical and clinical investigations. Curcumin’s Achilles heel lies in its poor aqueous solubility and rapid degradation at pH ~ 7.4. Researchers have sought to unlock curcumin’s assets by chemical manipulation. One class of molecules under scrutiny are the monocarbonyl analogs of curcumin (MACs). A thousand plus such agents have been created and tested primarily against cancer and inflammation. The outcome is clear. In vitro, MACs furnish a 10–20 fold potency gain vs. curcumin for numerous cancer cell lines and cellular proteins. Similarly, MACs have successfully demonstrated better pharmacokinetic (PK) profiles in mice and greater tumor regression in cancer xenografts in vivo than curcumin. The compounds reveal limited toxicity as measured by murine weight gain and histopathological assessment. To our knowledge, MAC members have not yet been monitored in larger animals or humans. However, Phase 1 clinical trials are certainly on the horizon. The present review focuses on the large and evolving body of work in cancer and inflammation, but also covers MAC structural diversity and early discovery for treatment of bacteria, tuberculosis, Alzheimer’s disease and malaria. Full article
(This article belongs to the Special Issue Curcumin, Inflammation, and Chronic Diseases: How are They Linked?)
Figures

Open AccessReview Anti-Inflammatory Effects of Vinpocetine in Atherosclerosis and Ischemic Stroke: A Review of the Literature
Molecules 2015, 20(1), 335-347; doi:10.3390/molecules20010335
Received: 24 October 2014 / Accepted: 19 December 2014 / Published: 26 December 2014
Cited by 12 | PDF Full-text (1557 KB) | HTML Full-text | XML Full-text
Abstract
Immune responses play an important role in the pathophysiology of atherosclerosis and ischemic stroke. Atherosclerosis is a common condition that increases the risk of stroke. Hyperlipidemia damages endothelial cells, thus initiating chemokine pathways and the release of inflammatory cytokines—this represents the first step
[...] Read more.
Immune responses play an important role in the pathophysiology of atherosclerosis and ischemic stroke. Atherosclerosis is a common condition that increases the risk of stroke. Hyperlipidemia damages endothelial cells, thus initiating chemokine pathways and the release of inflammatory cytokines—this represents the first step in the inflammatory response to atherosclerosis. Blocking blood flow in the brain leads to ischemic stroke, and deprives neurons of oxygen and energy. Damaged neurons release danger-associated molecular patterns, which promote the activation of innate immune cells and the release of inflammatory cytokines. The nuclear factor κ-light-chain-enhancer of activated B cells κB (NF-κB) pathway plays a key role in the pathogenesis of atherosclerosis and ischemic stroke. Vinpocetine is believed to be a potent anti-inflammatory agent and has been used to treat cerebrovascular disorders. Vinpocetine improves neuronal plasticity and reduces the release of inflammatory cytokines and chemokines from endothelial cells, vascular smooth muscle cells, macrophages, and microglia, by inhibiting the inhibitor of the NF-κB pathway. This review clarifies the anti-inflammatory role of vinpocetine in atherosclerosis and ischemic stroke. Full article
(This article belongs to the Section Natural Products)
Open AccessReview Marine Sponge Lectins: Actual Status on Properties and Biological Activities
Molecules 2015, 20(1), 348-357; doi:10.3390/molecules20010348
Received: 15 September 2014 / Accepted: 18 December 2014 / Published: 26 December 2014
Cited by 7 | PDF Full-text (1449 KB) | HTML Full-text | XML Full-text
Abstract
Marine sponges are primitive metazoans that produce a wide variety of molecules that protect them against predators. In studies that search for bioactive molecules, these marine invertebrates stand out as promising sources of new biologically-active molecules, many of which are still unknown or
[...] Read more.
Marine sponges are primitive metazoans that produce a wide variety of molecules that protect them against predators. In studies that search for bioactive molecules, these marine invertebrates stand out as promising sources of new biologically-active molecules, many of which are still unknown or little studied; thus being an unexplored biotechnological resource of high added value. Among these molecules, lectins are proteins that reversibly bind to carbohydrates without modifying them. In this review, various structural features and biological activities of lectins derived from marine sponges so far described in the scientific literature are discussed. From the results found in the literature, it could be concluded that lectins derived from marine sponges are structurally diverse proteins with great potential for application in the production of biopharmaceuticals, especially as antibacterial and antitumor agents. Full article
(This article belongs to the Special Issue Lectins)
Figures

Open AccessReview Lectins from Edible Mushrooms
Molecules 2015, 20(1), 446-469; doi:10.3390/molecules20010446
Received: 6 November 2014 / Accepted: 23 December 2014 / Published: 31 December 2014
Cited by 17 | PDF Full-text (746 KB) | HTML Full-text | XML Full-text
Abstract
Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible
[...] Read more.
Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible applications of lectins from edible mushrooms. It further aims to update and discuss/examine the recent advancements in the study of these lectins regarding their structures, functions, and exploitable properties. A detailed tabling of all the available data for N-terminal sequences of these lectins is also presented here. Full article
(This article belongs to the Special Issue Lectins)
Open AccessReview Insights into Animal and Plant Lectins with Antimicrobial Activities
Molecules 2015, 20(1), 519-541; doi:10.3390/molecules20010519
Received: 7 November 2014 / Accepted: 22 December 2014 / Published: 5 January 2015
Cited by 25 | PDF Full-text (1730 KB) | HTML Full-text | XML Full-text
Abstract
Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals
[...] Read more.
Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs. Full article
(This article belongs to the Special Issue Lectins)
Open AccessReview Halofuginone — The Multifaceted Molecule
Molecules 2015, 20(1), 573-594; doi:10.3390/molecules20010573
Received: 8 December 2014 / Accepted: 25 December 2014 / Published: 5 January 2015
Cited by 17 | PDF Full-text (3080 KB) | HTML Full-text | XML Full-text
Abstract
Halofuginone is an analog of febrifugine—an alkaloid originally isolated from the plant Dichroa febrifuga. During recent years, halofuginone has attracted much attention because of its wide range of beneficial biological activities, which encompass malaria, cancer, and fibrosis-related and autoimmune diseases. At present
[...] Read more.
Halofuginone is an analog of febrifugine—an alkaloid originally isolated from the plant Dichroa febrifuga. During recent years, halofuginone has attracted much attention because of its wide range of beneficial biological activities, which encompass malaria, cancer, and fibrosis-related and autoimmune diseases. At present two modes of halofuginone actions have been described: (1) Inhibition of Smad3 phosphorylation downstream of the TGFβ signaling pathway results in inhibition of fibroblasts-to-myofibroblasts transition and fibrosis. (2) Inhibition of prolyl-tRNA synthetase (ProRS) activity in the blood stage of malaria and inhibition of Th17 cell differentiation thereby inhibiting inflammation and the autoimmune reaction by activation of the amino acid starvation and integrated stress responses. This review deals with the history and origin of this natural product, its synthesis, its known modes of action, and it’s various biological activities in pre-clinical animal models and in humans. Full article
(This article belongs to the collection Bioactive Compounds)
Open AccessReview Lectins with Anti-HIV Activity: A Review
Molecules 2015, 20(1), 648-668; doi:10.3390/molecules20010648
Received: 17 November 2014 / Accepted: 29 November 2014 / Published: 6 January 2015
Cited by 23 | PDF Full-text (719 KB) | HTML Full-text | XML Full-text
Abstract
Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata
[...] Read more.
Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed. Full article
(This article belongs to the Special Issue Lectins)
Open AccessReview A Synergistic, Balanced Antioxidant Cocktail, Protects Aging Rats from Insulin Resistance and Absence of Meal-Induced Insulin Sensitization (AMIS) Syndrome
Molecules 2015, 20(1), 669-682; doi:10.3390/molecules20010669
Received: 1 December 2014 / Accepted: 26 December 2014 / Published: 6 January 2015
Cited by 5 | PDF Full-text (811 KB) | HTML Full-text | XML Full-text
Abstract
A series of in vivo and in vitro studies using animal and human models in the past 15 years have demonstrated that approximately 55% (~66% in humans) of the glucose disposal effect of an i.v. injection of insulin in the fed state is
[...] Read more.
A series of in vivo and in vitro studies using animal and human models in the past 15 years have demonstrated that approximately 55% (~66% in humans) of the glucose disposal effect of an i.v. injection of insulin in the fed state is dependent on the action of a second hormone, hepatic insulin sensitizing substance (HISS), which is released from the liver and stimulates glucose uptake in muscle, heart and kidneys. Sensitization of the insulin response by a meal through release of HISS is called meal-induced insulin sensitization (MIS). Absence of HISS action results in postprandial hyperglycemia, hyperinsulinemia, hyperlipidemia, adiposity, increased free radical stress and a cluster of progressive metabolic and cardiovascular dysfunctions referred to as the AMIS (absence of meal-induced insulin sensitization) syndrome. Reduced HISS release accounts for the insulin resistance that occurs with aging and is made worse by physical inactivity and diets high in sucrose or fat. This brief review provides an update of major metabolic disturbances associated with aging due to reduction of HISS release, and the protection against these pathological changes in aging animals using a balanced synergistic antioxidant cocktail SAMEC (S-adenosylmethionine, vitamins E and C). The synergy amongst the components is consistent with the known benefits of antioxidants supplied by a mixed diet and acting through diverse mechanisms. Using only three constituents, SAMEC appears suitable as an antioxidant specifically targeting the AMIS syndrome. Full article
(This article belongs to the Special Issue Natural Antioxidants and Ageing)
Figures

Open AccessReview The Role of Visible and Infrared Spectroscopy Combined with Chemometrics to Measure Phenolic Compounds in Grape and Wine Samples
Molecules 2015, 20(1), 726-737; doi:10.3390/molecules20010726
Received: 30 October 2014 / Accepted: 24 December 2014 / Published: 7 January 2015
Cited by 19 | PDF Full-text (726 KB) | HTML Full-text | XML Full-text
Abstract
The content of phenolic compounds determines the state of phenolic ripening of red grapes, which is a key criterion in setting the harvest date to produce quality red wines. Wine phenolics are also important quality components that contribute to the color, taste, and
[...] Read more.
The content of phenolic compounds determines the state of phenolic ripening of red grapes, which is a key criterion in setting the harvest date to produce quality red wines. Wine phenolics are also important quality components that contribute to the color, taste, and mouth feel of wines. Spectroscopic techniques (e.g., near and mid infrared) offer the potential to simplify and reduce the analytical time for a range of grape and wine analytes. It is this characteristic, together with the ability to simultaneously measure several analytes in the same sample at the same time, which makes these techniques very attractive for use in both industry and research. The objective of this mini review is to present examples and to discuss different applications of visible (VIS), near infrared (NIR) and mid infrared (MIR) to assess and measure phenolic compounds in grape and wines. Full article
(This article belongs to the Special Issue Advances of Vibrational Spectroscopic Technologies in Life Sciences)
Open AccessReview Pharmacological Profile of Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus)
Molecules 2015, 20(1), 754-779; doi:10.3390/molecules20010754
Received: 5 December 2014 / Accepted: 30 December 2014 / Published: 7 January 2015
Cited by 28 | PDF Full-text (888 KB) | HTML Full-text | XML Full-text
Abstract
The female inflorescences of hops (Humulus lupulus L.), a well-known bittering agent used in the brewing industry, have long been used in traditional medicines. Xanthohumol (XN) is one of the bioactive substances contributing to its medical applications. Among foodstuffs XN is found
[...] Read more.
The female inflorescences of hops (Humulus lupulus L.), a well-known bittering agent used in the brewing industry, have long been used in traditional medicines. Xanthohumol (XN) is one of the bioactive substances contributing to its medical applications. Among foodstuffs XN is found primarily in beer and its natural occurrence is surveyed. In recent years, XN has received much attention for its biological effects. The present review describes the pharmacological aspects of XN and summarizes the most interesting findings obtained in the preclinical research related to this compound, including the pharmacological activity, the pharmacokinetics, and the safety of XN. Furthermore, the potential use of XN as a food additive considering its many positive biological effects is discussed. Full article
Open AccessReview Activity of Alkaloids on Peptic Ulcer: What’s New?
Molecules 2015, 20(1), 929-950; doi:10.3390/molecules20010929
Received: 31 October 2014 / Accepted: 18 December 2014 / Published: 8 January 2015
Cited by 5 | PDF Full-text (733 KB) | HTML Full-text | XML Full-text
Abstract
Peptic ulcer is a common disease characterized by lesions that affect the mucosa of the esophagus, stomach and/or duodenum, and may extend into the muscular layer of the mucosa. Natural products have played an important role in the process of development and discovery
[...] Read more.
Peptic ulcer is a common disease characterized by lesions that affect the mucosa of the esophagus, stomach and/or duodenum, and may extend into the muscular layer of the mucosa. Natural products have played an important role in the process of development and discovery of new drugs, due to their wide structural diversity and present, mostly specific and selective biological activities. Among natural products the alkaloids, biologically active secondary metabolites, that can be found in plants, animals or microorganisms stand out. The alkaloids are compounds consisting of a basic nitrogen atom that may or may not be part of a heterocyclic ring. This review will describe 15 alkaloids with antiulcer activity in animal models and in vitro studies. Full article
(This article belongs to the Special Issue Alkaloids: Novel Therapeutic Perspectives)
Figures

Open AccessReview The Lectin Frontier Database (LfDB), and Data Generation Based on Frontal Affinity Chromatography
Molecules 2015, 20(1), 951-973; doi:10.3390/molecules20010951
Received: 24 November 2014 / Accepted: 31 December 2014 / Published: 8 January 2015
Cited by 5 | PDF Full-text (1667 KB) | HTML Full-text | XML Full-text
Abstract
Lectins are a large group of carbohydrate-binding proteins, having been shown to comprise at least 48 protein scaffolds or protein family entries. They occur ubiquitously in living organisms—from humans to microorganisms, including viruses—and while their functions are yet to be fully elucidated, their
[...] Read more.
Lectins are a large group of carbohydrate-binding proteins, having been shown to comprise at least 48 protein scaffolds or protein family entries. They occur ubiquitously in living organisms—from humans to microorganisms, including viruses—and while their functions are yet to be fully elucidated, their main underlying actions are thought to mediate cell-cell and cell-glycoconjugate interactions, which play important roles in an extensive range of biological processes. The basic feature of each lectin’s function resides in its specific sugar-binding properties. In this regard, it is beneficial for researchers to have access to fundamental information about the detailed oligosaccharide specificities of diverse lectins. In this review, the authors describe a publicly available lectin database named “Lectin frontier DataBase (LfDB)”, which undertakes the continuous publication and updating of comprehensive data for lectin-standard oligosaccharide interactions in terms of dissociation constants (Kd’s). For Kd determination, an advanced system of frontal affinity chromatography (FAC) is used, with which quantitative datasets of interactions between immobilized lectins and >100 fluorescently labeled standard glycans have been generated. The FAC system is unique in its clear principle, simple procedure and high sensitivity, with an increasing number (>67) of associated publications that attest to its reliability. Thus, LfDB, is expected to play an essential role in lectin research, not only in basic but also in applied fields of glycoscience. Full article
(This article belongs to the Special Issue Lectins)
Open AccessReview The Giant Adhesin SiiE of Salmonella enterica
Molecules 2015, 20(1), 1134-1150; doi:10.3390/molecules20011134
Received: 16 November 2014 / Accepted: 4 January 2015 / Published: 12 January 2015
Cited by 3 | PDF Full-text (5784 KB) | HTML Full-text | XML Full-text
Abstract
Salmonella enterica is a Gram-negative, food-borne pathogen, which colonizes the intestinal tract and invades enterocytes. Invasion of polarized cells depends on the SPI1-encoded type III secretion system (T3SS) and the SPI4-encoded type I secretion system (T1SS). The substrate of this T1SS is the
[...] Read more.
Salmonella enterica is a Gram-negative, food-borne pathogen, which colonizes the intestinal tract and invades enterocytes. Invasion of polarized cells depends on the SPI1-encoded type III secretion system (T3SS) and the SPI4-encoded type I secretion system (T1SS). The substrate of this T1SS is the non-fimbrial giant adhesin SiiE. With a size of 595 kDa, SiiE is the largest protein of the Salmonella proteome and consists of 53 repetitive bacterial immunoglobulin (BIg) domains, each containing several conserved residues. As known for other T1SS substrates, such as E. coli HlyA, Ca2+ ions bound by conserved D residues within the BIg domains stabilize the protein and facilitate secretion. The adhesin SiiE mediates the first contact to the host cell and thereby positions the SPI1-T3SS to initiate the translocation of a cocktail of effector proteins. This leads to actin remodeling, membrane ruffle formation and bacterial internalization. SiiE binds to host cell apical membranes in a lectin-like manner. GlcNAc and α2–3 linked sialic acid-containing structures are ligands of SiiE. Since SiiE shows repetitive domain architecture, we propose a zipper-like binding mediated by each individual BIg domain. In this review, we discuss the characteristics of the SPI4-T1SS and the giant adhesin SiiE. Full article
(This article belongs to the Special Issue Lectins)
Open AccessReview Linking Protein Motion to Enzyme Catalysis
Molecules 2015, 20(1), 1192-1209; doi:10.3390/molecules20011192
Received: 29 November 2014 / Accepted: 7 January 2015 / Published: 13 January 2015
Cited by 7 | PDF Full-text (3227 KB) | HTML Full-text | XML Full-text
Abstract
Enzyme motions on a broad range of time scales can play an important role in various intra- and intermolecular events, including substrate binding, catalysis of the chemical conversion, and product release. The relationship between protein motions and catalytic activity is of contemporary interest
[...] Read more.
Enzyme motions on a broad range of time scales can play an important role in various intra- and intermolecular events, including substrate binding, catalysis of the chemical conversion, and product release. The relationship between protein motions and catalytic activity is of contemporary interest in enzymology. To understand the factors influencing the rates of enzyme-catalyzed reactions, the dynamics of the protein-solvent-ligand complex must be considered. The current review presents two case studies of enzymes—dihydrofolate reductase (DHFR) and thymidylate synthase (TSase)—and discusses the role of protein motions in their catalyzed reactions. Specifically, we will discuss the utility of kinetic isotope effects (KIEs) and their temperature dependence as tools in probing such phenomena. Full article
(This article belongs to the Special Issue Enzyme-Catalyzed Reactions)
Figures

Open AccessReview Pro-Moieties of Antimicrobial Peptide Prodrugs
Molecules 2015, 20(1), 1210-1227; doi:10.3390/molecules20011210
Received: 18 November 2014 / Accepted: 8 January 2015 / Published: 13 January 2015
Cited by 8 | PDF Full-text (852 KB) | HTML Full-text | XML Full-text
Abstract
Antimicrobial peptides (AMPs) are a promising class of antimicrobial agents that have been garnering increasing attention as resistance renders many conventional antibiotics ineffective. Extensive research has resulted in a large library of highly-active AMPs. However, several issues serve as an impediment to their
[...] Read more.
Antimicrobial peptides (AMPs) are a promising class of antimicrobial agents that have been garnering increasing attention as resistance renders many conventional antibiotics ineffective. Extensive research has resulted in a large library of highly-active AMPs. However, several issues serve as an impediment to their clinical development, not least the issue of host toxicity. An approach that may allow otherwise cytotoxic AMPs to be used is to deliver them as a prodrug, targeting antimicrobial activity and limiting toxic effects on the host. The varied library of AMPs is complemented by a selection of different possible pro-moieties, each with their own characteristics. This review deals with the different pro-moieties that have been used with AMPs and discusses the merits of each. Full article
(This article belongs to the Special Issue Prodrugs)
Open AccessReview The Viability of Photocatalysis for Air Purification
Molecules 2015, 20(1), 1319-1356; doi:10.3390/molecules20011319
Received: 10 September 2014 / Accepted: 16 December 2014 / Published: 14 January 2015
Cited by 20 | PDF Full-text (2458 KB) | HTML Full-text | XML Full-text
Abstract
Photocatalytic oxidation (PCO) air purification technology is reviewed based on the decades of research conducted by the United Technologies Research Center (UTRC) and their external colleagues. UTRC conducted basic research on the reaction rates of various volatile organic compounds (VOCs). The knowledge gained
[...] Read more.
Photocatalytic oxidation (PCO) air purification technology is reviewed based on the decades of research conducted by the United Technologies Research Center (UTRC) and their external colleagues. UTRC conducted basic research on the reaction rates of various volatile organic compounds (VOCs). The knowledge gained allowed validation of 1D and 3D prototype reactor models that guided further purifier development. Colleagues worldwide validated purifier prototypes in simulated realistic indoor environments. Prototype products were deployed in office environments both in the United States and France. As a result of these validation studies, it was discovered that both catalyst lifetime and byproduct formation are barriers to implementing this technology. Research is ongoing at the University of Connecticut that is applicable to extending catalyst lifetime, increasing catalyst efficiency and extending activation wavelength from the ultraviolet to the visible wavelengths. It is critical that catalyst lifetime is extended to realize cost effective implementation of PCO air purification. Full article
(This article belongs to the Special Issue Photocatalysis) Printed Edition available
Open AccessReview Beyond the Excluded Volume Effects: Mechanistic Complexity of the Crowded Milieu
Molecules 2015, 20(1), 1377-1409; doi:10.3390/molecules20011377
Received: 23 December 2014 / Accepted: 9 January 2015 / Published: 14 January 2015
Cited by 33 | PDF Full-text (777 KB) | HTML Full-text | XML Full-text
Abstract
Macromolecular crowding is known to affect protein folding, binding of small molecules, interaction with nucleic acids, enzymatic activity, protein-protein interactions, and protein aggregation. Although for a long time it was believed that the major mechanism of the action of crowded environments on structure,
[...] Read more.
Macromolecular crowding is known to affect protein folding, binding of small molecules, interaction with nucleic acids, enzymatic activity, protein-protein interactions, and protein aggregation. Although for a long time it was believed that the major mechanism of the action of crowded environments on structure, folding, thermodynamics, and function of a protein can be described in terms of the excluded volume effects, it is getting clear now that other factors originating from the presence of high concentrations of “inert” macromolecules in crowded solution should definitely be taken into account to draw a more complete picture of a protein in a crowded milieu. This review shows that in addition to the excluded volume effects important players of the crowded environments are viscosity, perturbed diffusion, direct physical interactions between the crowding agents and proteins, soft interactions, and, most importantly, the effects of crowders on solvent properties. Full article
(This article belongs to the Section Metabolites)
Open AccessReview Possible Roles of Plant Sulfurtransferases in Detoxification of Cyanide, Reactive Oxygen Species, Selected Heavy Metals and Arsenate
Molecules 2015, 20(1), 1410-1423; doi:10.3390/molecules20011410
Received: 10 November 2014 / Accepted: 9 January 2015 / Published: 14 January 2015
Cited by 6 | PDF Full-text (1050 KB) | HTML Full-text | XML Full-text
Abstract
Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH) that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly) is a sulfur-containing tripeptide thiol and
[...] Read more.
Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH) that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly) is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys)2–11-Gly (PCs). Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS), which directly or indirectly influence metabolic processes. Reduced glutathione (GSH) attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str), also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF) of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR) and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism. Full article
(This article belongs to the Special Issue Sulfur Atom: Element for Adaptation to an Oxidative Environment)
Open AccessReview Molecular Progress in Research on Fruit Astringency
Molecules 2015, 20(1), 1434-1451; doi:10.3390/molecules20011434
Received: 3 November 2014 / Accepted: 8 January 2015 / Published: 15 January 2015
Cited by 7 | PDF Full-text (717 KB) | HTML Full-text | XML Full-text
Abstract
Astringency is one of the most important components of fruit oral sensory quality. Astringency mainly comes from tannins and other polyphenolic compounds and causes the drying, roughening and puckering of the mouth epithelia attributed to the interaction between tannins and salivary proteins. There
[...] Read more.
Astringency is one of the most important components of fruit oral sensory quality. Astringency mainly comes from tannins and other polyphenolic compounds and causes the drying, roughening and puckering of the mouth epithelia attributed to the interaction between tannins and salivary proteins. There is growing interest in the study of fruit astringency because of the healthy properties of astringent substances found in fruit, including antibacterial, antiviral, anti-inflammatory, antioxidant, anticarcinogenic, antiallergenic, hepatoprotective, vasodilating and antithrombotic activities. This review will focus mainly on the relationship between tannin structure and the astringency sensation as well as the biosynthetic pathways of astringent substances in fruit and their regulatory mechanisms. Full article
(This article belongs to the Section Natural Products)
Open AccessReview Glutathionylspermidine in the Modification of Protein SH Groups: The Enzymology and Its Application to Study Protein Glutathionylation
Molecules 2015, 20(1), 1452-1474; doi:10.3390/molecules20011452
Received: 30 September 2014 / Accepted: 15 December 2014 / Published: 15 January 2015
Cited by 2 | PDF Full-text (2129 KB) | HTML Full-text | XML Full-text
Abstract
Cysteine is very susceptible to reactive oxygen species. In response; posttranslational thiol modifications such as reversible disulfide bond formation have arisen as protective mechanisms against undesired in vivo cysteine oxidation. In Gram-negative bacteria a major defense mechanism against cysteine overoxidation is the formation
[...] Read more.
Cysteine is very susceptible to reactive oxygen species. In response; posttranslational thiol modifications such as reversible disulfide bond formation have arisen as protective mechanisms against undesired in vivo cysteine oxidation. In Gram-negative bacteria a major defense mechanism against cysteine overoxidation is the formation of mixed protein disulfides with low molecular weight thiols such as glutathione and glutathionylspermidine. In this review we discuss some of the mechanistic aspects of glutathionylspermidine in prokaryotes and extend its potential use to eukaryotes in proteomics and biochemical applications through an example with tissue transglutaminase and its S-glutathionylation. Full article
(This article belongs to the Special Issue Sulfur Atom: Element for Adaptation to an Oxidative Environment)
Open AccessReview Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor
Molecules 2015, 20(1), 1495-1508; doi:10.3390/molecules20011495
Received: 28 November 2014 / Accepted: 12 January 2015 / Published: 15 January 2015
Cited by 10 | PDF Full-text (1888 KB) | HTML Full-text | XML Full-text
Abstract
We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the
[...] Read more.
We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry. Full article
(This article belongs to the Special Issue New Trends in Cellulose and Chitin Chemistry)
Figures

Open AccessReview Relative Stability of cis- and trans-Hydrindanones
Molecules 2015, 20(1), 1509-1518; doi:10.3390/molecules20011509
Received: 14 November 2014 / Accepted: 14 January 2015 / Published: 15 January 2015
Cited by 3 | PDF Full-text (890 KB) | HTML Full-text | XML Full-text
Abstract
The relative stabilities of several cis- and trans-hydrindanones were compared using both isomerization experiments and MM2 calculations. The generally believed rule that cis-hydrindanones are more stable than trans-isomers is applicable, but is not always true. This review introduces examples,
[...] Read more.
The relative stabilities of several cis- and trans-hydrindanones were compared using both isomerization experiments and MM2 calculations. The generally believed rule that cis-hydrindanones are more stable than trans-isomers is applicable, but is not always true. This review introduces examples, mainly from studies in our laboratory, to explain these facts. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Open AccessReview Triterpenes as Potentially Cytotoxic Compounds
Molecules 2015, 20(1), 1610-1625; doi:10.3390/molecules20011610
Received: 30 October 2014 / Accepted: 13 January 2015 / Published: 19 January 2015
Cited by 22 | PDF Full-text (706 KB) | HTML Full-text | XML Full-text
Abstract
Triterpenes are compounds of natural origin, which have numerously biological activities: anti-cancer properties, anti-inflammatory, anti-oxidative, anti-viral, anti-bacterial and anti-fungal. These substances can be isolated from plants, animals or fungi. Nowadays, when neoplasms are main cause of death, triterpenes can become an alternative method
[...] Read more.
Triterpenes are compounds of natural origin, which have numerously biological activities: anti-cancer properties, anti-inflammatory, anti-oxidative, anti-viral, anti-bacterial and anti-fungal. These substances can be isolated from plants, animals or fungi. Nowadays, when neoplasms are main cause of death, triterpenes can become an alternative method for treating cancer because of their cytotoxic properties and chemopreventive activities. Full article
Back to Top