Next Issue
Volume 7, December
Previous Issue
Volume 7, October
 
 

Drones, Volume 7, Issue 11 (November 2023) – 39 articles

Cover Story (view full-size image): Wildlife abundance surveys are important tools for making decisions regarding nature conservation and management. Cryptic and nocturnal mammals can be difficult to monitor, and methods to obtain more accurate data on the density and population trends of these species are needed. We propose a novel monitoring method using an aerial drone with a laser rangefinder and high zoom capabilities for thermal imagery, and demonstrate that it can detect significantly more hares than a traditional spotlight survey method. Besides covering more survey area within the same timeframe, the drone method offers a foundation for studying animal behavior simultaneously with density surveys. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 43158 KiB  
Article
Self-Calibration of UAV Thermal Imagery Using Gradient Descent Algorithm
by Radosław Szostak, Mirosław Zimnoch, Przemysław Wachniew and Alina Jasek-Kamińska
Drones 2023, 7(11), 683; https://doi.org/10.3390/drones7110683 - 20 Nov 2023
Viewed by 1709
Abstract
Unmanned aerial vehicle (UAV) thermal imagery offers several advantages for environmental monitoring, as it can provide a low-cost, high-resolution, and flexible solution to measure the temperature of the surface of the land. Limitations related to the maximum load of the drone lead to [...] Read more.
Unmanned aerial vehicle (UAV) thermal imagery offers several advantages for environmental monitoring, as it can provide a low-cost, high-resolution, and flexible solution to measure the temperature of the surface of the land. Limitations related to the maximum load of the drone lead to the use of lightweight uncooled thermal cameras whose internal components are not stabilized to a constant temperature. Such cameras suffer from several unwanted effects that contribute to the increase in temperature measurement error from ±0.5 °C in laboratory conditions to ±5 °C in unstable flight conditions. This article describes a post-processing procedure that reduces the above unwanted effects. It consists of the following steps: (i) devignetting using the single image vignette correction algorithm, (ii) georeferencing using image metadata, scale-invariant feature transform (SIFT) stitching, and gradient descent optimisation, and (iii) inter-image temperature consistency optimisation by minimisation of bias between overlapping thermal images using gradient descent optimisation. The solution was tested in several case studies of river areas, where natural water bodies were used as a reference temperature benchmark. In all tests, the precision of the measurements was increased. The root mean square error (RMSE) on average was reduced by 39.0% and mean of the absolute value of errors (MAE) by 40.5%. The proposed algorithm can be called self-calibrating, as in contrast to other known solutions, it is fully automatic, uses only field data, and does not require any calibration equipment or additional operator effort. A Python implementation of the solution is available on GitHub. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles in Atmospheric Research)
Show Figures

Figure 1

18 pages, 2479 KiB  
Article
Implementation of an Edge-Computing Vision System on Reduced-Board Computers Embedded in UAVs for Intelligent Traffic Management
by Sergio Bemposta Rosende, Sergio Ghisler, Javier Fernández-Andrés and Javier Sánchez-Soriano
Drones 2023, 7(11), 682; https://doi.org/10.3390/drones7110682 - 20 Nov 2023
Cited by 2 | Viewed by 2027
Abstract
Advancements in autonomous driving have seen unprecedented improvement in recent years. This work addresses the challenge of enhancing the navigation of autonomous vehicles in complex urban environments such as intersections and roundabouts through the integration of computer vision and unmanned aerial vehicles (UAVs). [...] Read more.
Advancements in autonomous driving have seen unprecedented improvement in recent years. This work addresses the challenge of enhancing the navigation of autonomous vehicles in complex urban environments such as intersections and roundabouts through the integration of computer vision and unmanned aerial vehicles (UAVs). UAVs, owing to their aerial perspective, offer a more effective means of detecting vehicles involved in these maneuvers. The primary objective is to develop, evaluate, and compare different computer vision models and reduced-board (and small-power) hardware for optimizing traffic management in these scenarios. A dataset was constructed using two sources, several models (YOLO 5 and 8, DETR, and EfficientDetLite) were selected and trained, four reduced-board computers were chosen (Raspberry Pi 3B+ and 4, Jetson Nano, and Google Coral), and the models were tested on these boards for edge computing in UAVs. The experiments considered training times (with the dataset and its optimized version), model metrics were obtained, inference frames per second (FPS) were measured, and energy consumption was quantified. After the experiments, it was observed that the combination that best suits our use case is the YoloV8 model with the Jetson Nano. On the other hand, a combination with much higher inference speed but lower accuracy involves the EfficientDetLite models with the Google Coral board. Full article
(This article belongs to the Special Issue Edge Computing and IoT Technologies for Drones)
Show Figures

Figure 1

13 pages, 2129 KiB  
Article
High-Performance Detection-Based Tracker for Multiple Object Tracking in UAVs
by Xi Li, Ruixiang Zhu, Xianguo Yu and Xiangke Wang
Drones 2023, 7(11), 681; https://doi.org/10.3390/drones7110681 - 20 Nov 2023
Cited by 1 | Viewed by 1915
Abstract
As a result of increasing urbanization, traffic monitoring in cities has become a challenging task. The use of Unmanned Aerial Vehicles (UAVs) provides an attractive solution to this problem. Multi-Object Tracking (MOT) for UAVs is a key technology to fulfill this task. Traditional [...] Read more.
As a result of increasing urbanization, traffic monitoring in cities has become a challenging task. The use of Unmanned Aerial Vehicles (UAVs) provides an attractive solution to this problem. Multi-Object Tracking (MOT) for UAVs is a key technology to fulfill this task. Traditional detection-based-tracking (DBT) methods begin by employing an object detector to retrieve targets in each image and then track them based on a matching algorithm. Recently, the popular multi-task learning methods have been dominating this area, since they can detect targets and extract Re-Identification (Re-ID) features in a computationally efficient way. However, the detection task and the tracking task have conflicting requirements on image features, leading to the poor performance of the joint learning model compared to separate detection and tracking methods. The problem is more severe when it comes to UAV images due to the presence of irregular motion of a large number of small targets. In this paper, we propose using a balanced Joint Detection and Re-ID learning (JDR) network to address the MOT problem in UAV vision. To better handle the non-uniform motion of objects in UAV videos, the Set-Membership Filter is applied, which describes object state as a bounded set. An appearance-matching cascade is then proposed based on the target state set. Furthermore, a Motion-Mutation module is designed to address the challenges posed by the abrupt motion of UAV. Extensive experiments on the VisDrone2019-MOT dataset certify that our proposed model, referred to as SMFMOT, outperforms the state-of-the-art models by a wide margin and achieves superior performance in the MOT tasks in UAV videos. Full article
(This article belongs to the Special Issue Advances in Perception, Communications, and Control for Drones)
Show Figures

Figure 1

13 pages, 2415 KiB  
Article
Drone with Mounted Thermal Infrared Cameras for Monitoring Terrestrial Mammals
by Hanne Lyngholm Larsen, Katrine Møller-Lassesen, Esther Magdalene Ellersgaard Enevoldsen, Sarah Bøgh Madsen, Maria Trier Obsen, Peter Povlsen, Dan Bruhn, Cino Pertoldi and Sussie Pagh
Drones 2023, 7(11), 680; https://doi.org/10.3390/drones7110680 - 18 Nov 2023
Cited by 1 | Viewed by 3000
Abstract
This study investigates the use of a drone equipped with a thermal camera for recognizing wild mammal species in open areas and to determine the sex and age of red deer (Cervus elaphus) and roe deer (Capreolus capreoulus) in [...] Read more.
This study investigates the use of a drone equipped with a thermal camera for recognizing wild mammal species in open areas and to determine the sex and age of red deer (Cervus elaphus) and roe deer (Capreolus capreoulus) in a 13 km2 moor in Denmark. Two separate surveys were conducted: (1) To achieve drone images for the identification of mammals, the drone was tested around a bait place with a live wildlife camera that was often visited by European badger (Meles meles), stone marten (Martes foina), European hare (Lepus europaeus), roe deer and cattle (Bos taurus). The thermal images of wild animal species could be distinguished by their body measures when the drone filmed with the camera pointed perpendicular to the ground in an altitude range of 50–120 m. A PCA ordination showed nonoverlapping body characteristics and MANOVA showed that the combined body measures used were significantly distinctive F = 6.8, p < 0.001. The reactions and behavioral responses of the different species to the altitude and noise of the drone were also tested in this place. (2) On a 13 km2 moor, a drone was used for a population study of deer. Red deer and roe deer were counted and separated by body measures. Red deer individuals could, at the right altitude, be separated into adults and calves, and males and females. Body length was the most conclusive body measure, and therefore a reference measurement in the field is recommended. The frame thermal images were effective in species recognition and for use in population studies of deer, and are thought to be more time-efficient and less invasive than traditional methods. In autumn, the number of stags and the life stage of red deer, as well as the distribution of deer in different types of vegetation, could be determined. Full article
Show Figures

Figure 1

22 pages, 6913 KiB  
Article
Multi-UAV Urban Logistics Task Allocation Method Based on MCTS
by Zeyuan Ma and Jing Chen
Drones 2023, 7(11), 679; https://doi.org/10.3390/drones7110679 - 17 Nov 2023
Viewed by 1458
Abstract
Unmanned aerial vehicles (UAVs) open new methods for efficient and rapid transportation in urban logistics distribution, where task allocation is a significant issue. In urban logistics systems, the energy status of UAVs is a critical factor in ensuring mission fulfillment. While extensive literature [...] Read more.
Unmanned aerial vehicles (UAVs) open new methods for efficient and rapid transportation in urban logistics distribution, where task allocation is a significant issue. In urban logistics systems, the energy status of UAVs is a critical factor in ensuring mission fulfillment. While extensive literature addresses the energy consumption of UAVs during tasks, the feasibility of energy replenishment must be addressed, which introduces additional uncertainty to the task allocation. This paper realizes multi-tasking, considering the energy consumption and replenishment of UAVs, to ensure that the tasks can be accomplished while reducing energy consumption. This paper proposes uniform distribution K-means to realize balanced multi-task grouping. Based on the Monte Carlo tree search (MCTS), a task-allocation-oriented MCTS method is proposed, including improving the selection and simulation process of MCTS. The aim was to collaborate with multiple trees for node selection and record historical simulation information to guide subsequent simulations for better results. Finally, the optimality of the proposed method was validated by comparing it with other relevant MCTS methods through several randomized experiments. Full article
Show Figures

Figure 1

14 pages, 4121 KiB  
Article
QuickNav: An Effective Collision Avoidance and Path-Planning Algorithm for UAS
by Dipraj Debnath, Ahmad Faizul Hawary, Muhammad Iftishah Ramdan, Fernando Vanegas Alvarez and Felipe Gonzalez
Drones 2023, 7(11), 678; https://doi.org/10.3390/drones7110678 - 17 Nov 2023
Cited by 1 | Viewed by 2099
Abstract
Obstacle avoidance is a desirable capability for Unmanned Aerial Systems (UASs)/drones which prevents crashes and reduces pilot fatigue, particularly when operating in the Beyond Visual Line of Sight (BVLOS). In this paper, we present QuickNav, a solution for obstacle detection and avoidance designed [...] Read more.
Obstacle avoidance is a desirable capability for Unmanned Aerial Systems (UASs)/drones which prevents crashes and reduces pilot fatigue, particularly when operating in the Beyond Visual Line of Sight (BVLOS). In this paper, we present QuickNav, a solution for obstacle detection and avoidance designed to function as a pre-planned onboard navigation system for UAS flying in a known obstacle-cluttered environment. Our method uses a geometrical approach and a predefined safe perimeter (square area) based on Euclidean Geometry for the estimation of intercepting points, as a simple and efficient way to detect obstacles. The square region is treated as the restricted zone that the UAS must avoid entering, therefore providing a perimeter for manoeuvring and arriving at the next waypoints. The proposed algorithm is developed in a MATLAB environment and can be easily translated into other programming languages. The proposed algorithm is tested in scenarios with increasing levels of complexity, demonstrating that the QuickNav algorithm is able to successfully and efficiently generate a series of avoiding waypoints. Furthermore, QuickNav produces shorter distances as compared to those of the brute force method and is able to solve difficult obstacle avoidance problems in fractions of the time and distance required by the other methods. QuickNav can be used to improve the safety and efficiency of UAV missions and can be applied to the deployment of UAVs for surveillance, search and rescue, and delivery operations. Full article
Show Figures

Figure 1

21 pages, 16336 KiB  
Article
Experimental Investigation on Thrust Performance of a Small-Scale Staggered Rotor System in Hover
by He Zhu, Siqiang Deng, Shaoxiong Wei, Hong Nie and Xiaohui Wei
Drones 2023, 7(11), 677; https://doi.org/10.3390/drones7110677 - 15 Nov 2023
Viewed by 1584
Abstract
In recent years, the demand for Urban Air Mobility (UAM) and Micro Aerial Vehicles (MAVs) has driven the emergence of new aircraft designs, with the Staggered Rotor System being widely applied in these vertical take-off and landing aircraft. Due to the complex aerodynamic [...] Read more.
In recent years, the demand for Urban Air Mobility (UAM) and Micro Aerial Vehicles (MAVs) has driven the emergence of new aircraft designs, with the Staggered Rotor System being widely applied in these vertical take-off and landing aircraft. Due to the complex aerodynamic interference between rotors, the spacing between them has a significant impact on the performance of these new aircraft configurations. A testbed was designed and validated to investigate the effects of parameters such as axial distance and lateral distance between rotors on the thrust performance of the Staggered Rotor System. A series of systematic thrust tests was conducted on two co-rotating small-scale rotor models, with particular focus on thrust testing of individual rotors in isolation and their comparison to the conditions of the Staggered Rotor System. During the experimental process, as both the axial and lateral distance varied, an orthogonal experimental design was employed to assess the influence of aerodynamic interactions caused by different rotor diameters on rotor performance. This study conducts an analysis of experimental data to investigate the influence of these factors on the performance of rotor systems’ thrust, while also examining the aerodynamic interference and aerodynamic force evolution patterns of rotor systems under varying parameters. Furthermore, rotor speed also plays a crucial role in the performance of the system. Therefore, when designing vertical take-off and landing aircraft with multiple rotors, it is essential to consider the influence of these factors during the optimization process. Full article
Show Figures

Figure 1

15 pages, 3214 KiB  
Article
Vision-Based Deep Reinforcement Learning of UAV-UGV Collaborative Landing Policy Using Automatic Curriculum
by Chang Wang, Jiaqing Wang, Changyun Wei, Yi Zhu, Dong Yin and Jie Li
Drones 2023, 7(11), 676; https://doi.org/10.3390/drones7110676 - 13 Nov 2023
Cited by 2 | Viewed by 2134
Abstract
Collaborative autonomous landing of a quadrotor Unmanned Aerial Vehicle (UAV) on a moving Unmanned Ground Vehicle (UGV) presents challenges due to the need for accurate real-time tracking of the UGV and the adjustment for the landing policy. To address this challenge, we propose [...] Read more.
Collaborative autonomous landing of a quadrotor Unmanned Aerial Vehicle (UAV) on a moving Unmanned Ground Vehicle (UGV) presents challenges due to the need for accurate real-time tracking of the UGV and the adjustment for the landing policy. To address this challenge, we propose a progressive learning framework for generating an optimal landing policy based on vision without the need of communication between the UAV and the UGV. First, we propose the Landing Vision System (LVS) to offer rapid localization and pose estimation of the UGV. Then, we design an Automatic Curriculum Learning (ACL) approach to learn the landing tasks under different conditions of UGV motions and wind interference. Specifically, we introduce a neural network-based difficulty discriminator to schedule the landing tasks according to their levels of difficulty. Our method achieves a higher landing success rate and accuracy compared with the state-of-the-art TD3 reinforcement learning algorithm. Full article
(This article belongs to the Special Issue Cooperation of Drones and Other Manned/Unmanned Systems)
Show Figures

Figure 1

18 pages, 1112 KiB  
Article
A Hybrid Global/Reactive Algorithm for Collision-Free UAV Navigation in 3D Environments with Steady and Moving Obstacles
by Satish C. Verma, Siyuan Li and Andrey V. Savkin
Drones 2023, 7(11), 675; https://doi.org/10.3390/drones7110675 - 13 Nov 2023
Cited by 2 | Viewed by 1667
Abstract
This paper introduces a practical navigation approach for nonholonomic Unmanned Aerial Vehicles (UAVs) in 3D environment settings with numerous stationary and dynamic obstacles. To achieve the intended outcome, Dynamic Programming (DP) is combined with a reactive control algorithm. The DP allows the UAVs [...] Read more.
This paper introduces a practical navigation approach for nonholonomic Unmanned Aerial Vehicles (UAVs) in 3D environment settings with numerous stationary and dynamic obstacles. To achieve the intended outcome, Dynamic Programming (DP) is combined with a reactive control algorithm. The DP allows the UAVs to navigate among known static barriers and obstacles. Additionally, the reactive controller uses data from the onboard sensor to avoid unforeseen obstacles. The proposed strategy is illustrated through computer simulation results. In simulations, the UAV successfully navigates around dynamic obstacles while maintaining its route to the target. These results highlight the ability of our proposed approach to ensure safe and efficient UAV navigation in complex and obstacle-laden environments. Full article
(This article belongs to the Special Issue Conceptual Design, Modeling, and Control Strategies of Drones-II)
Show Figures

Figure 1

21 pages, 3479 KiB  
Article
Burrow-Nesting Seabird Survey Using UAV-Mounted Thermal Sensor and Count Automation
by Jacob Virtue, Darren Turner, Guy Williams, Stephanie Zeliadt, Henry Walshaw and Arko Lucieer
Drones 2023, 7(11), 674; https://doi.org/10.3390/drones7110674 - 13 Nov 2023
Viewed by 1995
Abstract
Seabird surveys are used to monitor population demography and distribution and help us understand anthropogenic pressures on seabird species. Burrow-nesting seabirds are difficult to survey. Current ground survey methods are invasive, time-consuming and detrimental to colony health. Data derived from short transects used [...] Read more.
Seabird surveys are used to monitor population demography and distribution and help us understand anthropogenic pressures on seabird species. Burrow-nesting seabirds are difficult to survey. Current ground survey methods are invasive, time-consuming and detrimental to colony health. Data derived from short transects used in ground surveys are extrapolated to derive whole-colony population estimates, which introduces sampling bias due to factors including uneven burrow distribution and varying terrain. We investigate a new survey technique for nocturnally active burrow-nesting seabirds using unoccupied aerial vehicles (UAVs) and thermal sensor technology. We surveyed a three-hectare short-tailed shearwater (Ardenna tenuirostris) colony in Tasmania, Australia. Occupied burrows with resident chicks produced pronounced thermal signatures. This survey method captured a thermal response of every occupied burrow in the colony. Count automation techniques were developed to detect occupied burrows. To validate the results, we compared automated and manual counts of thermal imagery. Automated counts of occupied burrows were 9.3% higher and took approximately 5% of the time needed for manual counts. Using both manual and automated counts, we estimated that there were 5249–5787 chicks for the 2021/2022 breeding season. We provide evidence that high-resolution UAV thermal remote sensing and count automation can improve population estimates of burrow-nesting seabirds. Full article
(This article belongs to the Special Issue Drone Advances in Wildlife Research)
Show Figures

Figure 1

16 pages, 3864 KiB  
Article
Reinforcement Learning-Based Formation Pinning and Shape Transformation for Swarms
by Zhaoqi Dong, Qizhen Wu and Lei Chen
Drones 2023, 7(11), 673; https://doi.org/10.3390/drones7110673 - 13 Nov 2023
Cited by 2 | Viewed by 1619
Abstract
Swarm models hold significant importance as they provide the collective behavior of self-organized systems. Boids model is a fundamental framework for studying emergent behavior in swarms systems. It addresses problems related to simulating the emergent behavior of autonomous agents, such as alignment, cohesion, [...] Read more.
Swarm models hold significant importance as they provide the collective behavior of self-organized systems. Boids model is a fundamental framework for studying emergent behavior in swarms systems. It addresses problems related to simulating the emergent behavior of autonomous agents, such as alignment, cohesion, and repulsion, to imitate natural flocking movements. However, traditional models of Boids often lack pinning and the adaptability to quickly adapt to the dynamic environment. To address this limitation, we introduce reinforcement learning into the framework of Boids to solve the problem of disorder and the lack of pinning. The aim of this approach is to enable drone swarms to quickly and effectively adapt to dynamic external environments. We propose a method based on the Q-learning network to improve the cohesion and repulsion parameters in the Boids model to achieve continuous obstacle avoidance and maximize spatial coverage in the simulation scenario. Additionally, we introduce a virtual leader to provide pinning and coordination stability, reflecting the leadership and coordination seen in drone swarms. To validate the effectiveness of this method, we demonstrate the model’s capabilities through empirical experiments with drone swarms, and show the practicality of the RL-Boids framework. Full article
(This article belongs to the Special Issue Distributed Control, Optimization, and Game of UAV Swarm Systems)
Show Figures

Figure 1

15 pages, 524 KiB  
Article
Secrecy Energy Efficiency Maximization for Secure Unmanned-Aerial-Vehicle-Assisted Simultaneous Wireless Information and Power Transfer Systems
by Daehan Ha, Seongah Jeong, Jinkyu Kang and Joonhyuk Kang
Drones 2023, 7(11), 672; https://doi.org/10.3390/drones7110672 - 12 Nov 2023
Viewed by 1613
Abstract
Unmanned aerial vehicle (UAV)-assisted simultaneous wireless information and power transfer (SWIPT) systems have recently gained significant attraction in internet-of-things (IoT) applications that have limited or no infrastructure. Specifically, the free mobility of UAVs in three-dimensional (3D) space allows us good-quality channel links, thereby [...] Read more.
Unmanned aerial vehicle (UAV)-assisted simultaneous wireless information and power transfer (SWIPT) systems have recently gained significant attraction in internet-of-things (IoT) applications that have limited or no infrastructure. Specifically, the free mobility of UAVs in three-dimensional (3D) space allows us good-quality channel links, thereby enhancing the communication environment and improving performance in terms of achievable rates, latency, and energy efficiency. Meanwhile, IoT devices can extend their battery life by harvesting the energy following the SWIPT protocol, which leads to an increase in the overall system lifespan. In this paper, we propose a secure UAV-assisted SWIPT system designed to optimize the secrecy energy efficiency (SEE) of a ground network, wherein a base station (BS) transmits confidential messages to an energy-constrained device in the presence of a passive eavesdropper. Here, we employ a UAV acting as a helper node to improve the SEE of the system and to aid in the energy harvesting (EH) of the battery-limited ground device following the SWIPT protocol. To this end, we formulate the SEE maximization problem by jointly optimizing the transmit powers of the BS and UAV, the power-splitting ratio for EH operations, and the UAV’s flight path. The solution is obtained via a proposed algorithm that leverages successive convex approximation (SCA) and Dinkelbach’s method. Through simulations, we corroborate the feasibility and effectiveness of the proposed algorithm compared to conventional partial optimization approaches. Full article
(This article belongs to the Special Issue Advances in Green Communications and Networking for Drones)
Show Figures

Figure 1

37 pages, 5089 KiB  
Article
Vertidrome Airside Level of Service: Performance-Based Evaluation of Vertiport Airside Operations
by Karolin Schweiger and Franz Knabe
Drones 2023, 7(11), 671; https://doi.org/10.3390/drones7110671 - 10 Nov 2023
Viewed by 1539
Abstract
This paper presents the Vertidrome Airside Level of Service (VALoS) framework, a novel performance metric designed to evaluate airside traffic flow operations at vertidromes in the context of Urban Air Mobility (UAM). As the UAM industry rapidly evolves, the need for a comprehensive [...] Read more.
This paper presents the Vertidrome Airside Level of Service (VALoS) framework, a novel performance metric designed to evaluate airside traffic flow operations at vertidromes in the context of Urban Air Mobility (UAM). As the UAM industry rapidly evolves, the need for a comprehensive evaluation framework becomes increasingly important. The VALoS framework provides a performance-based approach to evaluating vertidrome traffic flow performance, considering metrics like average passenger delay, air taxi in-flight delay, and vertidrome punctuality. Unlike existing Level of Service approaches, the VALoS framework unifies the requirements of various stakeholders, the passenger, the air taxi operator, and the vertidrome operator each with their own performance metric and target. It provides a multi-faceted approach covering airside air and ground traffic flows, arrivals and departures, and performance changes during strategic planning and tactical execution phases. The VALoS is evaluated at 15-min intervals while considering changing stakeholder performance targets and operational uncertainties. For the reference use case, the study demonstrates the significant impact of short-term disruptions, while stochastic deviations can be neglected. Higher traffic volumes due to changing demand/capacity ratios result in higher VALoS variability. The VALoS framework, together with a fast-time simulation, provides a versatile method for exploring future vertidrome traffic flows and supporting strategic vertidrome airside planning and integration. This integrated approach is essential for the evolving UAM vertidrome industry; aligning the interests of different stakeholders and promoting sustainable and efficient vertidrome planning and operation. Full article
(This article belongs to the Special Issue Urban Air Mobility (UAM) 2nd Edition)
Show Figures

Figure 1

22 pages, 8440 KiB  
Article
U-Net Performance for Beach Wrack Segmentation: Effects of UAV Camera Bands, Height Measurements, and Spectral Indices
by Edvinas Tiškus, Martynas Bučas, Jonas Gintauskas, Marija Kataržytė and Diana Vaičiūtė
Drones 2023, 7(11), 670; https://doi.org/10.3390/drones7110670 - 9 Nov 2023
Cited by 2 | Viewed by 1389
Abstract
This study delves into the application of the U-Net convolutional neural network (CNN) model for beach wrack (BW) segmentation and monitoring in coastal environments using multispectral imagery. Through the utilization of different input configurations, namely, “RGB”, “RGB and height”, “5 bands”, “5 bands [...] Read more.
This study delves into the application of the U-Net convolutional neural network (CNN) model for beach wrack (BW) segmentation and monitoring in coastal environments using multispectral imagery. Through the utilization of different input configurations, namely, “RGB”, “RGB and height”, “5 bands”, “5 bands and height”, and “Band ratio indices”, this research provides insights into the optimal dataset combination for the U-Net model. The results indicate promising performance with the “RGB” combination, achieving a moderate Intersection over Union (IoU) of 0.42 for BW and an overall accuracy of IoU = 0.59. However, challenges arise in the segmentation of potential BW, primarily attributed to the dynamics of light in aquatic environments. Factors such as sun glint, wave patterns, and turbidity also influenced model accuracy. Contrary to the hypothesis, integrating all spectral bands did not enhance the model’s efficacy, and adding height data acquired from UAVs decreased model precision in both RGB and multispectral scenarios. This study reaffirms the potential of U-Net CNNs for BW detection, emphasizing the suitability of the suggested method for deployment in diverse beach geomorphology, requiring no high-end computing resources, and thereby facilitating more accessible applications in coastal monitoring and management. Full article
(This article belongs to the Section Drones in Ecology)
Show Figures

Figure 1

19 pages, 2756 KiB  
Article
Vehicle-to-Vehicle Based Autonomous Flight Coordination Control System for Safer Operation of Unmanned Aerial Vehicles
by Lin Shan, Ryu Miura, Takashi Matsuda, Miho Koshikawa, Huan-Bang Li and Takeshi Matsumura
Drones 2023, 7(11), 669; https://doi.org/10.3390/drones7110669 - 9 Nov 2023
Cited by 2 | Viewed by 1644
Abstract
The exponential growth of unmanned aerial vehicles (UAVs) or drones in recent years has raised concerns about their safe operation, especially in beyond-line-of-sight (BLOS) scenarios. Existing unmanned aircraft system traffic management (UTM) heavily relies on commercial communication networks, which may become ineffective if [...] Read more.
The exponential growth of unmanned aerial vehicles (UAVs) or drones in recent years has raised concerns about their safe operation, especially in beyond-line-of-sight (BLOS) scenarios. Existing unmanned aircraft system traffic management (UTM) heavily relies on commercial communication networks, which may become ineffective if network infrastructures are damaged or disabled. For this challenge, we propose a novel approach that leverages vehicle-to-vehicle (V2V) communications to enhance UAV safety and efficiency in UAV operations. In this study, we present a UAV information collection and sharing system named Drone Mapper®, enabled by V2V communications, so that UAVs can share their locations with each another as well as with the ground operation station. Additionally, we introduce an autonomous flight coordination control system (AFCCS) that augments UAV safety operations by providing two essential functionalities: UAV collision avoidance and UAV formation flight, both of which work based on V2V communications. To evaluate the performance of the developed AFCCS, we conducted comprehensive field experiments focusing on UAV collision avoidance and formation flight. The experimental results demonstrate the effectiveness of the proposed system and show seamless operations among multiple UAVs. Full article
(This article belongs to the Special Issue UAVs Communications for 6G)
Show Figures

Figure 1

15 pages, 13555 KiB  
Article
Using UAVs and Machine Learning for Nothofagus alessandrii Species Identification in Mediterranean Forests
by Antonio M. Cabrera-Ariza, Miguel Peralta-Aguilera, Paula V. Henríquez-Hernández and Rómulo Santelices-Moya
Drones 2023, 7(11), 668; https://doi.org/10.3390/drones7110668 - 9 Nov 2023
Viewed by 1376
Abstract
This study explores the use of unmanned aerial vehicles (UAVs) and machine learning algorithms for the identification of Nothofagus alessandrii (ruil) species in the Mediterranean forests of Chile. The endangered nature of this species, coupled with habitat loss and environmental stressors, necessitates efficient [...] Read more.
This study explores the use of unmanned aerial vehicles (UAVs) and machine learning algorithms for the identification of Nothofagus alessandrii (ruil) species in the Mediterranean forests of Chile. The endangered nature of this species, coupled with habitat loss and environmental stressors, necessitates efficient monitoring and conservation efforts. UAVs equipped with high-resolution sensors capture orthophotos, enabling the development of classification models using supervised machine learning techniques. Three classification algorithms—Random Forest (RF), Support Vector Machine (SVM), and Maximum Likelihood (ML)—are evaluated, both at the Pixel- and Object-Based levels, across three study areas. The results reveal that RF consistently demonstrates strong classification performance, followed by SVM and ML. The choice of algorithm and training approach significantly impacts the outcomes, highlighting the importance of tailored selection based on project requirements. These findings contribute to enhancing species identification accuracy in remote sensing applications, supporting biodiversity conservation and ecological research efforts. Full article
(This article belongs to the Topic Individual Tree Detection (ITD) and Its Applications)
Show Figures

Figure 1

21 pages, 775 KiB  
Review
Unmanned Aerial Vehicles (UAVs) in Marine Mammal Research: A Review of Current Applications and Challenges
by Miguel Álvarez-González, Paula Suarez-Bregua, Graham J. Pierce and Camilo Saavedra
Drones 2023, 7(11), 667; https://doi.org/10.3390/drones7110667 - 9 Nov 2023
Viewed by 3574
Abstract
Research on the ecology and biology of marine mammal populations is necessary to understand ecosystem dynamics and to support conservation management. Emerging monitoring tools and instruments offer the opportunity to obtain such information in an affordable and effective way. In recent years, unmanned [...] Read more.
Research on the ecology and biology of marine mammal populations is necessary to understand ecosystem dynamics and to support conservation management. Emerging monitoring tools and instruments offer the opportunity to obtain such information in an affordable and effective way. In recent years, unmanned aerial vehicles (UAVs) have become an important tool in the study of marine mammals. Here, we reviewed 169 research articles using UAVs to study marine mammals, published up until December 2022. The goals of these studies included estimating the number of individuals in populations and groups via photo-identification, determining biometrics and body condition through photogrammetry, collecting blow samples, and studying behavioural patterns. UAVs can be a valuable, non-invasive, and useful tool for a wide range of applications in marine mammal research. However, it is important to consider some limitations of this technology, mainly associated with autonomy, resistance to the marine environment, and data processing time, which could probably be overcome in the near future. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

23 pages, 44241 KiB  
Article
Image-to-Image Translation-Based Structural Damage Data Augmentation for Infrastructure Inspection Using Unmanned Aerial Vehicle
by Gi-Hun Gwon, Jin-Hwan Lee, In-Ho Kim, Seung-Chan Baek and Hyung-Jo Jung
Drones 2023, 7(11), 666; https://doi.org/10.3390/drones7110666 - 8 Nov 2023
Viewed by 1669
Abstract
As technology advances, the use of unmanned aerial vehicles (UAVs) and image sensors for structural monitoring and diagnostics is becoming increasingly critical. This approach enables the efficient inspection and assessment of structural conditions. Furthermore, the integration of deep learning techniques has been proven [...] Read more.
As technology advances, the use of unmanned aerial vehicles (UAVs) and image sensors for structural monitoring and diagnostics is becoming increasingly critical. This approach enables the efficient inspection and assessment of structural conditions. Furthermore, the integration of deep learning techniques has been proven to be highly effective in detecting damage from structural images, as demonstrated in our study. To enable effective learning by deep learning models, a substantial volume of data is crucial, but collecting appropriate instances of structural damage from real-world scenarios poses challenges and demands specialized knowledge, as well as significant time and resources for labeling. In this study, we propose a methodology that utilizes a generative adversarial network (GAN) for image-to-image translation, with the objective of generating synthetic structural damage data to augment the dataset. Initially, a GAN-based image generation model was trained using paired datasets. When provided with a mask image, this model generated an RGB image based on the annotations. The subsequent step generated domain-specific mask images, a critical task that improved the data augmentation process. These mask images were designed based on prior knowledge to suit the specific characteristics and requirements of the structural damage dataset. These generated masks were then used by the GAN model to produce new RGB image data incorporating various types of damage. In the experimental validation conducted across the three datasets to assess the image generation for data augmentation, our results demonstrated that the generated images closely resembled actual images while effectively conveying information about the newly introduced damage. Furthermore, the experimental validation of damage detection with augmented data entailed a comparative analysis between the performance achieved solely with the original dataset and that attained with the incorporation of additional augmented data. The results for damage detection consistently demonstrated that the utilization of augmented data enhanced performance when compared to relying solely on the original images. Full article
Show Figures

Figure 1

18 pages, 5019 KiB  
Article
Robust Path-Following Control for AUV under Multiple Uncertainties and Input Saturation
by Jianming Miao, Xingyu Sun, Qichao Chen, Haosu Zhang, Wenchao Liu and Yanyun Wang
Drones 2023, 7(11), 665; https://doi.org/10.3390/drones7110665 - 8 Nov 2023
Cited by 2 | Viewed by 1420
Abstract
In this paper, a robust path-following control strategy is proposed to deal with the path-following problem of the underactuated autonomous underwater vehicle (AUV) with multiple uncertainties and input saturation, and the effectiveness of the proposed control strategy is verified by semi-physical simulation experiments. [...] Read more.
In this paper, a robust path-following control strategy is proposed to deal with the path-following problem of the underactuated autonomous underwater vehicle (AUV) with multiple uncertainties and input saturation, and the effectiveness of the proposed control strategy is verified by semi-physical simulation experiments. Firstly, the control laws are constructed based on the traditional backstepping method; the multiple uncertainties are treated as lumped uncertainties, which can be estimated and eliminated by the employed extended state observers (ESOs). In addition, the influence of input saturation can be compensated by the designed auxiliary dynamic compensators. Secondly, to simplify controller design and address the “complexity explosion”, two command filters are used to obtain the estimated value of the unknown sideslip angular velocity and the desired yaw angular acceleration, respectively. Finally, the superiority and robustness of the proposed control strategy are verified through computer simulation. A semi-physical simulation experiment platform is built based on the NI Compact cRIO-9068 and PLC S7-1200 to further demonstrate the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

20 pages, 4180 KiB  
Article
Clustering-Based Multi-Region Coverage-Path Planning of Heterogeneous UAVs
by Peng Xiao, Ni Li, Feng Xie, Haihong Ni, Min Zhang and Ban Wang
Drones 2023, 7(11), 664; https://doi.org/10.3390/drones7110664 - 7 Nov 2023
Viewed by 1531
Abstract
Unmanned aerial vehicles (UAVs) multi-area coverage-path planning has a broad range of applications in agricultural mapping and military reconnaissance. Compared to homogeneous UAVs, heterogeneous UAVs have higher application value due to their superior flexibility and efficiency. Nevertheless, variations in performance parameters among heterogeneous [...] Read more.
Unmanned aerial vehicles (UAVs) multi-area coverage-path planning has a broad range of applications in agricultural mapping and military reconnaissance. Compared to homogeneous UAVs, heterogeneous UAVs have higher application value due to their superior flexibility and efficiency. Nevertheless, variations in performance parameters among heterogeneous UAVs can significantly amplify computational complexity, posing challenges to solving the multi-region coverage path-planning problem. Consequently, this study studies a clustering-based method to tackle the multi-region coverage path-planning problem of heterogeneous UAVs. First, the constraints necessary during the planning process are analyzed, and a planning formula based on an integer linear programming model is established. Subsequently, this problem is decomposed into regional allocation and visiting order optimization subproblems. This study proposes a novel clustering algorithm that utilizes centroid iteration and spatiotemporal similarity to allocate regions and adopts the nearest-to-end policy to optimize the visiting order. Additionally, a distance-based bilateral shortest-selection strategy is proposed to generate region-scanning trajectories, which serve as trajectory references for real flight. Simulation results in this study prove the effective performance of the proposed clustering algorithm and region-scanning strategy. Full article
Show Figures

Figure 1

1 pages, 162 KiB  
Correction
Correction: Yan et al. A Real-Time Strand Breakage Detection Method for Power Line Inspection with UAVs. Drones 2023, 7, 574
by Jichen Yan, Xiaoguang Zhang, Siyang Shen, Xing He, Xuan Xia, Nan Li, Song Wang, Yuxuan Yang and Ning Ding
Drones 2023, 7(11), 663; https://doi.org/10.3390/drones7110663 - 7 Nov 2023
Viewed by 1024
Abstract
In the published work [...] Full article
18 pages, 1152 KiB  
Article
Research on Data Link Channel Decoding Optimization Scheme for Drone Power Inspection Scenarios
by Haizhi Yu, Kaisa Zhang, Xu Zhao, Yubing Zhang, Bingfeng Cui, Shujuan Sun, Gengshuo Liu, Bo Yu, Chao Ma, Ying Liu and Weidong Gao
Drones 2023, 7(11), 662; https://doi.org/10.3390/drones7110662 - 6 Nov 2023
Cited by 1 | Viewed by 1684
Abstract
With the rapid development of smart grids, the deployment number of transmission lines has significantly increased, posing significant challenges to the detection and maintenance of power facilities. Unmanned aerial vehicles (UAVs) have become a common means of power inspection. In the context of [...] Read more.
With the rapid development of smart grids, the deployment number of transmission lines has significantly increased, posing significant challenges to the detection and maintenance of power facilities. Unmanned aerial vehicles (UAVs) have become a common means of power inspection. In the context of drone power inspection, drone clusters are used as relays for long-distance communication to expand the communication range and achieve data transmission between patrol drones and base stations. Most of the communication occurs in the air-to-air channel between UAVs, which requires high reliability of communication between drone relays. Therefore, the main focus of this paper is on decoding schemes for drone air-to-air channels. Given the limited computing resources and battery capacity of a drone, as well as the large amount of power data that needs to be transmitted between drone relays, this paper aims to design a high-accuracy and low-complexity decoder for LDPC long-code decoding. We propose a novel shared-parameter neural-network-normalized minimum sum decoding algorithm based on codebook quantization, applying deep learning to traditional LDPC decoding methods. In order to achieve high decoding performance while reducing complexity, this scheme utilizes codebook-based weight quantization and parameter sharing methods to improve the neural-network-normalized minimum sum (NNMS) decoding algorithm. Simulation experimental results show that the proposed method has a better BER performance and low computational complexity. Therefore, the LDPC decoding algorithm designed effectively meets the drone characteristics and the high channel decoding performance requirements. This ensures efficient and reliable data transmission on the data link between drone relays. Full article
(This article belongs to the Special Issue Resilient Networking and Task Allocation for Drone Swarms)
Show Figures

Figure 1

19 pages, 11534 KiB  
Article
A Novel Scouring Method to Monitor Nocturnal Mammals Using Uncrewed Aerial Vehicles and Thermal Cameras—A Comparison to Line Transect Spotlight Counts
by Peter Povlsen, Dan Bruhn, Cino Pertoldi and Sussie Pagh
Drones 2023, 7(11), 661; https://doi.org/10.3390/drones7110661 - 6 Nov 2023
Cited by 2 | Viewed by 1766
Abstract
Wildlife abundance surveys are important tools for making decisions regarding nature conservation and management. Cryptic and nocturnal mammals can be difficult to monitor, and methods to obtain more accurate data on density and population trends of these species are needed. We propose a [...] Read more.
Wildlife abundance surveys are important tools for making decisions regarding nature conservation and management. Cryptic and nocturnal mammals can be difficult to monitor, and methods to obtain more accurate data on density and population trends of these species are needed. We propose a novel monitoring method using an aerial drone with a laser rangefinder and high zoom capabilities for thermal imagery. By manually operating the drone, the survey area can be initially scanned in a radius of several kilometers, and when a point of interest is observed, animals could be identified from up to one kilometer away by zooming in while the drone maintains an altitude of 120 m. With the laser rangefinder, a precise coordinate of the detected animal could be recorded instantly. Over ten surveys, the scouring drone method recorded significantly more hares than traditional transect spotlight count surveys, conducted by trained volunteers scanning the same farmland area within the same timeframe (p = 0.002, Wilcoxon paired rank test). The difference between the drone method and the transect spotlight method was hare density-dependent (R = 0.45, p = 0.19, Pearson’s product–moment correlation); the larger the density of hares, the larger the difference between the two methods to the benefit of the drone method. There was a linear relation between the records of deer by the drone and by spotlight (R = 0.69, p = 0.027), while no relation was found between the records of carnivores by drone and spotlight counts. This may be due to carnivores’ speed and vigilance or lack of data. Furthermore, the drone method could cover up to three times the area within the same timeframe as the transect spotlight counts. Full article
Show Figures

Figure 1

18 pages, 6706 KiB  
Article
Detection of Volatile Organic Compounds (VOCs) in Indoor Environments Using Nano Quadcopter
by Aline Mara Oliveira, Aniel Silva Morais, Gabriela Vieira Lima, Rafael Monteiro Jorge Alves Souza and Luis Cláudio Oliveira-Lopes
Drones 2023, 7(11), 660; https://doi.org/10.3390/drones7110660 - 6 Nov 2023
Viewed by 1490
Abstract
The dispersion of chemical gases poses a threat to human health, animals, and the environment. Leaks or accidents during the handling of samples and laboratory materials can result in the uncontrolled release of hazardous or explosive substances. Therefore, it is crucial to monitor [...] Read more.
The dispersion of chemical gases poses a threat to human health, animals, and the environment. Leaks or accidents during the handling of samples and laboratory materials can result in the uncontrolled release of hazardous or explosive substances. Therefore, it is crucial to monitor gas concentrations in environments where these substances are manipulated. Gas sensor technology has evolved rapidly in recent years, offering increasingly precise and reliable solutions. However, there are still challenges to be overcome, especially when sensors are deployed on unmanned aerial vehicles (UAVs). This article discusses the use of UAVs to locate gas sources and presents real test results using the SGP40 metal oxide semiconductor gas sensor onboard the Crazyflie 2.1 nano quadcopter. The solution proposed in this article uses an odor source identification strategy, employing a gas distribution mapping approach in a three-dimensional environment. The aim of the study was to investigate the feasibility and effectiveness of this approach for detecting gases in areas that are difficult to access or dangerous for humans. The results obtained show that the use of drones equipped with gas sensors is a promising alternative for the detection and monitoring of gas leaks in closed environments. Full article
(This article belongs to the Special Issue Advances in Detection, Security, and Communication for UAV)
Show Figures

Figure 1

13 pages, 1594 KiB  
Article
Harnessing the Power of Remote Sensing and Unmanned Aerial Vehicles: A Comparative Analysis for Soil Loss Estimation on the Loess Plateau
by Narges Kariminejad, Mohammad Kazemi Garajeh, Mohsen Hosseinalizadeh, Foroogh Golkar and Hamid Reza Pourghasemi
Drones 2023, 7(11), 659; https://doi.org/10.3390/drones7110659 - 4 Nov 2023
Cited by 1 | Viewed by 1471
Abstract
This study explored the innovative use of multiple remote sensing satellites and unmanned aerial vehicles to calculate soil losses in the Loess Plateau of Iran. This finding emphasized the importance of using advanced technologies to develop accurate and efficient soil erosion assessment techniques. [...] Read more.
This study explored the innovative use of multiple remote sensing satellites and unmanned aerial vehicles to calculate soil losses in the Loess Plateau of Iran. This finding emphasized the importance of using advanced technologies to develop accurate and efficient soil erosion assessment techniques. Accordingly, this study developed an approach to compare sinkholes and gully heads in hilly regions on the Loess Plateau of northeast Iran using convolutional neural network (CNN or ConvNet). This method involved coupling data from UAV, Sentinel-2, and SPOT-6 satellite data. The soil erosion computed using UAV data showed AUC values of 0.9247 and 0.9189 for the gully head and the sinkhole, respectively. The use of SPOT-6 data in gully head and sinkhole computations showed AUC values of 0.9105 and 0.9123, respectively. The AUC values were 0.8978 and 0.9001 for the gully head and the sinkhole using Sentinel-2, respectively. Comparison of the results from the calculated UAV, SPOT-6, and Sentinel-2 data showed that the UAV had the highest accuracy for calculating sinkhole and gully head soil features, although Sentinel-2 and SPOT-6 showed good results. Overall, the combination of multiple remote sensing satellites and UAVs offers improved accuracy, timeliness, cost effectiveness, accessibility, and long-term monitoring capabilities, making it a powerful approach for calculating soil loss in the Loess Plateau of Iran. Full article
(This article belongs to the Topic Advances in Earth Observation and Geosciences)
Show Figures

Figure 1

22 pages, 12632 KiB  
Article
Stability of Medicines Transported by Cargo Drones: Investigating the Effects of Vibration from Multi-Stage Flight
by Katherine Theobald, Wanqing Zhu, Timothy Waters, Thomas Cherrett, Andy Oakey and Paul G. Royall
Drones 2023, 7(11), 658; https://doi.org/10.3390/drones7110658 - 3 Nov 2023
Cited by 2 | Viewed by 1583
Abstract
The timely distribution of medicines to patients is an essential part of the patient care plan, and maximising efficiency in the logistics systems behind these movements is vital to minimise cost. Before drones can be used for moving medical cargo, medical regulatory authorities [...] Read more.
The timely distribution of medicines to patients is an essential part of the patient care plan, and maximising efficiency in the logistics systems behind these movements is vital to minimise cost. Before drones can be used for moving medical cargo, medical regulatory authorities require assurance that the transported products will not be adversely affected by in-flight conditions unique to each drone. This study set out to (i) quantify the vibration profile by phases of flight, (ii) determine to what extent there were significant differences in the observed vibration between the phases, and (iii) assess the quality of flown monoclonal antibody (mAb) infusions used in the treatment of cancer. Vibrations emanating from the drone and transmitted through standard medical packaging were monitored with the storage specifications for mean kinematic temperature (2–8 °C) being met. Vibration levels were recorded between 1.5 and 3 g, with the dominant octave band being 250 Hz. After 60 flights, the quality attributes of flown infusions regarding size integrity were found to be no different from those of the control infusions. For example, the particle size had a variation of less than 1 nm; one peak for Trastuzumab was 14.6 ± 0.07 nm, and Rituximab was 13.3 ± 0.90 nm. The aggregation (%) and fragmentation (%) remained at 0.18 ± 0.01% and 0.11 ± 0.02% for Trastuzumab, 0.11 ± 0.01% and 2.82 ± 0.15% for Rituximab. The results indicated that in the case of mAbs, the quality assurance specifications were met and that drone vibration did not adversely affect the quality of drone-flown medicines. Full article
Show Figures

Figure 1

20 pages, 10596 KiB  
Article
A Motion Deblurring Network for Enhancing UAV Image Quality in Bridge Inspection
by Jin-Hwan Lee, Gi-Hun Gwon, In-Ho Kim and Hyung-Jo Jung
Drones 2023, 7(11), 657; https://doi.org/10.3390/drones7110657 - 2 Nov 2023
Cited by 1 | Viewed by 1749
Abstract
Unmanned aerial vehicles (UAVs) have been increasingly utilized for facility safety inspections due to their superior safety, cost effectiveness, and inspection accuracy compared to traditional manpower-based methods. High-resolution images captured by UAVs directly contribute to identifying and quantifying structural defects on facility exteriors, [...] Read more.
Unmanned aerial vehicles (UAVs) have been increasingly utilized for facility safety inspections due to their superior safety, cost effectiveness, and inspection accuracy compared to traditional manpower-based methods. High-resolution images captured by UAVs directly contribute to identifying and quantifying structural defects on facility exteriors, making image quality a critical factor in achieving accurate results. However, motion blur induced by external factors such as vibration, low light conditions, and wind during UAV operation significantly degrades image quality, leading to inaccurate defect detection and quantification. To address this issue, this research proposes a deblurring network using a Generative Adversarial Network (GAN) to eliminate the motion blur effect in UAV images. The GAN-based motion deblur network represents an image inpainting method that leverages generative models to correct blurry artifacts, thereby generating clear images. Unlike previous studies, this proposed approach incorporates deblur and blur learning modules to realistically generate blur images required for training the generative models. The UAV images processed using the motion deblur network are evaluated using a quality assessment method based on local blur map and other well-known image quality assessment (IQA) metrics. Moreover, in the experiment of crack detection utilizing the object detection system, improved detection results are observed when using enhanced images. Overall, this research contributes to improving the quality and accuracy of facility safety inspections conducted with UAV-based inspections by effectively addressing the challenges associated with motion blur effects in UAV-captured images. Full article
Show Figures

Figure 1

31 pages, 1146 KiB  
Article
DELOFF: Decentralized Learning-Based Task Offloading for Multi-UAVs in U2X-Assisted Heterogeneous Networks
by Anqi Zhu, Huimin Lu, Mingfang Ma, Zongtan Zhou and Zhiwen Zeng
Drones 2023, 7(11), 656; https://doi.org/10.3390/drones7110656 - 1 Nov 2023
Viewed by 1640
Abstract
With multi-sensors embedded, flexible unmanned aerial vehicles (UAVs) can collect sensory data and provide various services for all walks of life. However, limited computing capability and battery energy put a great burden on UAVs to handle emerging compute-intensive applications, necessitating them to resort [...] Read more.
With multi-sensors embedded, flexible unmanned aerial vehicles (UAVs) can collect sensory data and provide various services for all walks of life. However, limited computing capability and battery energy put a great burden on UAVs to handle emerging compute-intensive applications, necessitating them to resort to innovative computation offloading technique to guarantee quality of service. Existing research mainly focuses on solving the offloading problem under known global information, or applying centralized offloading frameworks when facing dynamic environments. Yet, the maneuverability of today’s UAVs, their large-scale clustering, and their increasing operation in the environment with unrevealed information pose huge challenges to previous work. In this paper, in order to enhance the long-term offloading performance and scalability for multi-UAVs, we develop a decentralized offloading scheme named DELOFF with the support of mobile edge computing (MEC). DELOFF considers the information uncertainty caused by the dynamic environment, uses UAV-to-everything (U2X)-assisted heterogeneous networks to extend network resources and offloading flexibility, and tackles the joint strategy making related to computation mode, network selection, and offloading allocation for multi-UAVs. Specifically, the optimization problem of multi-UAVs is addressed by the proposed offloading algorithm based on a multi-arm bandit learning model, where each UAV itself can adaptively assess the offloading link quality through the fuzzy logic-based pre-screening mechanism designed. The convergence and effectiveness of the DELOFF proposed are also demonstrated in simulations. And, the results confirm that DELOFF is superior to the four benchmarks in many respects, such as reduced consumed energy and delay in the task completion of UAVs. Full article
(This article belongs to the Special Issue Edge Computing and IoT Technologies for Drones)
Show Figures

Figure 1

26 pages, 4764 KiB  
Article
The Situation Assessment of UAVs Based on an Improved Whale Optimization Bayesian Network Parameter-Learning Algorithm
by Weinan Li, Weiguo Zhang, Baoning Liu and Yicong Guo
Drones 2023, 7(11), 655; https://doi.org/10.3390/drones7110655 - 1 Nov 2023
Cited by 2 | Viewed by 1469
Abstract
To realize unmanned aerial vehicle (UAV) situation assessment, a Bayesian network (BN) for situation assessment is established. Aimed at the problem that the parameters of the BN are difficult to obtain, an improved whale optimization algorithm based on prior parameter intervals (IWOA-PPI) for [...] Read more.
To realize unmanned aerial vehicle (UAV) situation assessment, a Bayesian network (BN) for situation assessment is established. Aimed at the problem that the parameters of the BN are difficult to obtain, an improved whale optimization algorithm based on prior parameter intervals (IWOA-PPI) for parameter learning is proposed. Firstly, according to the dependencies between the situation and its related factors, the structure of the BN is established. Secondly, in order to fully mine the prior knowledge of parameters, the parameter constraints are transformed into parameter prior intervals using Monte Carlo sampling and interval transformation formulas. Thirdly, a variable encircling factor and a nonlinear convergence factor are proposed. The former and the latter enhance the local and global search capabilities of the whale optimization algorithm (WOA), respectively. Finally, a simulated annealing strategy incorporating Levy flight is introduced to enable the WOA to jump out of the local optimum. In the experiment for the standard BNs, five parameter-learning algorithms are applied, and the results prove that the IWOA-PPI is not only effective but also the most accurate. In the experiment for the situation BN, the situations of the assumed mission scenario are evaluated, and the results show that the situation assessment method proposed in this article is correct and feasible. Full article
Show Figures

Figure 1

27 pages, 4535 KiB  
Article
An Improved Method for Swing State Estimation in Multirotor Slung Load Applications
by Emanuele Luigi de Angelis and Fabrizio Giulietti
Drones 2023, 7(11), 654; https://doi.org/10.3390/drones7110654 - 31 Oct 2023
Viewed by 1382
Abstract
A method is proposed to estimate the swing state of a suspended payload in multirotor drone delivery scenarios. Starting from the equations of motion of the coupled slung load system, defined by two point masses interconnected by a rigid link, a recursive algorithm [...] Read more.
A method is proposed to estimate the swing state of a suspended payload in multirotor drone delivery scenarios. Starting from the equations of motion of the coupled slung load system, defined by two point masses interconnected by a rigid link, a recursive algorithm is developed to estimate cable swing angle and rate from acceleration measurements available from an onboard Inertial Measurement Unit, without the need for extra sensors. The estimation problem is addressed according to the Extended Kalman Filter structure. With respect to the classical linear formulation, the proposed approach allows for improved estimation accuracy in both stationary and maneuvering flight. As an additional contribution, filter performance is enhanced by accounting for aerodynamic disturbance force, which largely affects the estimation accuracy in windy flight conditions. The validity of the proposed methodology is demonstrated as follows. First, it is applied to an octarotor platform where propellers are modeled according to blade element theory and the load is suspended by an elastic cable. Numerical simulations show that estimated swing angle and rate represent suitable feedback variables for payload stabilization, with benefits on flying qualities and energy demand. The algorithm is finally implemented on a small-scale quadrotor and is investigated through an outdoor experimental campaign, thus proving the effectiveness of the approach in a real application scenario. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop