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Abstract: This study explored the innovative use of multiple remote sensing satellites and unmanned
aerial vehicles to calculate soil losses in the Loess Plateau of Iran. This finding emphasized the
importance of using advanced technologies to develop accurate and efficient soil erosion assessment
techniques. Accordingly, this study developed an approach to compare sinkholes and gully heads
in hilly regions on the Loess Plateau of northeast Iran using convolutional neural network (CNN
or ConvNet). This method involved coupling data from UAV, Sentinel-2, and SPOT-6 satellite data.
The soil erosion computed using UAV data showed AUC values of 0.9247 and 0.9189 for the gully
head and the sinkhole, respectively. The use of SPOT-6 data in gully head and sinkhole computations
showed AUC values of 0.9105 and 0.9123, respectively. The AUC values were 0.8978 and 0.9001 for
the gully head and the sinkhole using Sentinel-2, respectively. Comparison of the results from the
calculated UAV, SPOT-6, and Sentinel-2 data showed that the UAV had the highest accuracy for
calculating sinkhole and gully head soil features, although Sentinel-2 and SPOT-6 showed good
results. Overall, the combination of multiple remote sensing satellites and UAVs offers improved
accuracy, timeliness, cost effectiveness, accessibility, and long-term monitoring capabilities, making it
a powerful approach for calculating soil loss in the Loess Plateau of Iran.

Keywords: unmanned aerial vehicle; SPOT-6; Sentinel-2 collapsed pipes; gully heads; loess deposits

1. Introduction

Spatial and temporal data drawn from global quantitative research have shown that
erosion rates are much higher than soil production rates [1]. Soil nutrients discharge faster
during soil erosion (SE) than they form, which threatens the sustainability of agroecosys-
tems [2]. SE has been happening for hundreds of years, allowing the soil regeneration and
regaining of its nutritional value. Additionally, it increases sediment transport (estimated
to be 2.3 ± 0.6 BMT of sediment every year) beyond agricultural fields [3]. Due to climate
change and land use changes, many areas are at risk of SE worldwide, including arid and
semi-arid regions as well as humid ones [4,5]. Therefore, it is essential to detect and monitor
soil loss in susceptible regions in order to ensure human health.

Space-born remote sensing images are most frequently used to obtain features of
erosion on large scales with coarse spatial resolution [6–9]. However, some soil landforms
(erosion features) are not as large as others; therefore, they are high-resolution remote
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sensing images [10,11]. During the last few decades, high-resolution and fine-grained data
using unmanned aerial vehicle (UAV) images have become on-demand from low-altitude
airspaces and are rarely distributed in developing countries [12]. Additionally, data from
these soil landforms (e.g., sinkholes) are not publicly available in developing countries [13].
Therefore, different methods must be tested to derive spatial information regarding the
erosional features, including sinkholes and gully heads.

As a result of increased data availability and thus a deeper knowledge of SE mecha-
nisms, prediction equations have been developed based on some indicators such as soil
properties, climate, vegetation cover, and topography [14,15]. Several mathematical and
geospatial models (e.g., Revised Universal Soil Loss Equation-RUSLE) have also been
proposed to forecast SE distribution at various temporal and spatial resolutions [16–18].
However, some uncertainties in outputs have resulted from nonlinear relationships be-
tween driving factors and related erosion processes, as well as the difficulty of upscaling
the model results from a local scale to a larger scale [19]. Recently, data-driven machine
learning methods have been increasingly applied to analyze the spatial distribution of
SE [20,21]. In areas without observed field data, numerical models based on computational
intelligence can provide probability-based distribution of erosion. These models are based
on developing mathematical patterns between erodible areas and other properties [22].
Deep learning is the most effective machine learning approach and has attracted significant
research attention [23–26]. Recently, the CNN method has been widely used to obtain more
accurate earth feature mapping and modelling [27]. It can handle complex modeling well
and use a large number of resources for training [28,29]. In the domain of deep learning
data-driven networks, there is a regression relationship between input and output variables,
which involves neurons [29]. The weights for the inputs from the first layer to the other
layer are generated based on the connections between neurons. The weighted inputs are
then adopted to produce a reliable output using a bias term [30]. To generate a desirable
output, an activation function is applied to the neurons [31].

Several studies have resulted in fast and accurate outputs when using UAV for ero-
sional feature modeling and mapping in remote and complex regions [32–39]. Although
UAV data have recently been used to calculate erosional landforms [8,40], these studies cal-
culated soil losses using three different images. In other words, this study proposed a novel
deep-learning approach for calculating soil loss in the Loess Plateau of Iran, where a convo-
lutional neural network was employed for the task of interest. In the proposed method,
data from UAV, Sentinel-2, and SPOT-6 satellites were employed for model development
and validation. Furthermore, this study intended to expand on previous research [24] and
test the issues as follows: (1) a UAV image was applied to prepare high-resolution data in
the region of losses of the Plateau of Iran; (2) multi-sources of remote sensing data (SPOT-6
and Sentinel-2) were used in the same region to detect soil maps of susceptible landforms;
(3) the maps prepared from UAV and two remote sensing data were studied and compared;
(4) finally, we examined the efficiency of CNN for detecting and mapping soil landforms.

2. Materials and Methods
2.1. Study Region

The study area is located in northeast Iran (Golestan Province) (37◦36′40′′ N to
37◦38′40′′ N latitudes, and 55◦39′40′′ E to 50◦41′40′′ E longitudes), with approximately
500 hectares of a dominantly semi-arid climatic region. The study was conducted in loess-
driven soils with a mean of 265 mm precipitation per year. The min and max altitudes are
210 m and 550 m above sea level (Figure 1), respectively, with the dominant “silt loam”
texture of the soil surface and the whole region covered by loess soils.
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Figure 1. Location of study area: (a) Iran and (b,c) in Golestan Province.

2.2. Flowchart and Framework of the Present Research

Information regarding the UAV and two remote sensing datasets (SPOT-6 and Sentinel-2)
were prepared and applied in the present study. We collected the UAV, SPOT-6, and
Sentinel-2 datasets on three different dates: 18 August 2019 for both the UAV and SPOT-6,
and 14 September 2019 for Sentinel-2. The soil landforms (erosion features) in the loess
region were computed by applying a deep learning model called CNN (Figure 2). The
first step was to prepare, gather data sources, and digitize the location of two erosion
features, including the sinkhole and the gully head. To this end, 48 ground control points,
GCPs, were gathered from the study area: 70% of the data were allocated for the training
section and 30% for testing the model. Elevation data and topographic information were
collected using SPOT-6, Sentinel-2 remote sensing, and UAV images (Table 1). The next
step involved image processing of the remote sensing and UAV data that were entered as
the inputs of SE susceptibility maps. The images of the UAV with a pixel size of 0.2 m were
processed using Pix4D software (Versions 3.3). The land surface/subsurface maps were
processed in ArcGIS 10.8, and the main indices/factors were extracted from UAV-DEM.
Next, susceptibility maps were computed and validated applying the CNN method. In
the fourth step, erosional landform maps were prepared and validated using two remote
sensing datasets named SPOT-6 and Sentinel-2. In the final step, we analyzed and compared
the results calculated from the UAVs and two different remote sensing satellites (Figure 2).
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Table 1. Characteristics of predisposing variables for gully head and sinkhole detection.

Predisposing Variables for
Gully Head and Sinkhole Resolution Source Unit

UAV image 0.2 m Obtained by the team Categorical

Spot image 6 m Italian National Research Council (CNR) Categorical

Sentinel-2 image 10 m https://scihub.copernicus.eu/dhus/#/home
(accessed on 3 October 2023) Categorical

Elevation 0.2 m UAV Categorical

Elevation 6 m Spot 6 Categorical

Elevation 10 m Topographical map Categorical

2.3. The Preparation of the UAVs and Two Satellite Images

Soil erosional features, including sinkholes and the gully head, were calculated and
detected using UAV data and remote sensing satellite images. Phantom 4RTK was equipped
with a C4K camera, 1-inch CMOS sensor that can shoot 20MP photos and an 8-element
lens with an 84-degree FOV. Video was recorded in H. 264 or H. 265 and C4K resolution of

https://scihub.copernicus.eu/dhus/#/home
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4096 × 2160 up to 60 fps for excellent results. It had a 1/2.3-inch sensor that is comparable
in size to that of a camera phone. The Phantom 4’s remote control and live feed are based
on DJI Lightbridge technology, providing an effective control range of up to 3.1 mi (5 km)
in unobstructed areas that are free from interference. At this stage, the digital model of
the area’s height was prepared from the images and point clouds prepared by the UAV
in pixels of 0.2 m. The images were taken in an area (2700 hectares) with a flight height
of 200 m from the ground and a flight speed of 10 m per second with an overlap of the
flight paths of 75%. The flight path was specified by the Pix4D software, and the bird
moved automatically according to the defined air paths. After the flight operation, the
processes included automatic internal, relative, and absolute justifications, which led to the
preparation of point clouds of the area and a digital height model.

Before conducting aerial photography, BM stations and non-permanent signs of
ground control points were designed, and their approximate locations were determined.
Owing to the non-flatness of the area, BM points were positioned at intervals of at least
1 km using the Differential Global Positioning System (DGPS) method with a triple set
of Global Navigation Satellite System (GNSS) receivers. The DGPS network was posi-
tioned with at least one reference point (mapping organization or the Shamim system).
The marking of non-permanent ground control points was performed before the flight,
and their quality was such that they could be seen and measured in all aerial images.
The density of these signs can vary between 150 and 400 m depending on the presence
or absence of the GNSS/Inertial Measurement unit (IMU) sensor, the flight height, and
the quality of the images. Landmarks were located by Real Time Kinematic (RTK)-GNSS
method from the nearest BM. One of the essential parts of a drone mapping project is flight
and aerial imaging. Therefore, the proper functioning of the bird was ensured to have
the correct flight and quality images, as well as to prevent all kinds of financial losses or
even lives. In addition, before the flight operation, the parameters related to photography,
including shutter speed, ISO (the sensitivity of the camera’s sensor), focus, and aperture,
were adjusted to obtain high-quality images and proper lighting. Quality products were
obtained during the processing stages.

2.4. Definition of CNN Method for Detecting Soil Erosional Features

To reduce land degradation and mitigate the adverse effects of erosion on ecosys-
tem services, it is necessary to accurately predict SE susceptibility. Several theoretical
and empirical models, including RUSLE (Revised Universal Soil Loss Equation), USLE
(Universal Soil Loss Equation), WEPP (Water Erosion Prediction Project), SWAT (Soil and
Water Assessment Tool), and WaTEM/SEDEM (Water and Tillage Erosion Model and
Sediment Delivery Model), can be employed to study soil erosion [41,42]. In contrast to
the traditional soil erosion modelling approach, which requires a physically or empirically
based model for prediction and collection of field data to verify the accuracy of the model,
a machine learning-based approach does not require prior modelling. Additionally, a
new approach is essential to address the diverse factors influencing land degradation and
soil erodibility [43]. Instead, field measurements are used directly to formulate rules and
draw generalizations from the data, leading to predictions using semi-automated and
automated approaches, such as learning-based techniques [44,45]. Deep learning, a subset
of machine learning, has found practical applications in modeling and mapping various
earth features. Among the prevalent deep learning techniques utilized for this purpose
are Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Denoising
Autoencoder (DAE), Deep Belief Network (DBN), and Long Short-Term Memory (LSTM)
networks. Notably, CNN is a fully connected feedforward neural network celebrated for
its ability to effectively reduce the number of parameters while preserving model quality
compared to other deep learning methods [46]. This attribute is particularly advantageous
when working with high-dimensional data, such as images, where each pixel serves as
a feature, making it well-suited for harnessing the power of a CNN [47]. Utilizing CNN
for soil erosion modeling can also lead to cost and time savings in preparation and clas-
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sification processes. In recent years, several researchers have used the CNN model to
accurately map the dynamic features of the Earth [40,48,49]. A CNN is a feed-forward type
of neural network that utilizes convolutional calculation and a depth structure, which is
a representative algorithm for depth learning. A CNN consists of a hidden layer and an
input layer which can include a pooling layer, a convolution layer, a whole connection
layer, and finally an output layer. The input layer comprises an m× n matrix with the
respective feature value at each node. Our input layers for detecting soil erosional features
were the DEM, satellite images, and training datasets. A convolutional layer immediately
adjacent to the input layer is sometimes referred to as the feature extractor. This is because
it is applied to extract the features of an image. Several convolutional kernels were used
in the convolutional layer, which was optimized by a back-propagation algorithm. The
input for the next layer is the output of the convolutional layer [50–53]. In general, six
convolutional layers were used to detect soil erosional features (Table 2). We constructed
CNN models with a two-layer depth for soil erosional features. This means that for each
separated dataset (UAV, SPOT-6, and Sentinel-2), a two-layer depth consisting of DEM
and satellite images was constructed for detecting the gully head and the sinkhole. Each
two-layer depth CNN model was fed predisposing variables (DEM and satellite images).
In this study, we applied multiple convolutions with different filters (2× 2), resulting in
feature maps. All the feature maps were then gathered, and the results of the convolutional
layers were produced.

Table 2. Characteristics of employed CNN models for gully head and sinkhole detection.

Class Activation Function Loss Function Number of
Convolutional Layers Optimizer

Gully head (UAV) ReLu Cross-Entropy 2 ADAM

Gully head (Spot-6) ReLu Cross-Entropy 2 ADAM

Gully head (Sentinel-2) ReLu Cross-Entropy 2 ADAM

Sinkhole (UAV) ReLu Cross-Entropy 2 ADAM

Sinkhole (Spot-6) ReLu Cross-Entropy 2 ADAM

Sinkhole (Sentinel-2) ReLu Cross-Entropy 2 ADAM

Each convolutional layer consists of a pooling layer, an activation function, and
multiple weights [54]. A down-sampling algorithm is used in the pooling layer to reduce
overfitting and minimize dimensionality [55]. Max pooling is employed as a maximum
operator to down sample the feature maps in the encoder. The feature maps must be
manipulated using maximum pooling “to split them into several rectangular regions” to
generate maximum values for the regions. A fully connected layer is used to reduce the
loss function and subsequently output classification results [56,57].

The previous convolutional layers must be weighed to construct a weighted sum. The
weighted sum then passes through an activation function [58]. The ReLu (Rectified Linear
Unit) was applied in the current study, which is defined according to Equation (1). In
the field of deep learning, ReLu is very popular. The function considers negative values
(below zero) as zero, positive values (greater than zero), and values equal to zero as its own.
As its relationship is linear, it is faster than the sigmoid and Tanh functions owing to its
computational efficiency.

f (x) = {0, x < 0 x, x ≥ 0}. (1)

A back-propagation algorithm is then applied to optimize all parameters in a CNN
model, which is applied to decrease the value of the loss function. The cross-entropy loss
was used when adjusting the model weights during training. Therefore, the aim was to
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minimize the loss because the best model has a smaller loss. In general, a cross-entropy
loss of zero considered a perfect model [30]. The optimizer was calculated as follows:

L(y, ŷ) = − 1
N ∑N

i=1 (yi log log (ŷi) + (1− yi)log log (1− ŷi)), (2)

where N is the total number of obtained quantitative samples from the study area, yi is the
natural result of sample i, ŷi is the predicted likelihood of sample i, whose output is 1, and
y and yi reveal the accurate output vectors and predicted probabilities, respectively.

2.5. Output Validation

The result’s classification validation is a critical phase in image analysis to complete a
preliminary assessment of the structural model and conceptual framework [59–61]. This
study utilized ROC curves to assess the accuracy of the flood models. In the ROC curve,
there are two crucial axes: vertical and horizontal. The vertical axis corresponds to true
positives (TP), indicating correctly labelled flood-affected pixels. Conversely, the horizontal
axis represents false positives (FP), indicating incorrectly labelled flood-affected pixels. The
Area Under the Curve (AUC) serves as a metric to quantify the accuracy of prediction
model results [61]. The outputs of the accuracy assessment for detecting gully heads and
sinkholes are represented in Table 3. According to Table 3, the CNN model performed well
with an AUC of >0.89 for gully head and sinkhole detection, respectively.

Table 3. Accuracy assessment for gully head and sinkhole detection.

Class AUC

Gully head

UAV 0.9247

SPOT-6 0.9105

Sentinel-2 0.89.78

Sinkhole

UAV 0.9189

SPOT-6 0.9123

Sentinel-2 0.9001

We also applied loss, validation loss, accuracy, and validation accuracy in Python-
based Spyder software (version 3.7) to estimate classification accuracy. Table 4 shows the
results of the accuracy assessment using Python-based Spyder software.

Table 4. Estimated loss, validation loss, accuracy, and validation accuracy in Python-based Spyder
software for detecting the gully head and the sinkhole.

Class Loss Validation
Loss Accuracy Validation

Accuracy

Gully head

UAV 0.0084 0.0187 0.9452 0.9401

SPOT-6 0.0128 0.0254 0.9214 0.9199

Sentinel-2 0.0254 0.0365 0.9012 0.9000

Sinkhole

UAV 0.0145 0.0298 0.9324 0.9289

SPOT-6 0.0212 0.0320 0.9201 0.9175

Sentinel-2 0.0354 0.0410 0.9135 0.9035

3. Results and Discussion
3.1. The Detected Maps of UAV, SPOT-6 and Sentinel-2 Using CNN Method

This study employed an automated CNN data-driven approach to compare the results
of different UAV, SPOT-6, and Sentinel-2 images and their derived DEMs for detecting and
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mapping gully head and sinkhole. In other words, the main contribution of this work is
the development of an approach using deep learning and convolutional neural networks
(CNN) to compare and detect soil landforms, specifically sinkholes and gully heads, in
hilly regions. For detecting erosional features, UAV, SPOT-6 and Sentinel-2 images with
pixel sizes of 0.2, 6, and 10 m, respectively, were employed. ReLu, cross-entropy, and Adam
were applied as activation, loss, and optimization functions for detecting the gully head
and the sinkhole in the CNN models. In Figure 3, the CNN results for detecting soil erosion
features are presented. Our results showed the highest performance of the CNN based on
UAV datasets for detecting and mapping soil erosional features (Table 3). The results of this
research show that the gully head was detected using CNN with an AUC of 0.9247, 0.91.05,
and 0.89.78 for UAV, SPOT-6, and Sentinel-2, respectively (Table 3). Our findings also show
that CNN performed well for detecting sinkholes with AUC of 0.9189, 0.9123, and 0.9001 for
UAV, SPOT-6, and Sentinel-2, respectively (Table 3). To better understand the performance
of the CNN, we employed four functions including loss, validation loss, accuracy, and
validation accuracy in Python-based Spyder software, as shown in Table 4. According to
Table 4, CNN performed well in gully head detection with accuracies of 0.9452, 0.9214, and
0.9012 for UAV, SPOT-6, and Sentinel-2, respectively. It also achieved accuracies of 0.9324,
0.9201, and 0.9135 in sinkhole detection for UAV, SPOT-6, and Sentinel-2, respectively, as
shown in Table 4. The results of this study emphasize the dependency of soil erosional
feature accuracy on the resolution and quality of DEM data. Overall, by combining the
detected maps obtained from the UAV, SPOT-6, and Sentinel-2 imagery, we can create a
comprehensive and multi-scale analysis of the study area. This integration offers a holistic
view, capturing fine details from the UAV data, broader coverage from SPOT-6, and spectral
richness from Sentinel-2. Such combined maps can provide valuable insights for diverse
applications, enabling informed decision making and accurate assessment of the study area.

3.2. Disadvantages and Advantages of UAVs in Using the CNN Model

In this research, recently published findings [24] were extended to detect sinkhole
collapses and gully heads using UAV, SPOT-6, and Sentinel-2. Because the pixel size of the
satellite images was not at the same fine resolution as UAVs, it was difficult to obtain soil
loss information continuously. Considering the importance of satellite data, data at various
spatial or temporal resolutions can be used in environmental studies. However, these data
should be compared and checked with the acceptable spatial resolution of UAV images,
and the present study must study and assess this issue. However, this study showed that
the UAV and two satellite images had acceptable accuracies. It is challenging to use satellite
images in studies of soil loss size (i.e., volume, width, and height) [30]. Therefore, to ensure
good results from different methods, especially to detect information regarding the size of
erosional features, UAVs are much better than the others.

Elevation data obtained from UAVs remote sensing has various benefits, including
the high spatial resolution of the region and its flexibility [21]. A very high resolution is
an essential advantage of UAVs, and because of the low altitude of UAV flights, imag-
ing problems from the atmosphere have decreased [32,62]. Therefore, highly accurate
information regarding erosional landforms and elevation values can be easily generated
from UAVs. In addition, UAV deployment has become critical in terms of accessibility. In
developing countries, several data barriers and limitations, such as inaccessibility to high-
resolution/up-to-date satellite imagery in areas prone to land degradation, have limited
the wider dissemination of existing data sources, and there is a need to use other means,
such as drone imagery. This has motivated the search for new techniques to obtain spatial
information about erosional characteristics. It should be noted that land subsurface/surface
information and much more quantitative data from more significant regions (i.e., studied
on national scales) can be obtained from the SE sources gathered by remote sensing satellite
images, including SPOT-6 and Sentinel-2. In addition, UAV-driven data are much more
expensive; for instance, having soil loss data with satellite imagery data from 500 hectares is
about one twentieth that of gathering UAV data in the same region size. The UAV also has
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more limitations. For instance, it is not feasible to obtain different hydro-geomorphologic
variables (i.e., flow velocity, and water depth) from UAVs, although they can be easily
obtained from satellite data [63,64]. In addition, UAV remote sensing has a restricted range,
such as the possibility of flying, only in clear sky conditions. Moreover, as UAVs become
more popular and demand for them increases, they become increasingly vulnerable to a
number of security attacks [65]. Although the capabilities of drones will expand in the com-
ing decades, social organizations and governments must be aware of the security aspects
of drone communications [66]. Overall, although UAVs offer significant advantages in
utilizing the CNN model for various applications, it is essential to consider the limitations
of flight endurance, weather dependency, regulatory compliance, and data management.
By addressing these challenges, UAVs can effectively enhance the performance of the CNN
model and enable the accurate and timely analysis of high-resolution aerial imagery.
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3.3. The Positive and Negative Points of Multiple Remote Sensing Sources in Using the
CNN Method

Multiple sources of remote sensing have increased the usage of the “CNN” method.
Other data from satellite images can be applied to detect soil losses [67]. In the current
research, the two-satellite data were gathered at the time when we obtained UAVs in the
fields, and it means that there were more data accessible to support the soil losses in the
Loess Plateau of “Golestan” province. The SPOT-6 and the Sentinel-2 data were equally
efficient for computing soil losses in the studied region. Then, they offered good results for
spatially detecting erosional landforms. Therefore, we achieved well-calculated soil loss
map (Figure 2) outputs from multiple satellite sources, both due to the spatial resolution
and because erosional landforms in the region were very large for detection with different
satellite images. Recently, we expanded the application of the CNN model by applying
data from multiple satellite images.

We are aware that data from multiple satellite sources have excellent temporal reso-
lution in contrast to UAVs. In future research, we must be able to combine much deeper
learning methods with multiple satellite platforms on large scales. After the detection of
soil loss, the changes in the dimensions of soil landforms can be monitored in the short-term.
Long-time detection of other soil landforms, including gullies and mass movements, can
be managed using UAV or data from multi-platform satellites, such as LiDAR [68], thermal
infrared remote sensing [69], and optical remote sensing (e.g., Landsat [70]). Overall, the
use of multiple remote sensing sources in conjunction with the CNN method offers great
potential for improving performance and accuracy. However, it is important to be mindful
of the challenges associated with data fusion and the computational requirements. With
careful consideration and proper techniques, the benefits can outweigh the drawbacks,
leading to a more accurate and detailed remote sensing analysis.

4. Conclusions

The research paper highlights the importance of using drones and satellite images to
identify sinkholes and gully heads so that soil losses in the form of erosion can be calculated.
In the present study, we applied UAV and multiplatform satellite-acquired data, such as
SPOT-6 and Sentinel-2, to detect erosional landforms in the Loess Plateau of Iran. RC values
obtained from the UAVs were 0.89 (sinkhole) and 0.88 (gully head), respectively. We then
calculated the RC values of soil losses with the SPOT-6 data, which were 0.87 (gully head),
and 0.86 (sinkhole). The RC values calculated with the Sentinel-2 were 0.86 (gully head),
and 0.85 (sinkhole). The results showed the excellent performance of the proposed method,
which can be considered a potential solution for practical use. However, to effectively man-
age SE, especially in erosion-susceptible soils, more hydro-geomorphological information
is required over time. The UAVs prepared accurate information that was subsequently
applied to compute soil losses. The UAVs offered very good results in detecting soil losses,
although Sentinel-2 and SPOT-6 provided good results, too. The use of UAV images in SE
mapping confirms some benefits in comparison to the sensing and orbital acquisition meth-
ods. Some characteristics such as flying in lower altitudes, less atmospheric interference,
and, importantly, quite lesser expense are the benefits of this acquisition system in both
scientific and commercial explorations. With the CNN method, the UAV and other satellite
remote sensing data confirmed accurate values, and we believe that this model will be
beneficial for SE research groups and managers worldwide. However, it is recognized that
one of the significant motivations behind CNN popularity these days is the large amount of
accessible data to acquire knowledge. The basis is a CNN which uses images as inputs and
provides a feature map that illustrates the image with semantic features. Future research
on geospatial–temporal hazard analysis should be considered using other deep learning
models for satellite imagery.
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