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Abstract: Collaborative autonomous landing of a quadrotor Unmanned Aerial Vehicle (UAV) on a
moving Unmanned Ground Vehicle (UGV) presents challenges due to the need for accurate real-
time tracking of the UGV and the adjustment for the landing policy. To address this challenge,
we propose a progressive learning framework for generating an optimal landing policy based on
vision without the need of communication between the UAV and the UGV. First, we propose the
Landing Vision System (LVS) to offer rapid localization and pose estimation of the UGV. Then, we
design an Automatic Curriculum Learning (ACL) approach to learn the landing tasks under different
conditions of UGV motions and wind interference. Specifically, we introduce a neural network-based
difficulty discriminator to schedule the landing tasks according to their levels of difficulty. Our
method achieves a higher landing success rate and accuracy compared with the state-of-the-art TD3
reinforcement learning algorithm.

Keywords: deep reinforcement learning; automatic curriculum learning; UAV landing

1. Introduction

Recent years have witnessed the significant potential of air-ground collaboration sys-
tems due to the improvement of levels of autonomy in robotics. The use of air and ground
unmanned vehicles has become an important goal for real-world tasks of search-and-rescue
scenarios [1-3]. Specifically, Unmanned Aerial Vehicles (UAVs) could significantly assist
Unmanned Ground Vehicles (UGVs) by providing localization data and serving as com-
munication relays [4]. However, a UAV has limited payload capacity and endurance. To
address these limitations, UGVs are often utilized as mobile platforms for UAV recharging
and maintenance. Therefore, UAV autonomous landing techniques have become essential
for effective UAV-UGYV collaboration.

Many approaches have been proposed to address the autonomous landing problem
such as Fuzzy control [5], Model Predictive Control (MPC) [6], PD (Proportional, Derivative)
control [7], PID (Proportional, Integral, Derivative) control [8]. However, UAV autonomous
landing remains a challenge because the landing process can be easily interrupted by
unexpected UGV acceleration, direction change, or wind interference [9]. As one solution,
vision-based control methods can be used to track and locate the UGV, resulting in the use
of vision combined with reinforcement learning to address the landing task [10-13]. In
our previous work [11], we integrated a PID controller with the Deep Deterministic Policy
Gradient (DDPG) [14] algorithm. By introducing an agent to automatically tune parameters
during the landing process, we achieved successful landings on a static marker. However,
landing in dynamic environments with interference remains a challenge, and it is typically
time-consuming to train the landing policy with a difficult level of task setting.
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The Automatic Curriculum Learning (ACL) paradigm, as discussed in [15], breaks
down a complex task into a series of simpler subtasks, initiating the training process with
manageable conditions that progressively intensify in difficulty. There have been numerous
efforts to integrate ACL with Deep Reinforcement Learning (DRL). Ren et al. [16] proposed
a self-paced curriculum learning method, filtering transitions based on coverage penalty.
Several ACL-based methods for robot control have been proven effective. For instance,
the challenge of UAV mapless navigation was segmented into three task stages, with the
task difficulty dynamically escalating according to the agent’s navigation proficiency [17].
In a similar work, Hu et al. [18] suggested employing handcrafted Curriculum Learning
(CL) to enhance experience sampling for fixed-wing aircraft motion control. Moreover,
the evolutionary Nav-Q curriculum learning framework seamlessly integrated predicted
Q-value insights with ACL to tackle DRL problems [19]. These studies highlight that
implementing curriculum learning across the agent population not only significantly
reduces convergence time but also enhances policy performance. However, we note that
poorly designed curricula can lead to inefficient learning, disrupting the initial stages of
DRL training by imposing excessively challenging tasks [20].

To address the aforementioned challenge, we introduce the Land-Automatic Curricu-
lum Learning (Land-ACL) method. Automatic Curriculum Learning (ACL) has garnered
significant attention because of its capacity to provide comprehensive signals for policy
training. Recent studies conducted in [21-23] further substantiate the effectiveness of ACL
in both simulated robot experiments and field studies. We design Land-ACL to facilitate the
autonomous landing of a UAV on a moving platform using the Twin Delayed Deterministic
Policy Gradient (TD3) algorithm, as outlined in [24]. We use the TD3 algorithm as the
motion controller for the UAV as it is renowned for its effectiveness in robotic control
problems in the literature [25-27]. Our approach provides Deep Reinforcement Learning
(DRL) training with adaptive levels of task difficulty. In particular, we employ Land-ACL
to establish a training curriculum for the agent, enabling it to learn to land on an acceler-
ating and steering UGV under wind interference. In addition to Land-ACL, we design a
Landing Vision System (LVS) for UGV localization and pose estimation. An overview of
our proposed method is presented in Figure 1.

Time step ¢ Time step ¢ +1

State s, DRL Land
Controller ACL

l Tasks

a,

Actionl Result

Enyironmen

Figure 1. An overview of our proposed autonomous landing system.

The main contributions are summarized as follows:

*  We propose an automatic curriculum learning framework for solving the UAV-UGV
landing problem under different conditions of UGV motions and wind interference.

¢ We design a task difficulty discriminator to schedule the curriculum according to the
levels of difficulty.

*  We design a streamlined pipeline that enables rapid visual tracking while providing
pose estimation for the DRL controller.
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The rest of the paper is organized as follows: Section 2 presents the related prelimi-
naries of deep reinforcement learning and the kinematic model. Section 3 describes the
proposed method. Section 4 discusses experimental results. Finally, we conclude the paper
in Section 5.

2. Preliminaries
2.1. Deep Reinforcement Learning

Recent advancement in DRL has led to a variety of algorithms such as Deep Q-
learning (DQN) [28], Deep Deterministic Policy Gradient (DDPG) [14], Twin-delayed Deep
Deterministic Policy Gradient (TD3) [22] and the Soft Actor Critic (SAC) [29]. We note
that SAC demonstrates good learning results by introducing a policy entropy to achieve
efficient explorations throughout training. However, the SAC failed to distinguish itself
with the performance of TD3 in [30-32]. Therefore, we choose TD3 for our policy training.

TD3 incorporates several key features that enhance its efficiency and stability when
compared to DDPG. One significant distinction is the utilization of twin Q-functions, which
helps prevent the Q-value from being overestimated. Additionally, TD3 implements a
delayed policy update mechanism, where the policy network is updated less frequently
than the Q-value networks Q. (s, a);=12, where 0;;_1 ) are the parameters of the critic
networks. Furthermore, TD3 employs the technique of target policy smoothing, which
introduces noises into the learning process to prevent convergence to unfavorable local
optima. The Bellman equation is utilized to calculate target value y(r,s’). The smaller

item of the two outputs (Qgi , Q%) from the target critic networks is fed into the Bellman
equation to avoid overestimation of the Q-value as

y(r,s') = r+'ym%r; Qu (s, my(s") +¢). 1)
i=1, i
We then update the critic networks as follows:

0; + argmin, N'Y (y- Qei(s,a))z. )

Meanwhile, the target actor network is not updated consecutively to reduce the
overestimation problem. In TD3, however, parameter ¢ is updated by the deterministic
policy gradient after certain training iterations, e.g., updated two times [22]. The equation
for the policy update is described as follows:

Vol (@) = NTEVaQu (50| Vprmyls), ©

=71p(5)

Finally, hyper-parameter 7(0 < 7 < 1) is introduced for the soft update, which
alleviates the problem of over-fitting during the training. The target networks are updated
as follows:

91, — 10; + (1 - T)Gl/-,

¢ —Tp+ (1-1)¢. @)

2.1.1. Reward Function Setup

The reward function plays a crucial role in learning an effective and efficient UAV
landing. First, it is essential for the UAV to land precisely on top of the UGV, within the
specified marker range. Second, the UAV is required to continuously track the UGV to
ensure accurate state estimation throughout the landing process, maximizing the visibility
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of the marker whenever possible. Lastly, the landing task should be completed as quickly
as possible. Consequently, the received reward r; at each time step is designed as follows:

100 success
rr =< r.—2 otherwise. &)
—100 failed

Furthermore, we introduce reward item 7. to facilitate the UAV to keep up with the
moving target at each time step. The reward associates with the state space, R**3*1, driving
the agent to stick to the moving platform. We add —2 to the step reward to prevent the
agent from learning to hover over the center of the landing zone without landing. r. is
defined as follows:

reo= Yo SountD ©)
s€R Count(ltotal)
where [ is the number of pixels which exceeds the threshold value, and I, represents
the total number of pixels in R**3*1. The value of r. has a range of [0, 1] to encourage the
agent to approach the center point of the UGV at each time step.

2.1.2. TD3-Based Landing Controller

The control process starts with the UAV capturing an image of the environment
using an on-board camera. The camera’s orientation is adjusted to encompass the target
landing area, and the image is captured with appropriate exposure and focus settings. The
state vector consists of features generated by the Landing Vision System (LVS), which we
introduce later in Section 3.1. At time step ¢, state vector s; is defined as s; = = R9*1x1 The
image is then fed into the TD3 network, which extracts relevant information and generates
an action denoted as a;. Action space A is defined as a three-dimensional continuous space.
Specifically, action a is denoted as a = (vx,vy, v;) € A, where vy, vy, and v, represent
the reference linear velocities along the x, y, and z axes in the world coordinate system,
respectively. The calculation of a; takes into account the UAV’s current state, including its
position, velocity, and the processed image data. The TD3 network effectively combines
reinforcement learning with deep neural networks to optimize the landing process. By
learning from previous landing trials, it dynamically adapts its strategies in real time,
ensuring smooth landing.

2.2. Coordinate System and the UAV Kinematics

The coordinate system includes the Rack and Camera Coordinate System along with
Pixel, World and the Target Coordinate Systems, as shown in Figure 2.

Rack & Camera
Coordinate
System

Pixel

Coordinate “— v\
System i\“v \

o ] Target ©
Coordinate &

System Coordinate

4 System

Figure 2. The definition of the coordinate system.

We use a quadrotor with an X-configuration rack. Four mini-motors are installed
perpendicular to the rack to provide up-lifting forces T;(;_1 53 ,4) through rotation in the
O, Z, negative direction. The rack coordinate system and moments along with forces are
also shown in Figure 3.
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Right

Figure 3. Coordinate systems and forces acting on the UAV.

We assume that the UAV is subject to gravity in the Oy, Z;, only and that its frame does
not deform during flight (i.e., it is rigid). The kinematics of the UAV are shown as follows:

4
mi=—-mg+Y T, 7)
iz

where m is the mass of the UAV, Z represents the acceleration in the z-coordinate, g is the
gravitational acceleration, and T; represents the thrust generated by the ith propeller. This
equation accounts for the gravitational force and the thrust from the propellers in main-
taining the UAV’s altitude. The horizontal motion in the x-axis and y-axis is described by

n[f] = i) cos)] ©

where % and ij represent the acceleration in the x-axis and y-axis. T is the total thrust
generated by all propellers, ¢ is the pitch angle, and 6 is the roll angle.
We can conclude the kinematic model of the UAV as follows:

[ X o
/W — oW
éw [ vz’
L < z , , ©)
¢ 1 tanfsin¢  tanfcos¢ p
0 |=10 cos ¢ —sin¢ q
L 0 sin¢g/cosf cos¢p/ cosb r

where (X%, Y%, Z% )T is the position of the UAV in the World coordinate system.
The UGV moves in the Oy Yy Xy plane, and we denote its position in the World

coordinate system as (X', Y!, Z t)T. Therefore, we can calculate the relative position between

the UAV and UGV as follows:
X3 Xw Xy
YE | = XY | - | X |. (10)

7% zv zv

3. Method
3.1. Landing Vision System

The Landing Vision System (LVS) is designed to enable the UAV to recognize and
locate the target UGV, as depicted in Figure 4. First, the UAV captures an RGB image of
81 x 81 pixels using a downward-facing camera attached to the bottom of the UAV. These
visual inputs are then fed into the Landing Vision Module (LVM) for target recognition and
visual tracking. Within the LVM, we initially employ the Oriented FAST and Rotated BRIEF
(ORB) algorithms [33] and the Brute Force Matcher to detect the marker by comparing it
to a provided template. A bounding box is drawn based on the matching result. We then
highlight the area within the bounding box and darken the surrounding area. If the UGV
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moves out of the Field Of View (FOV) of the UAV, we aim to restore the state of the previous
detected time step. If ORB fails to detect the UGV at the current time step, we replace the
current state with the latest state that includes the UGV’s location. Then, we employ the
Depthwise Separable Convolution (DSC) method [34] to localize the UGV within a single
image frame. Then, we normalize the output image and utilize the Ghosting method to
provide the agent with the UGV’s motion trends. This approach in the LVM assists the
agent in adapting to real-world target detection without overwhelming the DRL agent
with excessive data. Finally, the RGB image is converted into a grayscale image and then
reshaped into a 9 x 1 array, constituting the state vector at time step ¢.

RGB Images Ghosting

|
|
|
|
|
|
| W
T=1-2 . |
N |
g |
0 Landing Reshapen |
= | | B
{
= &
_ §
T, =1-1 [
(S
oxt |
|
: Matched
;*
(O]

T, =t 3x3x1

Figure 4. Pipeline of the Landing Vision System. A, B and C are the corresponding pixel values of
the ground target in the images, which are changed into A’, B’ and C’ using the proposed Ghost-
ing method.

We note that the Ghosting method extracts the UGV’s motion trend by analyzing a
sequence of consecutive frames. The UGV’s location is extracted by the ORB algorithm and
a Brute Force Matcher. We use the previously prepared feature points extracted from the
template of the marker that guides the landing process. After the relative location of the
UGV is calculated, we highlight the area that contains the UGV and use DSC to divide the
approximate position of the UGV into the corresponding area of the final 3 x 3 image. We
record the pixel value within the collected images at the time step n as p, and adjust the
pixel value p, within the collected images as follows:

Ph=pn- A", (11)

where a discounting variable A (A € (0,1)) is introduced to concatenate continuous frames
into a single frame. As the frame’s temporal proximity to the current time step ¢ increases,
so does its capacity to preserve higher pixel values. Consequently, the composite result
of aggregating these processed images elegantly encapsulates the evolving motion trends
of the UGV. This not only provides the UAV with a comprehensive understanding of the
UGV’s motion state, but also leverages this knowledge to guide subsequent decisions
and actions.

3.2. Automatic Curriculum Learning of the Landing Policy
3.2.1. Task Setup

We divide the landing task into three steps, each featuring varying levels of difficulty,
as shown in Table 1.
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Table 1. Task Item of Land-ACL.

Task Parameters Description

Basic UGy Maximum linear velocity of UGV
Default aycy,wycgy+Basic Maximum angular velocity and acceleration of UGV
Frontier Vying+Default Maximum wind speed

Basic: We introduce the Basic task to provide the agent with primary signals for learn-
ing low-level principles of landing on the UGV. Specifically, the Basic task contains
a single variable: the UGV’s linear velocity v;gy. By introducing the Basic task, our
aim is to facilitate the agent to learn basic landing strategies, as shown in Figure 5.
Moreover, the action policy learned in Basic is intended to prepare the agent for the
transition from Basic to the subsequent Default task, addressing the gap that may
arise during task switching.

o | | | BE

T 3

Time step #-2 Time step #-1 Time step ¢

Figure 5. Illustration of a Default task.

Default: The Default task is designed to facilitate learning to land in complex situa-
tions. The Default task incorporates two additional variables based on the Basic task:
angular velocity wyjgy and speed acceleration ay;gy, as illustrated in Figure 6. We
change the direction of wy;gy at regular intervals. We intend to enhance the agent’s
ability for quick response when dealing with unexpected environmental changes. In
addition, the robustness of the landing process can also be improved through adding
acceleration and steering.

Wind = Wind 2
4 Y
Vi =1_|.
Time step -2 Time step #-1 Time step ¢

Figure 6. Illustration of a Frontier task.

Frontier: In order to further enhance the adaptability to complex environments for
the policy, we introduce the Frontier task to facilitate learning to land with wind
interference, which is simulated using continuous Gaussian noise added to the UAV’s
maneuver commands. This Gaussian noise vy, is limited to a magnitude of 0.3 m/s
and lasts for a maximum of 2 s. Furthermore, we use the augmentation of vy;,;
as a simulated-to-real strategy to prepare the policy for handling environmental
disruptions during real flights.
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3.2.2. Land-ACL

We propose the Land-ACL method to tackle the challenging problem of landing a UAV
on a moving UGV. Traditional manual curriculum design is inefficient for addressing this
high-dimensional control problem that demands a complex skill set for enabling precise
motion control in dynamic environments [21]. To solve this problem, our Land-ACL
method automatically generates curriculums of increasing difficulty based on the agent’s
learning progress, as illustrated in Figure 7.

At the beginning of a training episode, we randomly generate multiple tasks U from
Basic, Default and Frontier. Next, we employ a neural network discriminator to evaluate
whether the task difficulty is appropriate for the agent to manage. Using the received
task parameter values, the Difficulty Discriminator (DD) can produce the agent’s success
probability P for completing the current task. Our DD training employs the end-to-end
training method, entailing the acquisition of knowledge from scratch. By intentionally
configuring a replay buffer with limited capacity, the curriculum learning enables Land-
ACL to focus on guiding recent task learning. This approach enables efficient learning
by progressively increasing the difficulty of the learning tasks, ensuring that the agent
steadily acquires the essential skills for successful landings. The structure of our Difficulty
Discriminator can be seen in Table 2.

Automatic Curriculum DRL Training

M |
CLLLLLLLLELLL) | Policy |
. . —
Tasks Difficulties, | |
P Results
DD trainings |4— | States Actions
T | | Rewards
| Env

Settings | Semamm
| [FSpeedV—p/ ——— |

Figure 7. Pipeline of the Landing-Automatic Curriculum Learning method.

Table 2. Difficulty Discriminator for Land-ACL

Network

Input Dimensions Output Operator
Vucv, wugy 3x 15 FC1 Leaky Relu

FC1 15x8 FC2 Leaky Relu

FC2 8x1 p Tanh

We then filter the output task based on success probability, ensuring a consistent
challenge for the agent with tasks of balanced complexity. If P falls within a specific
threshold range (1, ¢), we determine that this task has the appropriate difficulty for the
current stage of learning. The environment is then reset based on the output task variables.
Finally, we configure the new environment according to the output task U, as illustrated in
Algorithm 1. The difficulty is predicted by DD, even if it is not properly trained. We test
the current capability of the agent every 10 episodes using the critical difficulty of the task
type. Once the agent passes the test, the task type switches to the next one.
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Algorithm 1 Land-ACL
Input: Order;
Output: Task U;
1: fort =1to T do:
2: if t mod 10 = 0 then:
3 Conduct landing capability Tests;
4: end if;
5: TaskType < GetTaskType(); > The task type changes if the agent passes the capability test
6: while True do:
7 if TaskType = Basic then:
8 Obtain U from GetTaskBasic();
9: end if;
10: if TaskType = Default then:
11: Obtain U from GetTaskDefault();
12: end if;
13: if TaskType = Frontier then:
14: Obtain U from GetTaskFrontier();
15: end if;
16: Randomize parameters in U;
17: Clip U according to the boundaries;
18: p < DD(U); > Obtain the success probability of the output task.
19: if 7 < p < ¢ then: return U.
20: end if;
21: end while
22: end for.

4. Experiments and Results

The experiment was conducted in the Gazebo simulation environment. MAVLink was
used to connect the PX4 flight controller with the simulator. Additionally, we modified the
Iris-type UAV from the firmware package by installing a bottom-mounted camera, oriented
perpendicular to the frame. We note that the downward-facing camera was rigidly attached
to the UAV’s rack to reduce possible vibrations generated through the motor rotations. The
Field Of View (FOV) for the equipped wide-angle First Point of View (FPV) camera has a
limited angle of 120 degrees. We set the simulated experiment in clear lighting conditions
for UAV visual recognition.

For the design of the ground target, we imported the Husky UGV model and made
modifications to its top plate to accommodate the detection marker, as depicted in Figure 8.
The marker was based on the logo of Hohai University. The speed and steering angle limits
of the Husky UGV were customized to meet the training and testing needs.

Our experiment was divided into two phases: training and testing. We employed
the Adam optimizer [35] in the neural network, with a learning rate of & = 10~ for the
actor network and & = 1073 for the critic network. We used a discount factor y = 0.99
to compute the expected Q-value. To facilitate soft updates, we set T = 0.005. Rectified
linear units (ReLUs) were used for all hidden layers in the neural networks. The actor’s
final output layer was a tanh layer to constrain the actions. The agent was trained using
a mini-batch size N of 16, with 10 iterations conducted whenever the UAV landed. Both
replay buffers, B and B,, had a size of 32,768.

4.1. Simulated Trainings

During training, the UAV first ascended to a height of 3.5 m, followed by the initiation
of the unmanned ground vehicle (UGV). During the training, the speed of the UGV was set
to vary from 0.2 m/s to 1 m/s. Furthermore, we introduced a sudden acceleration of the
UGV with a value of a,¢, = 0.2 m/s?. We conducted 10 trials for the policy training, with
each trial comprising 400 episodes.

We updated the two critic networks and one actor network of TD3 five times per itera-
tion. For fair comparisons, we conducted experiments on SAC, TD3 and Land-ACL+TD3
algorithms under similar conditions. We calculated the average accumulated reward ob-
tained during the training trials for all three algorithms, as shown in Figure 9a. The loss
curve for our DD training is shown in Figure 9b. It illustrates that our proposed algorithm
achieved the fastest convergence, reaching stability after around 150 episodes. Additionally,
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the cumulative reward of our algorithm steadily increased until it reached a plateau after
approximately 350 episodes of training. In other words, the proposed algorithm outper-
formed the classical TD3 approach in terms of the final cumulative reward. This indicates
the effectiveness of Land-ACL in providing superior training resources for identifying the
optimal landing approach rather than inefficient exploration. We note that the SAC algo-
rithm showed worse performance than TD3, which was also reported in [31]. We attribute
this common phenomenon to the SAC algorithm’s excessive focus on environmental ex-
ploration tasks, resulting in poor performance in gaining more accumulated reward in the
early stages of training. This phenomenon might be improved through extensive training.

Collected Transitions

If 7,>0
Simulation -|
Replay Buffer |Baches|] Replay Buffer
A B
Q-network Min Q-network
A B
Tasks Results  Actions v
Policy 7 .
Land-ACL Agent |= Policy Network
L TD3 J
Figure 8. Pipeline of our TD3 landing controller.
100
0.24
50

- 0.22
§ U \V\’/\WW
o 0.20
el
&4) =50 m
_g 2 0.18
E
E
8 -100 0.16
<

_150 SAC 0.14

— TD3
—— TD3+Land-ACL(Ours) 012 ——— Land-ACL
200 Sb 160 1§o 260 ZéO 360 3%0 460 5‘0 160 1%0 260 25‘0 360 3;0 460
Episode Episode
(a) (b)

Figure 9. Comparison of averaged accumulated reward and the averaged loss curve of the TD3+Land-
ACL. (a) Learning curve for the averaged accumulated reward. (b) Averaged loss curve of DD.

The reward of the Land-ACL+TD3 exhibited a significant increase around the 50th
episode and consistently maintained a higher level compared to the other algorithm. In
contrast, TD3 did not achieve satisfactory performance within the 400 episodes of training.
One contributing factor to TD3’s lower reward was the inclusion of a negative reward as
specified in Equation (6). Specifically, if the UAV lost track of the UGV within its field of
view, a negative reward was incurred. Furthermore, once the UAV lost track, reestablishing
the detection of the UGV was challenging. Consequently, the UAV continued to receive
negative rewards until the completion of a failed trial. Although it is possible that TD3
could have achieved better performance with additional training episodes, allocating
computational resources and time for this purpose would be unnecessary.

4.2. Simulated Testings

To assess the effectiveness of our policies under various scenarios, we conducted
experiments in two testing scenarios A and B. The results are shown in Table 3. Since
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the policies trained with TD3 were suboptimal, indicating their inability to fulfill the
Default task, we implemented only the tracking policy trained under TD3+Land-ACL. We
conducted testings under two scenarios, each tested for 100 trials. Following the approach
of Rodriguez-Ramos et. al. [36], we considered a landing successful if the UAV landed
0.1 m above the moving UGV within a distance limit of 0.8 m.

Table 3. Statistics for the Simulated Tests.

Average Distance Error (m) Average Velocity Error (m/s)

Scenario x-Axis y-Axis Total x-Axis y-Axis Total
Scenario A 0.45 + 0.05 0.34 + 0.04 0.56 1.12 +0.04 0.52 £+ 0.03 1.23
ScenarioB  0.47 £+ 0.07 0.40 £ 0.05 0.62 1.15+0.04 0.57 +0.01 1.28

4.2.1. Test Scenario A: UGV Moving along a Straight Trajectory

We set the UGV to follow a straight trajectory at a constant speed of 0.6 m/s until
reaching the destination, as depicted in Figure 10a. In Scenario A, our primary focus was
on testing the UAV’s ability to complete the Basic task. Consequently, we included only a
uniform linear velocity in Test Scenario. The UAV successfully tracked the trajectory of the
target UGV while planning smooth landing curves in all of the testing trials using Land-
ACL-trained policy, as depicted in Figure 10b. Furthermore, we achieved a 100% success
rate in all 100 tests, demonstrating satisfying stability with our proposed method. This
demonstrates TD3+Land-ACL’s advantages in handling Basic and Default tasks, resulting
in improved motion stability and safety throughout the tracking and landing process.

We also collected the averaged distance and velocity errors from the testing trials,
as shown in Figure 10c,d. We can conclude that both distance errors and velocity errors
achieved a satisfying outcome for the UAV autonomous landing task. To further challenge
the boundaries of our proposed method, we conducted additional testing under Scenario B
to fulfill the Frontier task.

4.2.2. Test Scenario B: UGV Moving along a Curved Trajectory

To further validate the capability of our method in completing the Frontier task, we
configured the UGV to follow a curved trajectory with sudden acceleration and wind
interference. We simulated high-wind conditions for landing by introducing continuous
Gaussian noise into the UAV’s action commands. The supplementary action noises were
limited to a magnitude of 0.2 m/s and lasted no longer than 2 s. Random sudden velocity
changes, ranging from —0.2 m/s? to 0.2 m/s?, were applied to the UGV’s motion every 5 s
during the training trials. The setup for Test Scenario B is depicted in Figure 11a.

Similarly, the 3D trajectory of the UAV and the UGV is shown in Figure 11b. Compared
to the landing trajectories in Figure 10b, the output curves exhibit greater instability. We
interpret this phenomenon as the UAV attempting to predict the possible movement pattern
of the accelerating and steering UGV.

The averaged distance and velocity errors from the testing trials are collected during
each test episode, as depicted in Figure 11c,d. The averaged distance error is relatively small
and stable during most of the testing steps, gradually converging to a landing on top of the
UGYV by the end. However, the averaged velocity error fluctuated significantly during the
landing process. This phenomenon can be attributed to the UAV attempting to keep up
with the UGV. The positive-negative variation in Figure 11d represents the process of the
UAV quickly adjusting to the changing UGV speed. Despite the fluctuations, our method
achieved a 91% success rate in the testing trials under Scenario B, demonstrating that
TD3+Land-ACL is capable of completing the Frontier task, therefore further demonstrating
the effectiveness of our proposed Land-ACL in guiding the UAV’s landing on a speed-
changing UGV under wind interference.
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Figure 10. Illustration of the averaged trajectory, distance and velocity error for our TD3+Land-
ACL in Test Scenario A. (a) Training diagram of Scenario A in the Gazebo simulator. (b) Averaged
trajectories of tracking a moving UGV. (c) Averaged distance error. (d) Averaged velocity error.
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Figure 11. Illustration of the averaged trajectory, distance and velocity error for our TD3+Land-
ACL in Test Scenario B. (a) Training diagram of Scenario B in the Gazebo simulator. (b) Averaged
trajectories of tracking a moving UGV. (c) Averaged distance error. (d) Averaged velocity error.
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4.2.3. Landing Precision

We collected the successful landing points of 100 trials for each of the three algorithms
under Test Scenario B. The tests continued until the testing controller reached 100 successful
landing trials. A safe and precise landing should be close to the center of the UGV, i.e., the
center of the landing marker. The statistics of the landing point distribution are shown
in Table 4. Both the SAC and the TD3 controller exhibit unsatisfying performance with a
successful rate of 24% and 36%, respectively. Our method reached a 91% success rate in
these testing trials, indicating the trained policy reached satisfying stability. Furthermore,
the TD3+Land-ACL demonstrates a more precise and concentrated landing points, with a
average distance of 0.44 m and a distribution of 0.2 m. This indicates that our method has
good stability and landing accuracy.

Table 4. Statistics of the landing Points

Algorithm Average Distance (m) o (m) Successful Landing Rate (%)
SAC 0.86 0.33 24
TD3 0.78 0.31 36
TD3+Land-ACL 0.44 0.20 91

In Figure 12, we illustrate the landing points generated by a specific algorithm if its
landings were successful. The landing points of TD3+Land-ACL are distributed in the
lower right part of the landing area. This indicates that the UAV manages to discover better
landing policies by predicting the movement of the UGV and catching up with it due to
the use of the Ghosting method as part of the DRL state representation. In contrast, the
landing points of SAC and TD3 are distributed around the left part of the landing platform,
indicating that they do not learn an optimal policy adapting to the movement of the UGV.
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Figure 12. Distribution of the landing points on the landing marker.

5. Conclusions

We proposed a novel approach that combines the Automatic Curriculum Learning
(ACL) method with the Twin Delayed Deterministic Policy Gradient (TD3) algorithm. By
incorporating ACL, we provided a policy adaptive to environmental changes for UAV
landing control. Additionally, we proposed the Landing Vision System (LVS) to provide
constant detection and tracking of the target UGV using the Oriented FAST and the Ro-
tated BRIEF (ORB) algorithms. We proposed the Ghosting method to consolidate the
motion trajectories of the moving UGV from multiple images into a single image. Through
comprehensive testing in simulations, we validated the effectiveness of our algorithm in
adapting to dynamic landing scenarios. The UAV demonstrated a strong adaptability to



Drones 2023, 7, 676 14 of 15

interference, and the UAV learned to predict the movement of the UGV for reliable landing.
The simulation results showed a satisfactory result of a 91% success rate and a distance
error of 0.44 m.

In future work, we will focus on further improving the accuracy of our landing system
and carry out real-world experiments.

Author Contributions: Conceptualization, C.W. (Chang Wang); methodology, C.W. (Chang Wang);
software, ].W.; validation, C.W. (Chang Wang); formal analysis, C.W. (Chang Wang); investigation,
C.W. (Chang Wang); resources, C.W. (Changyun Wei); data curation, J.W.; writing original draft
preparation, J.W.; writing—review and editing, C.W. (Chang Wang) and Y.Z.; visualization, ].W.;
supervision, C.W. (Chang Wang); project administration, D.Y.; funding acquisition, ].L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Science and Technology Innovation 2030-Key
Project of “New Generation Artificial Intelligence” under Grant 2020AAA0108200 and in part by the
National Natural Science Foundation of China under Grant 61906203 and 62006121.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Tokekar, P; Hook, ].V.; Mulla, D,; Isler, V. Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture. [EEE
Trans. Robot. 2016, 32, 1498-1511. [CrossRef]

2. Nex, F; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1-15. [CrossRef]

3. Liu, P; Chen, A.Y,; Huang, Y.-N.; Han, J.-Y;; Lai, J.-S.; Kang, S.-C.; Wu, T.-H.; Wen, M.-C.; Tsai, M.-H. A review of rotorcraft
Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering. Smart Struct. Syst. 2014, 13, 1065-1094.
[CrossRef]

4. Yin, D.;Yang, X,; Yu, H.; Chen, S.; Wang, C. An Air-to-Ground Relay Communication Planning Method for UAVs Swarm
Applications. IEEE Trans. Intell. Veh. 2023, 8, 2983-2997. [CrossRef]

5. De Souza JP, C.; Marcato AL, M.; de Aguiar, E.P; Jucd, M.A.; Teixeira, A.M. Autonomous landing of UAV based on artificial
neural network supervised by fuzzy logic. J. Control. Autom. Electr. Syst. 2019, 30, 522-531. [CrossRef]

6. Feng, Y.; Zhang, C.; Baek, S.; Rawashdeh, S.; Mohammadi, A. Autonomous Landing of a UAV on a Moving Platform Using
Model Predictive Control. Drones 2018, 2, 34. [CrossRef]

7. Gautam, A.; Sujit, P.B.; Saripalli, S. A survey of autonomous landing techniques for UAVs. In Proceedings of the 2014 International
Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27-30 May 2014.

8. Araar, O.; Aouf, N.; Vitanov, I. Vision Based Autonomous Landing of Multirotor UAV on Moving Platform. J. Intell. Robot. Syst.
2017, 85, 369-384. [CrossRef]

9. Xin, L; Tang, Z.; Gai, W,; Liu, H. Vision-Based Autonomous Landing for the UAV: A Review. Aerospace 2022, 9, 634. [CrossRef]

10. Alam, S.; Oluoch, J. A survey of safe landing zone detection techniques for autonomous unmanned aerial vehicles (UAVs). Expert
Syst. Appl. 2021, 179, 115091. [CrossRef]

11.  Wu, L.; Wang, C.; Zhang, P.; Wei, C. Deep Reinforcement Learning with Corrective Feedback for Autonomous UAV Landing on a
Mobile Platform. Drones 2022, 6, 238. [CrossRef]

12. Kakaletsis, E.; Symeonidis, C.; Tzelepi, M.; Mademlis, I.; Tefas, A.; Nikolaidis, N.; Pitas, I. Computer Vision for Autonomous UAV
Flight Safety: An Overview and a Vision-based Safe Landing Pipeline Example. ACM Comput. Surv. 2021, 54, 1-37. [CrossRef]

13.  Patruno, C.; Nitti, M.; Petitti, A.; Stella, E.; D’orazio, T. A Vision-Based Approach for Unmanned Aerial Vehicle Landing. J. Intell.
Robot. Syst. 2019, 95, 645-664. [CrossRef]

14. Lillicrap, T.P; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

15. Narvekar, S.; Peng, B.; Leonetti, M.; Sinapov, J.; Taylor, M.E.; Stone, P. Curriculum learning for reinforcement learning domains: A
framework and survey. J. Mach. Learn. Res. 2020, 21, 7382-7431.

16. Ren, Z.; Dong, D.; Li, H.; Chen, C. Self-Paced Prioritized Curriculum Learning with Coverage Penalty in Deep Reinforcement
Learning. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2216-2226. [CrossRef]

17. Morad, S.D.; Mecca, R.; Poudel, R.PK,; Liwicki, S.; Cipolla, R. Embodied Visual Navigation with Automatic Curriculum Learning
in Real Environments. IEEE Robot. Autom. Lett. 2021, 6, 683—-690. [CrossRef]

18. Hu, Z; Gao, X.; Wan, K.; Wang, Q.; Zhai, Y. Asynchronous Curriculum Experience Replay: A Deep Reinforcement Learning
Approach for UAV Autonomous Motion Control in Unknown Dynamic Environments. IEEE Trans. Veh. Technol. 2023, 1-16. .
[CrossRef]

19. Xue, H.; Hein, B.; Bakr, M.; Schildbach, G.; Abel, B.; Rueckert, E. Using Deep Reinforcement Learning with Automatic Curriculum

Learning for Mapless Navigation in Intralogistics. Appl. Sci. 2022, 12, 3153. [CrossRef]


http://doi.org/10.1109/TRO.2016.2603528
http://dx.doi.org/10.1007/s12518-013-0120-x
http://dx.doi.org/10.12989/sss.2014.13.6.1065
http://dx.doi.org/10.1109/TIV.2023.3237329
http://dx.doi.org/10.1007/s40313-019-00465-y
http://dx.doi.org/10.3390/drones2040034
http://dx.doi.org/10.1007/s10846-016-0399-z
http://dx.doi.org/10.3390/aerospace9110634
http://dx.doi.org/10.1016/j.eswa.2021.115091
http://dx.doi.org/10.3390/drones6090238
http://dx.doi.org/10.1145/3472288
http://dx.doi.org/10.1007/s10846-018-0933-2
http://dx.doi.org/10.1109/TNNLS.2018.2790981
http://dx.doi.org/10.1109/LRA.2020.3048662
.
http://dx.doi.org/10.1109/TVT.2023.3285595
http://dx.doi.org/10.3390/app12063153

Drones 2023, 7, 676 15 of 15

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

Wang, Z.; Xuan, J.; Shi, T. Multi-label fault recognition framework using deep reinforcement learning and curriculum learning
mechanism. Adv. Eng. Inform. 2022, 54, 101773. [CrossRef]

Yan, C.; Wang, C.; Xiang, X.; Low, K.H.; Wang, X.; Xu, X.; Shen, L. Collision-Avoiding Flocking with Multiple Fixed-Wing UAVs
in Obstacle-Cluttered Environments: A Task-Specific Curriculum-Based MADRL Approach. IEEE Trans. Neural Netw. Learn. Syst.
2023, 1-15. . [CrossRef]

Clegg, A.; Erickson, Z.; Grady, P.; Turk, G.; Kemp, C.C.; Liu, C.K. Learning to Collaborate From Simulation for Robot-Assisted
Dressing. IEEE Robot. Autom. Lett. 2020, 5, 2746-2753. [CrossRef]

Muzio, A.F.V,; Maximo, M.R.O.A ; Yoneyama, T. Deep Reinforcement Learning for Humanoid Robot Behaviors. J. Intell. Robot.
Syst. 2022, 105, 1-16. [CrossRef]

Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10-15 July 2018; PMLR: London, UK, 2018; pp. 1587-1596.
Rabelo, M.ES.; Branddo, A.S.; Sarcinelli-Filho, M. Landing a uav on static or moving platforms using a formation controller. [IEEE
Syst. J. 2020, 15, 37-45. [CrossRef]

Miller, A.; Miller, B.; Popov, A.; Stepanyan, K. UAV landing based on the optical flow video navigation. Sensors 2019, 19, 1351.
[CrossRef] [PubMed]

Wenzel, K.E.; Masselli, A.; Zell, A. Automatic Take Off, Tracking and Landing of a Miniature UAV on a Moving Carrier Vehicle. J.
Intell. Robot. Syst. 2011, 61, 221-238. [CrossRef]

Mnih, V.; Kavukcuoglu, K;; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement
learning. arXiv 2013, arXiv:1312.5602.

Haarnoja, T.; Zhou, A.; Abbeel, P; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10-15 July 2018;
PMLR: London, UK, 2018.

Chali, J.; Hayashibe, M. Motor Synergy Development in High-Performing Deep Reinforcement Learning Algorithms. IEEE Robot.
Autom. Lett. 2020, 5, 1271-1278. [CrossRef]

Hazarika, B.; Singh, K.; Biswas, S.; Li, C.-P. DRL-Based Resource Allocation for Computation Offloading in IoV Networks. IEEE
Trans. Ind. Inform. 2022, 18, 8027-8038. [CrossRef]

Compton, W.; Curtin, M.; Vogt, W.; Scheinker, A.; Williams, A. Deep Reinforcement Learning for Active Structure Stabilization. In
Data Science in Engineering, Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022, Florida, USA,
7-10 February 2022; Springer International Publishing: Cham, Switzerland, 2022; Volume 9.

Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 6-13 November 2011; pp. 2564-2571.

Chollet, E. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017.

Kingma, D.P; Ba, ]. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Rodriguez-Ramos, A.; Sampedro, C.; Bavle, H.; de la Puente, P.; Campoy, P. A Deep Reinforcement Learning Strategy for UAV
Autonomous Landing on a Moving Platform. J. Intell. Robot. Syst. 2019, 93, 351-366. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1016/j.aei.2022.101773
.
http://dx.doi.org/10.1109/TNNLS.2023.3245124
http://dx.doi.org/10.1109/LRA.2020.2972852
http://dx.doi.org/10.1007/s10846-022-01619-y
http://dx.doi.org/10.1109/JSYST.2020.2975139
http://dx.doi.org/10.3390/s19061351
http://www.ncbi.nlm.nih.gov/pubmed/30889892
http://dx.doi.org/10.1007/s10846-010-9473-0
http://dx.doi.org/10.1109/LRA.2020.2968067
http://dx.doi.org/10.1109/TII.2022.3168292
http://dx.doi.org/10.1007/s10846-018-0891-8

	Introduction
	Preliminaries
	Deep Reinforcement Learning
	Reward Function Setup
	TD3-Based Landing Controller

	Coordinate System and the UAV Kinematics

	Method
	Landing Vision System
	Automatic Curriculum Learning of the Landing Policy
	Task Setup
	Land-ACL


	Experiments and Results
	Simulated Trainings
	Simulated Testings
	Test Scenario A: UGV Moving along a Straight Trajectory
	Test Scenario B: UGV Moving along a Curved Trajectory
	Landing Precision


	Conclusions
	References

