Special Issue "Metal Matrix Composites"

A special issue of Metals (ISSN 2075-4701).

Deadline for manuscript submissions: 31 December 2017

Special Issue Editor

Guest Editor
Assoc. Prof. Manoj Gupta

Materials Group, Department of Mechanical Engineering, NUS, 9 Engineering Drive 1, 117576 Singapore
Website | E-Mail
Interests: processing; characterization; lightweight materials; nanocomposites

Special Issue Information

Dear Colleagues,

Metal matrix composites are emerging as critical materials in engineering and biomedical applications due to their capability to be tailored in terms of engineering properties. With a history of about four decades, researchers have been able to establish synthesis methods for metal-based composites containing reinforcements in the range from micron-length scale to nano-length scale. Current research in the area of nanocomposites, for example, is perhaps the most intriguing. Similarly, the emergence of magnesium and new alloys have opened new challenges for researchers to advance in the area of metal-based composites. Accordingly, the main aim of this Special Issue is to provide a platform for researchers worldwide to showcase their work in the domains of synthesis, characterization, modelling and applications of metal-based composites.

Professor Manoj Gupta
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Metals
  • reinforcement
  • processing
  • microstructure
  • mechanical properties
  • corrosion
  • nanocomposites
  • modelling

Published Papers (13 papers)

View options order results:
result details:
Displaying articles 1-13
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Ultrasound Assisted Casting of an AM60 Based Metal Matrix Nanocomposite, Its Properties, and Recyclability
Metals 2017, 7(10), 388; doi:10.3390/met7100388
Received: 16 August 2017 / Revised: 18 September 2017 / Accepted: 19 September 2017 / Published: 22 September 2017
PDF Full-text (2496 KB) | HTML Full-text | XML Full-text
Abstract
An AM60 magnesium alloy nanocomposite reinforced with 1 wt % of AlN nanoparticles was prepared using an ultrasound (US) assisted permanent-mould indirect-chill casting process. Ultrasonically generated cavitation and acoustic streaming promoted de-agglomeration of particle clusters and distributed the particles throughout the melt. Significant
[...] Read more.
An AM60 magnesium alloy nanocomposite reinforced with 1 wt % of AlN nanoparticles was prepared using an ultrasound (US) assisted permanent-mould indirect-chill casting process. Ultrasonically generated cavitation and acoustic streaming promoted de-agglomeration of particle clusters and distributed the particles throughout the melt. Significant grain refinement due to nucleation on the AlN nanoparticles was accompanied by an exceptional improvement in properties: yield strength increased by 103%, ultimate tensile strength by 115%, and ductility by 140%. Although good grain refinement was observed, the large nucleation undercooling of 14 K limits further refinement because nucleation is prevented by the formation of a nucleation-free zone around each grain. To assess the industrial applicability and recyclability of the nanocomposite material in various casting processes, tests were performed to determine the effect of remelting on the microstructure. With each remelting, a small percentage of effective AlN nanoparticles was lost, and some grain growth was observed. However, even after the third remelting, excellent strength and ductility was retained. According to strengthening models, enhanced yield strength is mainly attributed to Hall-Petch strengthening caused by the refined grain size. A small additional contribution to strengthening is attributed to Orowan strengthening. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Figure 1

Open AccessFeature PaperArticle Significantly Enhancing the Ignition/Compression/Damping Response of Monolithic Magnesium by Addition of Sm2O3 Nanoparticles
Metals 2017, 7(9), 357; doi:10.3390/met7090357
Received: 7 July 2017 / Revised: 3 September 2017 / Accepted: 6 September 2017 / Published: 9 September 2017
PDF Full-text (2523 KB) | HTML Full-text | XML Full-text
Abstract
The present study reports the development of Mg–Sm2O3 nanocomposites as light-weight materials for weight critical applications targeted to reduce CO2 emissions, particularly in the transportation sector. Mg-0.5, 1.0, and 1.5 vol % Sm2O3 nanocomposites are synthesized
[...] Read more.
The present study reports the development of Mg–Sm2O3 nanocomposites as light-weight materials for weight critical applications targeted to reduce CO2 emissions, particularly in the transportation sector. Mg-0.5, 1.0, and 1.5 vol % Sm2O3 nanocomposites are synthesized using a powder metallurgy method incorporating hybrid microwave sintering and hot extrusion. The microstructural studies showed dispersed Sm2O3 nanoparticles (NPs), refinement of grain size due to the presence of Sm2O3 NPs, and presence of limited porosity. Microhardness and dimensional stability of pure Mg increased with the progressive addition of Sm2O3 NPs. The addition of 1.5 vol % of Sm2O3 NPs to the Mg matrix enhanced the ignition temperature by ~69 °C. The ability of pure Mg to absorb vibration also progressively enhanced with the addition of Sm2O3 NPs. The room temperature compressive strengths (CYS and UCS) of Mg–Sm2O3 nanocomposites were found to be higher without having any adverse effect on ductility, leading to a significant increase in energy absorbed prior to compressive failure. Further, microstructural characteristics are correlated with the enhancement of various properties exhibited by nanocomposites. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Figure 1

Open AccessArticle Aluminum and Nickel Matrix Composites Reinforced by CNTs: Dispersion/Mixture by Ultrasonication
Metals 2017, 7(7), 279; doi:10.3390/met7070279
Received: 21 June 2017 / Revised: 12 July 2017 / Accepted: 18 July 2017 / Published: 22 July 2017
Cited by 1 | PDF Full-text (4505 KB) | HTML Full-text | XML Full-text
Abstract
The main challenge in the production of metal matrix composites reinforced by carbon nanotubes (CNTs) is the development of a manufacturing process ensuring the dispersion of nanoparticles without damaging them, and the formation of a strong bond with the metallic matrix to achieve
[...] Read more.
The main challenge in the production of metal matrix composites reinforced by carbon nanotubes (CNTs) is the development of a manufacturing process ensuring the dispersion of nanoparticles without damaging them, and the formation of a strong bond with the metallic matrix to achieve an effective load transfer, so that the maximum reinforcement effect of CNTs will be accomplished. This research focuses on the production by powder metallurgy of aluminum and nickel matrix composites reinforced by CNTs, using ultrasonication as the dispersion and mixture process. Microstructural characterization of nanocomposites was performed by optical microscopy (OM), scanning and transmission electron microscopy (SEM and TEM), electron backscattered diffraction (EBSD) and high-resolution transmission electron microscopy (HRTEM). Microstructural characterization revealed that the use of ultrasonication as the dispersion and mixture process in the production of Al/CNT and Ni/CNT nanocomposites promoted the dispersion and embedding of individual CNT in the metallic matrices. CNT clusters at grain boundary junctions were also observed. The strengthening effect of the CNTs is shown by the increase in hardness for all nanocomposites. The highest hardness values were observed for Al/CNT and Ni/CNT nanocomposites, with a 1.00 vol % CNTs. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Figure 1

Open AccessArticle Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods
Metals 2017, 7(7), 249; doi:10.3390/met7070249
Received: 1 March 2017 / Revised: 17 June 2017 / Accepted: 20 June 2017 / Published: 4 July 2017
PDF Full-text (8636 KB) | HTML Full-text | XML Full-text
Abstract
Tungsten fibre nets reinforced tungsten composites (Wf/W) containing four net layers were fabricated by spark plasma sintering (SPS), hot pressing (HP) and cold rolling after HP (HPCR), with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative
[...] Read more.
Tungsten fibre nets reinforced tungsten composites (Wf/W) containing four net layers were fabricated by spark plasma sintering (SPS), hot pressing (HP) and cold rolling after HP (HPCR), with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8%) while that of the HPed composites is the lowest (95.1%). Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS) of 536 and 425 MPa and total elongation at break (TE) of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Open AccessArticle Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes
Metals 2017, 7(5), 176; doi:10.3390/met7050176
Received: 7 March 2017 / Revised: 18 April 2017 / Accepted: 11 May 2017 / Published: 16 May 2017
PDF Full-text (2858 KB) | HTML Full-text | XML Full-text
Abstract
Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs), flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO) shows high transmittance (90%) at low sheet resistance (50 Ω/cm2). However, ITO
[...] Read more.
Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs), flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO) shows high transmittance (90%) at low sheet resistance (50 Ω/cm2). However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches) due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Open AccessArticle Characteristics of Cold and Hot Pressed Iron Aluminum Powder Metallurgical Alloys
Metals 2017, 7(5), 170; doi:10.3390/met7050170
Received: 4 March 2017 / Revised: 29 April 2017 / Accepted: 3 May 2017 / Published: 12 May 2017
PDF Full-text (5100 KB) | HTML Full-text | XML Full-text
Abstract
Iron powders having average particle sizes of ~40 µm are mechanically mixed thoroughly with aluminum powders ranging from 1 to 10 in wt. %, with an average particle size of ~10 µm. Two different powder metallurgy (PM) techniques, cold and hot pressing, are
[...] Read more.
Iron powders having average particle sizes of ~40 µm are mechanically mixed thoroughly with aluminum powders ranging from 1 to 10 in wt. %, with an average particle size of ~10 µm. Two different powder metallurgy (PM) techniques, cold and hot pressing, are used to study the effect of the additive element powder on the mechanical properties, wear properties, and the microstructure of the iron based alloys. The hot pressing technique was performed at a temperature reaching up to 500 °C at 445.6 MPa. The cold pressing technique was performed at 909 MPa at room temperature. By increasing the Al content to 10 wt. % in the base Fe-based matrix, the Brinell hardness number was decreased from 780 to 690 and the radial strength from 380 to 228 MPa with reductions of 11.5% and 40%, respectively. Improvement of the wear resistance with the increase addition of the Al powder to the Fe matrix up to five times was achieved, compared to the alloy without Al addition for different wear parameters: wear time and sliding speed. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Open AccessArticle Mechanical and Corrosion Behavior of Al-Zn-Cr Family Alloys
Metals 2017, 7(5), 171; doi:10.3390/met7050171
Received: 9 February 2017 / Revised: 29 April 2017 / Accepted: 3 May 2017 / Published: 12 May 2017
Cited by 2 | PDF Full-text (4200 KB) | HTML Full-text | XML Full-text
Abstract
Aluminum base alloys containing chromium (Cr) and zinc (Zn) were produced using extrusion and powder metallurgy techniques. Cr additions ranged between 5 to 10 wt. %, while Zn was added in an amount between 0 and 20 wt. %. Heat treatment processes were
[...] Read more.
Aluminum base alloys containing chromium (Cr) and zinc (Zn) were produced using extrusion and powder metallurgy techniques. Cr additions ranged between 5 to 10 wt. %, while Zn was added in an amount between 0 and 20 wt. %. Heat treatment processes were performed during powder metallurgy process, at different temperatures, followed by water quenching. Similar alloys were extruded with an extrusion ratio of 4.6 to get proper densification. Optical microscopy was used for microstructure investigations of the alloys investigated. The element distribution microstructure study was carried out using the Energy Dispersive X-ray analysis method. Hardness and tensile properties of the investigated alloys have been examined. Wear resistance tests were carried out and the results were compared with these of the Al-based bulk alloys. Results showed that the aluminum base alloys, containing 10 wt. % Cr and heat treated at 500 °C for one hour followed by water quenching, exhibited the highest wear resistance and better mechanical properties. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Open AccessArticle Characterization of In-Situ Cu–TiH2–C and Cu–Ti–C Nanocomposites Produced by Mechanical Milling and Spark Plasma Sintering
Metals 2017, 7(4), 117; doi:10.3390/met7040117
Received: 5 February 2017 / Revised: 9 March 2017 / Accepted: 27 March 2017 / Published: 29 March 2017
Cited by 1 | PDF Full-text (12838 KB) | HTML Full-text | XML Full-text
Abstract
This study focuses on the fabrication and microstructural investigation of Cu–TiH2–C and Cu–Ti–C nanocomposites with different volume fractions (10% and 20%) of TiC. Two mixtures of powders were ball milled for 10 h, consequently consolidated by spark plasma sintering (SPS) at 900 and
[...] Read more.
This study focuses on the fabrication and microstructural investigation of Cu–TiH2–C and Cu–Ti–C nanocomposites with different volume fractions (10% and 20%) of TiC. Two mixtures of powders were ball milled for 10 h, consequently consolidated by spark plasma sintering (SPS) at 900 and 1000 °C producing bulk materials with relative densities of 95–97%. The evolution process of TiC formation during sintering process was studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM). XRD patterns of composites present only Cu and TiC phases, no residual Ti phase can be detected. TEM images of composites with (10 vol % TiC) sintered at 900 °C show TiC nanoparticles about 10–30 nm precipitated in copper matrix, most of Ti and C dissolved in the composite matrix. At the higher sintering temperature of 1000 °C, more TiC precipitates from Cu–TiH2–C than those of Cu–Ti–C composite, particle size ranges from 10 to 20 nm. The hardness of both nanocomposites also increased with increasing sintering temperature. The highest hardness values of Cu–TiH2–C and Cu–Ti–C nanocomposites sintered at 1000 °C are 314 and 306 HV, respectively. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Figure 1a

Open AccessArticle Improved Compressive, Damping and Coefficient of Thermal Expansion Response of Mg–3Al–2.5La Alloy Using Y2O3 Nano Reinforcement
Metals 2017, 7(3), 104; doi:10.3390/met7030104
Received: 6 March 2017 / Revised: 9 March 2017 / Accepted: 14 March 2017 / Published: 21 March 2017
PDF Full-text (2796 KB) | HTML Full-text | XML Full-text
Abstract
In the present study, the effects of the addition of Y2O3 nanoparticles on Mg–3Al–2.5La alloy were investigated. Materials were synthesized using a disintegrated melt deposition technique followed by hot extrusion. The samples were then characterized for microstructure, compression properties, damping
[...] Read more.
In the present study, the effects of the addition of Y2O3 nanoparticles on Mg–3Al–2.5La alloy were investigated. Materials were synthesized using a disintegrated melt deposition technique followed by hot extrusion. The samples were then characterized for microstructure, compression properties, damping properties, CTE (coefficient of thermal expansion) and fracture morphology. The grain size of Mg–3Al–2.5La was significantly reduced by the addition of the Y2O3 nano-sized reinforcement (~3.6 μm, 43% of Mg–3Al–2.5La grain size). SEM and X-ray studies revealed that the size of uniformly distributed intermetallic phases, Al 11 La 3 , Al 2 La , and Al 2.12 La 0.88 reduced by the addition of Y2O3 to Mg–3Al–2.5La alloy. The coefficient of thermal expansion (CTE) was slightly improved by the addition of nanoparticles. The results of the damping measurement revealed that the damping capacity of the Mg–3Al–2.5La alloy increased due to the presence of Y2O3. The compression results showed that the addition of Y2O3 to Mg–3Al–2.5La improved the compressive yield strength (from ~141 MPa to ~156 MPa) and the ultimate compressive strength (from ~456 MPa to ~520 MPa), which are superior than those of the Mg–3Al alloy (Compressive Yield Strength, CYS ~154 MPa and Ultimate Compressive Strength, UCS ~481 MPa). The results further revealed that there is no significant effect on the fracture strain value of Mg–3Al–2.5La due to the addition of Y2O3. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Figure 1

Open AccessArticle Microstructures and Tensile Properties of Al–Cu Matrix Composites Reinforced with Nano-Sized SiCp Fabricated by Semisolid Stirring Process
Metals 2017, 7(2), 49; doi:10.3390/met7020049
Received: 29 December 2016 / Accepted: 3 February 2017 / Published: 8 February 2017
Cited by 1 | PDF Full-text (2488 KB) | HTML Full-text | XML Full-text
Abstract
The nano-sized SiCp/Al–Cu composites were successfully fabricated by combining semisolid stirring with ball milling technology. Microstructures were examined by an olympus optical microscope (OM), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Tensile properties were studied at room temperature. The
[...] Read more.
The nano-sized SiCp/Al–Cu composites were successfully fabricated by combining semisolid stirring with ball milling technology. Microstructures were examined by an olympus optical microscope (OM), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Tensile properties were studied at room temperature. The results show that the α-Al dendrites of the composites were strongly refined, especially in the composite with 3 wt. % nano-sized SiCp, of which the morphology of the α-Al changes from 200 μm dendritic crystal to 90 μm much finer equiaxial grain. The strength and ductility of the composites are improved synchronously with the addition of nano-sized SiCp particles. The as-cast 3 wt. % nano-sized SiCp/Al–Cu composite displays the best tensile properties, i.e., the yield strength, ultimate tensile strength (UTS) and fracture strain increase from 175 MPa, 310 MPa and 4.1% of the as-cast Al–Cu alloy to 220 MPa, 410 MPa and 6.3%, respectively. The significant improvement in the tensile properties of the composites is mainly due to the refinement of the α-Al dendrites, nano-sized SiCp strengthening, and good interface combination between the SiCp and Al–Cu alloys. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Figure 1

Open AccessArticle A Meso-Mechanical Constitutive Model of Particle-Reinforced Titanium Matrix Composites at High Temperatures
Metals 2017, 7(1), 15; doi:10.3390/met7010015
Received: 31 October 2016 / Revised: 26 December 2016 / Accepted: 26 December 2016 / Published: 7 January 2017
PDF Full-text (2113 KB) | HTML Full-text | XML Full-text
Abstract
The elastoplastic properties of TiC particle-reinforced titanium matrix composites (TiC/TMCs) at high temperatures were examined by quasi-static tensile experiments. The specimens were stretched at 300 °C, 560 °C, and 650 °C, respectively at a strain rate of 0.001/s. scanning electron microscope (SEM) observation
[...] Read more.
The elastoplastic properties of TiC particle-reinforced titanium matrix composites (TiC/TMCs) at high temperatures were examined by quasi-static tensile experiments. The specimens were stretched at 300 °C, 560 °C, and 650 °C, respectively at a strain rate of 0.001/s. scanning electron microscope (SEM) observation was carried out to reveal the microstructure of each specimen tested at different temperatures. The mechanical behavior of TiC/TMCs was analyzed by considering interfacial debonding afterwards. Based on Eshelby’s equivalent inclusion theory and Mori-Tanaka’s concept of average stress in the matrix, the stress or strain of the matrix, the particles, and the effective stiffness tensor of the composite were derived under prescribed traction boundary conditions at high temperatures. The plastic strains due to the thermal mismatch between the matrix and the reinforced particles were considered as eigenstrains. The interfacial debonding was calculated by the tensile strength of the particles and debonding probability was described by Weibull distribution. Finally, a meso-mechanical constitutive model was presented to explore the high-temperature elastoplastic properties of the spherical particle-reinforced titanium matrix composites by using a secant modulus method for the interfacial debonding. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Figure 1

Open AccessFeature PaperArticle Nano-ZnO Particles’ Effect in Improving the Mechanical Response of Mg-3Al-0.4Ce Alloy
Metals 2016, 6(11), 276; doi:10.3390/met6110276
Received: 13 October 2016 / Revised: 30 October 2016 / Accepted: 9 November 2016 / Published: 11 November 2016
PDF Full-text (3421 KB) | HTML Full-text | XML Full-text
Abstract
Magnesium based nanocomposites, due to their excellent dimensional stability and mechanical integrity, have a lot of potential to replace the existing commercial Al alloys and steels used in aerospace and automotive applications. Mg-Al alloys are commercially used in the form of AZ (magnesium-aluminum-zinc)
[...] Read more.
Magnesium based nanocomposites, due to their excellent dimensional stability and mechanical integrity, have a lot of potential to replace the existing commercial Al alloys and steels used in aerospace and automotive applications. Mg-Al alloys are commercially used in the form of AZ (magnesium-aluminum-zinc) and AM (magnesium-aluminum-manganese) series in automobile components. However, the Mg17Al12 phase in Mg-Al alloys is a low melting phase which results in a poor creep and high temperature performance of the alloys. Rare earth additions modify the phase and hence improve the properties of the materials. In this paper, Ce and nano ZnO particles were added to Mg-Al alloys to attain a favorable effect on their properties. The developed materials exhibited promising properties in terms of thermal expansion coefficient (CTE), hardness, and tensile strength. Further, the ZnO addition refined the microstructure and helped in obtaining a uniform distribution, however without grain size refinement. The increased addition of ZnO and the improvement in the distribution led to an enhancement in the properties, rendering the materials suitable for a wide spectrum of engineering applications. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Review

Jump to: Research

Open AccessFeature PaperReview Metallurgical Challenges in Carbon Nanotube-Reinforced Metal Matrix Nanocomposites
Metals 2017, 7(10), 384; doi:10.3390/met7100384
Received: 14 July 2017 / Revised: 14 August 2017 / Accepted: 11 September 2017 / Published: 22 September 2017
PDF Full-text (38366 KB) | HTML Full-text | XML Full-text
Abstract
The inclusion of carbon nanotubes (CNTs) into metallic systems has been the main focus of recent literature. The aim behind this approach has been the development of a new property or improvement of an inferior one in CNT-dispersed metal matrix nanocomposites. Although it
[...] Read more.
The inclusion of carbon nanotubes (CNTs) into metallic systems has been the main focus of recent literature. The aim behind this approach has been the development of a new property or improvement of an inferior one in CNT-dispersed metal matrix nanocomposites. Although it has opened up new possibilities for promising engineering applications, some practical challenges have restricted the full exploitation of CNTs’ unique characteristics. Non-uniform dispersion of CNTs in the metallic matrix, poor interfacial adhesion at the CNT/metal interface, the unfavorable chemical reaction of CNTs with the matrix, and low compactability are the most significant challenges, requiring more examination. The present paper provides a broad overview of the mentioned challenges, the way they occur, and their adverse influences on the physicomechanical properties of CNT-reinforced metal matrix nanocomposites. The suggested solutions to these issues are fully addressed. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Figures

Journal Contact

MDPI AG
Metals Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Special Issue Edit a special issue Review for Metals
logo
loading...
Back to Top