Special Issue "Feature Paper"


A special issue of Chemosensors (ISSN 2227-9040).

Deadline for manuscript submissions: closed (31 July 2015)

Special Issue Editor

Guest Editor
Dr. Igor Medintz

Laboratory for Biosensors and Biomaterials, Center for Biomolecular Science & Engineering, United States Naval Research Laboratory, Washington, D.C. USA
Website: http://degruyteropen.com/people/imedintz/
Fax: +1 202 7679594
Interests: nanoparticle-biological interface, energy transfer, FRET, biosensing, enzymatic catalysis at a nanoparticle interface, nanoparticle-based cellular imaging

Special Issue Information

Dear Colleagues,

We plan to publish a Special Issue on "feature papers" in order to give a broad overview of our area. We are looking for top quality papers which will be published free of charge in Open Access form. Authors will be the editorial board members and researchers invited by the editorial office and the Editor-in-Chief. Papers could be both extensive research papers and papers describing the current state of the art in one of the areas covered by the journal.

Prof. Dr. Igor Medintz
Guest Editor


Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Chemosensors is an international peer-reviewed Open Access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. For the first couple of issues the Article Processing Charge (APC) will be waived for well-prepared manuscripts. English correction and/or formatting fees of 250 CHF (Swiss Francs) will be charged in certain cases for those articles accepted for publication that require extensive additional formatting and/or English corrections.


  • pH sensors, acid-base indicators
  • environment detectors, smoke detector
  • nanosensors
  • sensing materials
  • optical chemical sensors
  • biosensor and chemical sensors networks
  • medical analyzers
  • chemical field-effect transistors
  • new technologies with possibilities for chemosensing

Published Papers (4 papers)

Download All Papers
Sort by:
Display options:
Select articles Export citation of selected articles as:
Select/unselect all
Displaying article 1-4
p. 274-283
by , ,  and
Chemosensors 2015, 3(4), 274-283; doi:10.3390/chemosensors3040274
Received: 9 October 2015 / Revised: 25 November 2015 / Accepted: 2 December 2015 / Published: 10 December 2015
Show/Hide Abstract | Cited by 2 | PDF Full-text (460 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Feature Paper)
abstract graphic
p. 253-273
by ,  and
Chemosensors 2015, 3(4), 253-273; doi:10.3390/chemosensors3040253
Received: 28 July 2015 / Revised: 23 September 2015 / Accepted: 20 October 2015 / Published: 26 October 2015
Show/Hide Abstract | Cited by 1 | PDF Full-text (784 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Feature Paper)
p. 211-223
by ,  and
Chemosensors 2015, 3(3), 211-223; doi:10.3390/chemosensors3030211
Received: 31 July 2015 / Accepted: 16 September 2015 / Published: 23 September 2015
Show/Hide Abstract | Cited by 1 | PDF Full-text (895 KB) | HTML Full-text | XML Full-text | Supplementary Files
(This article belongs to the Special Issue Feature Paper)
p. 224-240
by ,  and
Chemosensors 2015, 3(3), 224-240; doi:10.3390/chemosensors3030224
Received: 10 August 2015 / Accepted: 16 September 2015 / Published: 23 September 2015
Show/Hide Abstract | Cited by 1 | PDF Full-text (618 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Feature Paper)
Select/unselect all
Displaying article 1-4
Select articles Export citation of selected articles as:

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Novel Signal-Enhancing Approaches for Optical Detection of Nucleic Acids – Going Beyond Amplification
Authors: Laura Miotke and Kira Astakhova
Affiliation: Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark
Abstract: Currently applied nucleic acid detection is fully relied on enzymatic amplification of target sequences. This allows enhancing the signal for low-abundance nucleic acids which are the most biologically relevant. However, detection time and cost are increased when using enzymes, along with high risk of mistakes upon amplification and data alignment. This stimulates growing interest of researchers and industry to the enzyme-free methods.
Signal enhancing is crucial for the reliable enzyme-free detection of nucleic acids at low concentrations. In this focus review we discuss recent advances of signal-enhancing approaches aiming at enzyme-free nucleic acid diagnostics. A special attention is paid to nanomaterials and fluorescence microscopy. Sensitivity parameters of currently available detectors are also summarized in the review which makes it relevant to the broad community of researchers working within the fields of biophysics, engineering, synthetic biology and bioorganic chemistry.

Type of Paper: Article
Title: Steady-State Fluorescence and Lifetime Emission Study of pH-Sensitive Probes Based on I-Motif Forming Oligonucleotides Single and Double Labeled with Pyrene
Authors: Anna Dembska, Patrycja Rzepecka and Bernard Juskowiak
Affiliation: Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
Abstract: Cytosine-rich nucleic acids undergo pH-stimulated structural transitions leading to formation of an i-motif architecture at an acidic pH. Thus, i-motifs are good foundation for designing simple pH-sensitive fluorescent probes. We report here steady-state and time-resolved fluorescence studies of pyrene-labeled probes based on RET sequence: C4GC4GC4GC4TA (RET21), AC4GC4GC4GC4TA (RET21A) and C4GC4GC4GC4T (RET20). A comparative studies with single- and double-labeled i-motif probes were carried out. For each probe we have measured fluorescence spectra and decays for emission wavelength of 390 nm in the wide range of pH (from 4.0 to 8.0). Effect of the oligonucleotide sequence and the number of pyrene labels on the spectral characteristics of probes were discussed.

Title: Sol-gel-Based Materials for Optical Chemical Sensing
Dorota Wencel 1, Mariusz Barczak 2,* and Colette McDonagh 1
Affiliation: 1 Optical Sensors Laboratory, School of Physical Sciences, Biomedical Diagnostics Institute, Dublin City University, Dublin, 9 Ireland
2 Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
Abstract: Silica sol-gel materials are widely used in the development of optical chemical sensors. They are usually exploited as porous support host matrices in which analyte-sensitive indicator dyes are entrapped. The versatility of the sol-gel process enables tailoring of the physical and chemical properties of the sensing matrix to meet the requirements of the desired application. This review will highlight the versatility and tailorability of sol-gel-based materials for use in a wide range of optical sensor applications. It will focus on the developments in sol-gel-based optical chemical sensors over the last 10 years. Recent novel developments in this area will be also emphasized and future trends will be discussed.

Title: ZnO Nanostructures: Fabrication and Gas Sensing Properties
Authors: Vardan Galstyana,b,*, Elisabetta Cominib,a, Andrea Ponzonia, Guido Fagliab,a, Giorgio Sberveglieria,b
Affiliation: aSensor Lab, CNR, National Institute of Optics (INO), Via Valotti 9, 25133 Brescia, Italy bSensor Lab, Department of Information Engineering, University of Brescia, Via Valotti 9, 25133 Brescia, Italy
Abstract: Chemical gas sensors have a wide variety of applications in environmental and safety monitoring that can be very useful to businesses and the general public. Environmentalists can use sensors to measure atmospheric pollution and monitor industrial emissions, and safety monitors can use sensors to detect harmful chemical vapors and explosives in public spaces, government and military facilities, and chemical processing plants. Detection of minor gas leaks, harmful chemical vapors and explosives in the environment has been a challenging research problem for many decades as it involves health, safety and environmental risks. Metal oxide chemical gas sensors have attracted considerable attention due to their obvious advantages, such as the low cost, production flexibility, chemical stability, rapid response and recovery time.
In this review, we will provide recent developments and reflects the impact of nanoscience into the fabrication and the gas sensing properties of ZnO based chemosensors.

Last update: 17 August 2015

Chemosensors EISSN 2227-9040 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert