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Abstract: Unmanned aerial vehicles (UAVs) multi-area coverage-path planning has a broad range of
applications in agricultural mapping and military reconnaissance. Compared to homogeneous UAVs,
heterogeneous UAVs have higher application value due to their superior flexibility and efficiency.
Nevertheless, variations in performance parameters among heterogeneous UAVs can significantly
amplify computational complexity, posing challenges to solving the multi-region coverage path-
planning problem. Consequently, this study studies a clustering-based method to tackle the multi-
region coverage path-planning problem of heterogeneous UAVs. First, the constraints necessary
during the planning process are analyzed, and a planning formula based on an integer linear
programming model is established. Subsequently, this problem is decomposed into regional allocation
and visiting order optimization subproblems. This study proposes a novel clustering algorithm that
utilizes centroid iteration and spatiotemporal similarity to allocate regions and adopts the nearest-to-
end policy to optimize the visiting order. Additionally, a distance-based bilateral shortest-selection
strategy is proposed to generate region-scanning trajectories, which serve as trajectory references for
real flight. Simulation results in this study prove the effective performance of the proposed clustering
algorithm and region-scanning strategy.

Keywords: heterogeneous UAVs; multi-region; coverage-path planning; regional allocation; clustering
algorithm

1. Introduction

With the rapid development of artificial intelligence and automated control [1–3],
UAVs have been widely used in both military and civilian fields, including reconnais-
sance and strike operations [4,5], target tracking [6–9], forest fire prevention [10], regional
surveillance [11–13], etc. Due to limitations in performance and payload capacity, it is
often challenging for one UAV to complete complex missions [14]. Therefore, the study of
multi-UAV systems, which have good scalability and cooperation capabilities, has gained
significant attention in current research. In order to maximize the overall effectiveness
of the multi-UAV system, it is necessary to research task planning to obtain suitable task
orders and flight paths of UAVs.

As an important branch of multi-UAV task planning, coverage-path planning includes
region allocation and path planning. It has been studied by numerous scholars from
various aspects, such as region shape [15,16], energy constraints [17–20], and obstacle
avoidance [21,22]. Nielsen [15] tackled the issue of region coverage for non-convex poly-
gons by dividing the area into numerous separate convex sub-polygons and utilizing a
scanning pattern to ensure complete coverage. Huang [17] determined the energy consump-
tion of UAVs in various flight modes and presented a coverage path-planning algorithm
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that relies on a UAV energy-limited model, aiming to minimize the flight duration of UAVs
on coverage paths. Franco [19] takes into account additional factors, including energy,
speed, acceleration, and image resolution, in coverage-path planning. He proposes an
energy model based on accurate measurements and utilizes it to develop a coverage path-
planning algorithm that simultaneously achieves low power consumption and desired
image resolution. Maza and Ollero [21] decomposed the entire region into multiple sub-
regions and individually assigned them to the UAVs according to the flight and energy
capabilities. They utilized the back-and-forth method to cover the sub-regions with the
principle of minimizing the number of turning maneuvers.

Although the aforementioned studies have effectively addressed the issue of coverage-
path planning, they primarily focus on the collaborative coverage of a single area using
multiple UAVs and are concerned about how to divide the entire region. Therefore, these
methods cannot be directly applied to the planning problem of multiple UAVs covering
multiple areas. To address the multiple UAVs covering multiple areas problems, Mou
et al. [23] utilized a deep reinforcement learning approach to match all areas with UAVs
and developed a novel coverage path-planning algorithm based on the star communication
topology to achieve comprehensive scanning of all areas. In [24], to study the penguins
in various regions of Antarctica using UAVs, Shah presented a path-planning algorithm
called Path Optimization for Population Counting with Overhead Robotic Networks, which
exhibited faster computational speed in comparison to Mixed Integer Linear Programming
(MILP) of the same size. Li [25] achieved the scan coverage of large-scale target areas by
establishing an extended model of the Traveling Salesman Problem, with the optimization
goals of coverage rate and completion time, while considering the performance constraints
of UAVs. However, the above studies only focused on homogeneous UAVs and did not
consider coverage-path planning for heterogeneous UAVs.

Compared to homogeneous UAV systems, the heterogeneous system exhibits greater
flexibility and adaptability when it comes to complex tasks, thus improving the overall
efficiency of the system [26,27]. However, the diverse range of UAV types makes designing
a scheme that effectively leverages the capabilities of each UAV challenging. This challenge
is especially prominent for multi-UAV collaborative decision-making, task planning, and
formation control tasks. Moreover, in the problem of coverage-path planning, the hetero-
geneity among UAVs and the existence of multiple sub-regions also magnify the scale of
the problem [28] and intensify the challenge of finding solutions [29,30]. Chen et al. [31]
studied the multi-area coverage-path planning of multiple UAVs. The authors achieved
clustering of sub-areas by calculating the density of sub-areas, but the visiting order of
UAVs to the areas was not taken into consideration. In [32], Chen proposed an ant colony
system (ACS)-based algorithm that achieves the area allocation using an effective time ratio
and optimizes the UAV access sequence using the ant colony algorithm. However, this
method faces a conflict between the optimization objectives of area allocation and sequence
optimization, and it ignores the study of the actual flight trajectory of UAVs.

According to the publicized study, this type of research typically encounters the
problem of repetitive sorting during the allocation and regional ordering optimization
processes, which leads to a decrease in the accuracy of planning outcomes. They do not
provide a specific method for planning the actual flight reference trajectory for UAVs. This
study investigates the problem of multi-area coverage-path planning of heterogeneous
UAVs with varying flight and scanning capabilities. This study aims to determine the
optimal scan sequence and flight trajectories for UAVs to different areas, ensuring lower
computational complexity and higher accuracy, considering constraints such as UAV
maneuverability limitations and task requirements. The structure of this study is shown
in Figure 1. This framework demonstrates how this study tackles the problem of multi-
region coverage task planning of multi-UAVs. The primary contributions of this study are
as follows:

1. An optimization model is employed to tackle the problem of multi-region coverage-
path planning of heterogeneous UAVs, and it is formulated using integer linear
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programming. The problem of multi-area coverage-path planning is divided into
two subproblems: allocating the task regions and determining the execution order.
This decomposition significantly reduces the complexity associated with solving
the problem;

2. Based on the iterative idea of the k-means algorithm and the requirement of multi-
region coverage, a novel clustering algorithm based on spatiotemporal similarity is
proposed, and a clustering center iteration method is designed to complete
regions clustering;

3. A novel method is proposed to minimize the flight distance of a single UAV when
scanning multiple regions. The method involves selecting entry points and scanning
patterns based on the shortest flight distances.
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Figure 1. The structure of this study.

This study is organized as follows. Section 2 establishes the model and formulas
for the multi-region coverage path-planning problem of heterogeneous UAVs. Section 3
proposes a novel region clustering algorithm and optimizes the visited order of regions.
Section 4 introduces a trajectory-planning method based on the shortest flight distance.
Section 5 presents simulation experiments and comparative analysis. Finally, Section 6
concludes this work.

2. System Model

The coverage path-planning problems of heterogeneous UAVs are often classified as
non-deterministic polynomial hard (NP-hard); it is difficult to obtain an accurate solution
directly [33]. So, we first analyze the constraints that need to be satisfied when the UAV
system performs tasks and obtain the exact formulation. Then, in order to improve the
solution efficiency, we intend to solve this problem from two aspects: regional alloca-
tion and regional sequence optimization, which are achieved through regional clustering
and subregion reordering, respectively. Finally, we present a multi-region coverage-path
planning strategy specifically for the practical flight trajectory of UAVs.

2.1. Problem Description

This study deploys n fixed-wing heterogeneous UAVs U = {U1, U2, . . . , Un} to carry
out reconnaissance and scanning missions across m rectangular regions R = {R1, R2, . . . , Rm};
the task scenario diagram is shown in Figure 2. A list of key symbols used in this study and
their definitions are provided in Table 1. In this work, the main differences between the
UAVs are their flight speed, endurance, and scanning width. So, each UAV is characterized
as Ui = 〈Uidi, Uposi, Vi, Ti, di〉, where Uidi and Uposi represent the serial number and the
takeoff coordinate of Ui, respectively. Vi denotes the cruising flight speed, and we assume
that the cruising for each UAV maintains a constant throughout the mission. Ti represents
the maximum endurance for cruising flight, while di represents the scan width of sensors
installed in Ui.
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Table 1. Symbol definitions.

Symbol Definitions

U The set of UAVs
Ui The ith UAV in the set U
n The number of UAVs in the set U

Uposi The takeoff position of Ui (also called the base of Ui)
Vi The cruising flight speed of Ui
Ti The maximum flight endurance of Ui
di The scan width of onboard sensors of Ui
R The set of regions
Rj The jth region in the set R
m The number of regions in the set R

Rposj The center coordinate of Rj
Rbetaj The angle between the major axis and the X-axis of the map

Lj The length of the major axis of Rj
Wj The length of the minor axis of Rj
Dj,k The distance between Rj and Rk

TFi,j,k The time consumption of Ui in flying from Rj to Rk
TSi,j The time consumption of Ui in scanning Rj

C The set of clusters
Ci The ith cluster in the set C

STSi,j The spatiotemporal similarity between Ci and Rj
Quei The regions queue of Ci
Seqi The sequence of regions that Ui is going to coverage

{Lin, Win} The optional entry points set of a region

In this study, each region’s features are shown as Rj =
〈

Rposj, Rbetaj, Lj, Wj
〉
. In this

notation, Rposj represents the coordinates of the center point in the rectangular region.
Rbetaj signifies the angle formed between the major axis of the region and the X-axis of the
map, with a counterclockwise direction identified as positive. Lj represents the length of
the major axis, and Wj denotes the length of the minor axis.

An m-row m-column matrix D =
{

Dj,k

}
is adopted to represent the distance between

regions Rj and Rk, which is calculated using the Euclidean distance between their center
points. In this study, heterogeneous UAVs are required to travel from their takeoff positions
Uposi to the designated mission area. Upon finishing their assigned area scanning tasks,
the UAVs must return to their respective starting points. As a result, TFi,j,k is used to
represent the time consumption of Ui flying from one region Rj to another region Rk. Since
we do not know the order in which the UAV scans regions during the allocation phase, the
flying distance is roughly estimated using the distance between the centers of these two
regions. TSi,j is used to represent the time consumption of Ui scanning the region Rj; each
UAV will use the back-and-forth scanning method to scan a single area. TFi,j,k and TSi,j
can be calculated using

TFi,j,k =
Dj,k

Vi
(1)

TSi,j =
Lj ×Wj

Vi × di
(2)
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2.2. Exact Formulation

This section analyzes the constraints of the multi-area coverage task-allocation problem
of heterogeneous UAVs, and mathematical formulations for each constraint are established.
Furthermore, an optimization model for task allocation is established, aiming to minimize
the overall completion time of the system.

To obtain appropriate allocation results, the main constraints in this study are
as follows:

C1: The constraint on the takeoff and landing of UAV. Once a UAV is selected to
perform the scanning task, it needs to depart from the starting point and return to the
starting point after completing all tasks.

C2: The constraint on the scanning of regions. To avoid performing things twice, each
task region should only be scanned by one UAV. It also means that only one UAV can fly to
and from one mission area. This will prevent repeated scanning of the same area.

C3: The constraint on the maximum endurance of an UAV. During the execution of
missions, the total flight time Ui cannot exceed its maximum endurance requirement.

C4: The constraint on the number of regions covered by a single UAV. The number of
scanning regions conducted by each UAV must not surpass the total number of regions.

C5: The constraint on the number of UAVs engaged in all tasks. This constraint ensures
that the number of UAVs carrying out the task remains below the total quantity and is
greater than one.

Constraint (C1) refers to the restriction that all UAVs can only perform takeoff and
landing operations at most once. This also means that if the UAV departs from its base,
it is obliged to return to the base upon completion of the coverage task. To describe
constraint (C1) through mathematical expressions, this study adopts a Boolean array
X =

{
xi,j,k, 1 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ m

}
to represent the decision variables of UAVs’

planned paths, where the subscripts j, k represent Ui flies from Rj to Rk. It is worth noting
that only if Ui is chosen to fly from Rj to Rk, Boolean variable xi,j,k = 1, otherwise, xi,j,k = 0.
If j = 0 or k = 0, it represents that the Ui departs from or returns to the starting point.
Through the aforementioned description, constraint (C1) can be expressed as:

∀i ∈ [1, n],


m
∑

j=1
xi,0,j =

m
∑

j=1
xi,j,0 = 1, Ui is chosen to execute task

m
∑

j=1
xi,0,j =

m
∑

j=1
xi,j,0 = 0, otherwise

(3)

Constraint (C2) pertains to the situation in which only one UAV is capable of traversing
a given region. Therefore, constraint (C2) can be represented as:

∀j ∈ [1, m],
n

∑
i=1

m

∑
k=0

xi,j,k =
n

∑
i=1

m

∑
k=0

xi,k,j = 1 (4)

Constraint (C3) indicates that the overall flight duration of a chosen UAV, including
departure from and return to the base and coverage of the specified task regions, should
not exceed its maximum flight time, i.e.,

∀i ∈ [1, n],
m

∑
j=0

m

∑
k=0

xi,j,k × TFi,j,k +
m

∑
j=1

yi,j × TSi,j ≤Ti (5)

The variable yi,j in the above expression is a Boolean variable, which has a similar
meaning with xi,j,k. If Ui needs to perform a coverage scanning task in Rj, yi,j = 1, otherwise
yi,j = 0. The relationship between yi,j and xi,j,k can be expressed as:

∀k ∈≤ [0, m], xi,j,k = yi,j (6)
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Constraint (C4) implies that each UAV cannot perform more coverage tasks than the
total number of regions, i.e.,

∀i ∈ [1, n],
m

∑
j=1

yi,j ≤ m (7)

Constraint (C5) shows that the number of UAVs taking off from the bases to carry out
the tasks must not exceed the total number of UAVs, which can be written as:

n

∑
i=1

m

∑
j=1

xi,0,j ≤ n (8)

This article aims to seek the sequence of UAV access to the task regions in the scenario
where heterogeneous UAV systems take off from different bases, scan and cover corre-
sponding areas, and return to the bases. The goal is to minimize the overall system’s task
completion time f , and the constraints are constraints from (C1) to (C5). Since each UAV
takes off simultaneously and flies towards their respective task regions, the task completion
time of the entire system can be equivalently represented as the time consumed by the UAV,
which returns to the base the last. Therefore, the optimization objective function f can be
expressed as:

f = max1≤i≤n

(
m

∑
j=0

m

∑
k=0

xi,j,k × TFi,j,k +
m

∑
y=1

yi,j × TSi,j

)
(9)

The exact formulation of this system can be written as:

min f
s.t. C1, C2, C3, C4, C5

(10)

In the above programming, the unknown variables are a mixture of integer
(e.g., elements of X) and real variables (e.g., the maximum time f ), and all constraints are
linear. Therefore, this problem belongs to the class of MILP problems. Since the coverage-
path planning of heterogeneous UAVs is NP-hard, although the precise solutions can be
obtained using the proposed MILP formulation, it requires searching the entire solution
space. Furthermore, the computational time will drastically increase with the growth of
both the number of UAVs and the number of regions, resulting in significant consump-
tion of computational time and cost. Inspired by the concept of clustering, we devised a
clustering-based approach to tackle the task-allocation problem during the coverage-path
planning of heterogeneous UAVs in the following sections. Implementing region allocation
through clustering, and then optimizing the region access sequence, can greatly reduce the
complexity of the problem.

3. Coverage Scanning Clustering Algorithm-Based Coverage-Path Planning

The target clustering methods normally consist of two steps: target area clustering
and cluster target allocation. Target area clustering involves clustering the regions based
on specific characteristics; cluster target allocation requires assigning each sub-cluster to a
specific UAV.

The k-means clustering algorithm is one of the iterative and classical target clustering
methods. It has the advantages of simplicity, wide applicability, and fast convergence speed.
Therefore, it is frequently applied to solve multi-UAV task assignment problems [34–36].
The basic process of the k-means clustering algorithm is commonly represented as:

Step 1: Determine a value k, which represents the number of sub-clusters aiming to
obtain by clustering the dataset.

Step 2: Randomly select k data points from the dataset as centroids (the centers of the
sub-clusters).

Step 3: For each point in the dataset, calculate its distance to each centroid and assign
it to the sub-cluster with the nearest centroid.
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Step 4: Calculate the mean coordinates of all points within the sub-cluster and take it
as the new centroid.

Step 5: If the distance between the newly calculated centroid and the previous centroid
is less than a predefined threshold, it can consider the clustering to have achieved the
desired result, and the algorithm terminates. Otherwise, we need to iterate Step 3~Step 5.

From the flow of the k-means clustering algorithm, it can be seen that it is highly sen-
sitive to the initial selection of centroids, and different random seeds can yield completely
different clustering results, significantly influencing the outcome. Moreover, the k-means
clustering algorithm focuses on clustering data points, while the research background of
this study involves multiple heterogeneous UAVs flying to multiple rectangular regions to
perform scanning tasks. Therefore, the dataset in this study consists of planes rather than
points, making the k-means algorithm unsuitable for this study. Inspired by the iterative
clustering idea of the k-means algorithm, this study proposes an algorithm called the
coverage-based scanning clustering algorithm (CSCA), which includes three major phases:
the initial cluster centers selection phase, the multi-regional initial clustering phase, and the
clustering regions update phase. Additionally, we investigated the method for optimizing
the access order of regions following the completion of the clustering process.

3.1. Initial Cluster Centers Selection Phase

The purpose of clustering the various regions is to allocate each clustered subset area
to its corresponding UAVs to complete the overall task in the shortest possible time. This
means that each UAV will be assigned to a sub-clustered area. Afterward, the UAVs will
perform scanning tasks of the regions within their respective sub-clusters in a certain order.

The task completion time includes both flight time and scanning time. The clustering
centers have spatiotemporal similarities (which will be explained in the second phase) with
their corresponding subsets of regions. Consequently, the duration of the UAV flight time
is partially influenced by the distance between the UAV base and the clustering center.
In other words, the shorter the distance between the clustering center and the UAV base,
the less time the UAV will spend on flight. Therefore, we take the bases of each UAV as
the initial clustering center points for the CSCA algorithm. A set C = {C1, C2, . . . , Cn} is
used to store the clustering centers, where the serial number of cluster centers is equal to
the serial number of UAVs involved in the given tasks. Each clustering center is defined
as Ci = 〈xi, yi〉, where xi and yi represent the coordinates on the X-axis and Y-axis of the
map, respectively. For each Ci, a queue Quei =

{
que1

i , que2
i , . . . , quee

i
}

is utilized to indicate
the indexes of regions that have been grouped into Ci and would be scanned by UAV Ui;
additionally, e represents the total number of regions to be covered by Ui.

3.2. Multi-Regional Initial Clustering Phase

After determining the initial cluster centers, the initial clustering methods for the
regions will be proposed in this phase. A n-row and m-column matrix STS =

{
STSi,j

}
is

employed to characterize the connection between the regions targeted for clustering and
the clustering centers. STSi,j is defined as a spatiotemporal similarity between cluster Ci
and region Rj. It consists of two parts: the time taken by Ui to travel from the center Rj to
the cluster center Ci, and the time taken by Ui to coverage Rj, i.e.,

STSi,j = TSi,j +
d
(

Rj, Ci
)

Vi
(11)

The above equation d
(

Rj, Ci
)

refers to the Euclidean distance between the regional
center Rj and the cluster center Ci. It is necessary to calculate the spatiotemporal similarity
of each Rj with all Ci in the set C to find the minimum value index indi, and add the index
j corresponding to Rj to the queue Queindi

, i.e.,

∀j ∈ [1, m],
{

indi = argmin
(
STSi,j

)
Queindi

= Queindi
∪ j

(12)
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3.3. Clustering Regions Update Phase

This phase is the core of the proposed CSCA algorithm, where the cluster centers will
continuously change with each iteration until the desired outcome is achieved. For the
cluster Ci, the mean coordinates of all regional centers in this cluster are defined as the
updated coordinates for the cluster center. Additionally, TR(Ci) is used as an approximate
substitute for the task-completion time requirements of Ci, which can be written as,

TR(Ci) = 2× d(Uposi, Ci) +
e

∑
l=1

STSi,quel
i

(13)

From the above formulation, it can be deduced that the more regions Ci contains, the
larger TR(Ci) will be. Consequently, this will lead to an overall increase in the total task
completion time for UAV Ui. Our goal in this study is to minimize the overall completion
time of the entire heterogeneous UAV system, meaning that there is minimal difference
in completion time between the UAVs. Thus, this can be equivalently represented as
minimizing the difference between the maximum completion time max{TR(Ci)} and the
minimum completion time min{TR(Ci)} of tasks.

In order to meet the maximum endurance constraint of UAVs, it is imperative to
determine the remaining flight time RFT(Ui) for each individual UAV Ui. RFT(Ui) can be
calculated via,

RFT(Ui) = Ti − TR(Ci) (14)

If there is any RFT(Ui) value less than 0, the TR(Ci) of the RTF(Ui) with the lowest
negative value should be assigned as max{TR(Ci)}. In order to reduce the regions of
the cluster corresponding to max{TR(Ci)} and increase the regions of the cluster corre-
sponding to min{TR(Ci)}, we proposed a region-transfer strategy based on the ranking of
clustering center distance, which consists of mainly three steps. In the following steps, to en-
hance convenience and facilitate ease of understanding, the symbol maxind and minind are
employed as representations of arg(max{TR(Ci)}) and arg(min{TR(Ci)}), respectively:

Step 1: Calculate the distances between the cluster center Cmaxind and all the remaining
cluster centers and sort them in ascending order to obtain the sequence
Π = {π1, π2, . . . , πn−1}. Π(i) is equal to πi, and each πi represents the index number
of a cluster center.

Step 2: Compute the distance between all regions
{

que1
maxind, que2

maxind, . . . , quee
maxind

}
in the Quemaxind and the cluster center CΠ(1), then assign the region index with the mini-
mum distance to the QueΠ(1) of cluster CΠ(1).

Step 3: If Π(1) = minind, it indicates the completion of the region transfer process,
otherwise, define maxind as Π(1), and remove Π(1) from the sequence Π. Update Π by
the distance between Cmaxind and other remaining cluster centers, then proceed to Step 2.

The schematic diagram of the algorithmic process described above is illustrated in
Figure 3. Once the clustered regions have been updated, recalculate the centroids for each
cluster and TR(Ci). The centroid coordinate of Ci can be calculated by

Ci =

e
∑

l=1
Rposquel

i

e
(15)

Subsequently, compute the disparity between the max{TR(Ci)} and min{TR(Ci)}
values and ascertain whether it falls below the designated threshold. If the disparity is less
than the threshold, the clustering assignment for all regions is considered complete. If not,
proceed with the above region-transfer strategy.
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To better understand the overall description of the coverage-based scanning clustering
algorithm (indicated in Sections 3.1–3.3), the entire pseudo-codes of this algorithm are
shown in Algorithm 1.

Algorithm 1: Pseudo-Codes of Coverage-Based Scanning Clustering Algorithm

Input: set of regions R, set of UAVs U
Output: the final set of clusters C and regional queue Que

1: Take the base of each Ui as the initial cluster center Ci;
2: Build Quei for each Ci to store the index of regions;
3: for i← 1 to n do
4: for j← 1 to m do
5: Calculate STSi,j by Equation (11);
6: end for
7: end for
8: for j← 1 to m do
9: indi ← argmin

(
STSi,j

)
;

10: Queindi
← Queindi

∪ j ;
11: end for
12: while the difference between max{TR(Ci)} and min{TR(Ci)} has not dropped below the
specified threshold or the maximum number of iterations has not been reached, do
13: Calculate the TR(Ci) for each Ci according to Equation (13) and determine max{TR(Ci)}
and min{TR(Ci)};
14: Update the RFT(Ui) for each Ui according to Equation (14) and determine the minimum
value min{RFT(Ui)};
15: if min{RFT(Ui)} < 0 do
16: Define the TR(Ci) associated with min{RFT(Ui)} < 0 as the max{TR(Ci)};
17: end if
18: Obtain the sequence Π = {π1, π2, . . . , πn−1} according to the Step 1 of region-transfer
strategy;
19: while Queminind and Quemaxind have not completed the update, do
20: Calculate the distance between all regions in the Quemaxind and CΠ(1);
21: Assign the regional index quel

maxind with the minimum distance to the QueΠ(1);
22: if Π(1) = minind do
23: break;
24: else do
25: maxind← Π(1) ;
26: Remove Π(1);
27: end if
28: end while
29: Recalculate the centroid coordinate of each Ci according to Equation (15)
30: end while
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3.4. Regional Sorting

After executing the clustering assignment for all regions, if the number of regions
in a sub-cluster is greater than one, it is necessary to sort the order of scanning regions.
Therefore, the scanning order of regions assigned to UAVs will be addressed in this phase.
There are many strategies that can be employed to solve this problem, such as the Genetic
algorithm (GA), particle swarm optimization (PSO), and various other heuristic algorithms.
However, these algorithms have the problems of non-uniqueness in calculation results
and slow computation. Therefore, we adopt the nearest-to-end (NE) policy, which has
significant efficiency and reliability. In this policy, all the unallocated regions in each Quei
will be sorted. The policy involves two parts: initialization and interpolation.

(1) Initialization

A sequence Seqi is used to denote the sequential order of tasks executed by Ui, and
the region in the unallocated regions that is closest to the base Uposi is chosen as the tail
(seqe

i ) of the sequence Seqi. In addition, Uposi is utilized as the head (seq1
i ) of the sequence.

Then, choose the unallocated region nearest to either the head or tail of the sequence, Rbest,
which can be represented as,

Rbest = argmin
(

min
{

d
(

Rj, Rseq1
i

)
, d
(

Rj, Rseqe
i

)})
, Rj ∈ Quei,avail (16)

(2) Interpolation

After initialization, Rbest will be stored in Seqi. If Rbest is closer to the tail than to the
head, Rbest is placed in the end of Seqi and Uposi will be deleted from Seqi; thus, Rbest will
be the new tail; otherwise, put the Rbest in the first place of Seqi and delete Uposi, thus Rbest
becomes the new head. As a result, the unallocated regions in Quei can be sorted using
Equation (16) and placed in the Seqi by the head-tail update method described above until
all regions in Quei are allocated.

Once all the regions have been sorted, the mission duration of all UAVs can be
calculated effortlessly using Equations (1) and (2), and the maximum duration signifies the
overall mission duration of the entire heterogeneous UAV system. The pseudo-codes of the
coverage-based scanning clustering algorithm with a nearest-to-end policy are shown in
Algorithm 2, and the algorithm flowchart is shown in Figure 4.

Algorithm 2: Pseudo-codes of coverage-based scanning clustering algorithm with
Nearest-to-End Policy

Input: set of regions R, set of UAVs U
Output: The regions scan sequence Seqi for each Ui

1: get the set of clusters C and regional queue Que according to Algorithm 1;
2: for i← 1 to n do
3: if e > 1 do
4: Initialize the Seqi;
5: the head of Seqi ←Uposi;
6: the tail of Seqi ← the region in the unallocated regions that is closest to the base Uposi;
7: Obtain Rbest by Equation (16);
8: Place Rbest in Seqi by the nearest-to-end policy and remove Uposi;
9: while there is any unassigned region in Quei do
10: Calculate Rbest in unassigned regions;
11: Insert Rbest in Seqi;
12: end while
13: else do
14: Seqi ← Quei ;
15: end if
16: Calculate the time consumption of Ui;
17: end for
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4. Bilateral Shortest-Selection Strategy-Based Trajectory Planning

In the previous section, we discussed the multi-region allocation method and obtained
the regional scanning sequence for each UAV. Hence, this section will introduce a path-
planning method for the UAV flights.

The back-and-forth scanning method [21] is widely employed for regional scanning.
When scanning a rectangular region Rj using the back-and-forth scanning method, the
scanning can be performed along either its long side or its short side. Currently, the majority
of studies concentrate on scanning a single region. Consequently, scanning along the longer
side indeed yields a shorter path compared to scanning along the shorter side. However, in
this study, a single UAV must sequentially scan multiple regions. Its route encompasses
the scanning distance within each region, as well as the flight distance between regions. As
a result, scanning along the longer side does not necessarily minimize the overall distance,
as it may increase the inter-region distance. Therefore, this study proposes a multi-region
scanning path-planning method based on minimizing the total flight distance called the
bilateral shortest-selection strategy (BSSS).

As defined earlier in this study, the scanning width of the sensors carried by Ui is
represented by di. Additionally, Rj has a total of 8 optional entry points {Lin, Win}. They
are classified into categories {Lin1, . . . , Lin4} and {Win1, . . . , Win4}, depending on whether
they are located on the long side or the short side, as shown in Figure 5. The red dots
represent entry points on the long side, which means the UAV will scan along the shorter
side of the region, while the blue dots represent entry points on the short side, which means
the UAV will scan along the longer side of the region.

The current position of the UAV Ui is defined as Outposi, and the areas to be scanned
are Rj. The entry points InL and InW for the longer and shorter sides of region Rj will be
determined by calculating the closest points in {Lin1, . . . , Lin4} and {Win1, . . . , Win4} to
Outposi, respectively, i.e.,

InL = argmin(d(Outposi, Lin1), . . . , d(Outposi, Lin4)) (17)

InW = argmin(d(Outposi, Win1), . . . , d(Outposi, Win4)) (18)
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After defining the entry points of Rj, Ui would fly from Outposi to InL or InW, using
the back-and-forth scanning method and scanning along either the short or long sides.
Upon completion of the scanning process, the departure points OutL and OutW will be
identified for each region. Then, it is necessary to separately calculate the shortest distances
between OutL and OutW with the optional entry points {Lin′, Win′} of the next to-be-
scanned region. Therefore, the flying distance Len_W and Len_L of the aforementioned
process can be represented individually as:

Len_W = d(InL, Outposi) +

⌈
L
d

⌉
×W +

⌈
L
d
− 1
⌉
× πd

2
+

min(d(OutL, Lin′)) + min(d(OutL, Win′))
2

(19)

Len_L = d(InW, Outposi) +

⌈
W
d

⌉
× L +

⌈
W
d
− 1
⌉
× πd

2
+

min(d(OutW, Lin′)) + min(d(OutW, Win′))
2

(20)

Since the subsequent region can be scanned either along its longer or shorter
edge, the last terms in Equations (19) and (20) are expressed as a weighted average.
If Len_L < Len_W, choose InW as the entry point and scan along the longer side of
the region. Otherwise, choose InL as the entry point and scan along the shorter side of the
region. Finally, the current exit point of the region will be defined as new Outposi, and we
can employ the previously mentioned approach to determine both the entry point and the
scanning method for the subsequent region.

5. Simulation Experiments

This section conducted numerical simulation experiments on the proposed CSCA
algorithm and generated actual flight reference paths for UAVs based on the BSSS method.
The simulation scenario was established, and subsequently, we validated the accuracy
and effectiveness of our algorithm by conducting a comparative analysis with the spatial-
temporal clustering-based algorithm (STCA) cited in [31], which provided an effective
method for the assignment of heterogeneous UAVs multi-area scanning tasks. Utilizing
the regional allocation outcomes obtained via CSCA, the actual feasible flight routes can
be obtained using the BSSS method while accounting for the constraints imposed by
UAV maneuverability.

5.1. Parameter Setting

For this simulation, the mission area is defined as a square with a side length of
50 km. There are a total of eight UAVs available for the mission, with their specific
parameter settings presented in Table 2.
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Table 2. Settings for UAV parameters.

No. 1 2 3 4 5 6 7 8

Base coordinate (km, km) (0, 10) (0, 30) (25, 0) (10, 0) (45, 0) (25, 50) (15, 50) (50, 0)
Flying speed (m/s) 35 45 35 50 45 40 45 45

Maximum endurance (h) 3.2 2.5 2.8 2.8 2.5 4.5 3.7 3.0
Scanning width (m) 650 600 750 650 650 650 600 500

The setting of the rectangular regions needs to obey the following rules:

1. Randomly assign coordinates to the center point of each rectangular region in order
to achieve a uniform distribution across the entire map;

2. Set the range of values for the major axis L ∈ [3, 3.5, 4] and the range of values for the
minor axis W ∈ [2, 2.5, 3], with units in kilometers;

3. Iterate through the rectangular region in order and assign values to the major and
minor axes according to the index of the region. When the index is divisible evenly by
3, assign the values L(1) and W(1); when the index leaves a remainder of 1, assign
the values L(2) and W(2); otherwise, assign the values L(3) and L(3);

4. Set the rotation angle of the rectangle. Divide π into m equal parts (i.e., π/m), where
m is the total number of regions. The rotation angle for each region is obtained by
multiplying the index of the region by the equal parts angle (i.e., index× π/m). The
unit is radians, and it is defined that the counterclockwise direction is positive;

5. The total number of regions ranges from 5 to 40, with an increment of 5.

5.2. Task Completion Time Simulation

Under the premise of the same parameters and regional distribution of UAVs, we
conducted a simulation comparison between the CSCA algorithm and the STCA algorithm
in this section. The maximum task completion time of UAVs is used to represent the
overall task completion time of the heterogeneous UAV system. Furthermore, we explored
the reliability of the algorithm from the perspectives of different numbers of regions and
different numbers of UAVs.

In Figure 6, we used two different region clustering and assignment algorithms, CSCA
and STCA [31]. Region sequencing methods based on the nearest-to-end policy and genetic
algorithm are used to compare the applicability of the CSCA and STCA for different region
sequencing methods. The number of UAVs was three, and the X-axis represents the number
of regions, with a step size of 5, while the Y-axis represents the task completion time of the
UAV system. “STCA-NE”, “CSCA-NE”, “STCA-GA”, and “CSCA-GA” correspondingly
indicate the allocation of region-scanning sequences based on the STCA algorithm and
the CSCA algorithm utilizing the nearest-to-end policy and allocation of region-scanning
sequences based on the STCA algorithm and the CSCA algorithm employing the genetic
algorithm. Under different region numbers, the statistical results of task completion time
obtained using different algorithms are shown in Table 3.

From Figure 6, it can be observed that with the increase in the number of regions,
the overall task completion time of the four methods shows an upward trend. Addition-
ally, the CSCA-NE algorithm proposed in this study surpasses the STCA-NE algorithm.
Furthermore, CSCA-GA consistently achieves the shortest task completion time, which
demonstrates the outstanding performance of our clustering algorithm. Furthermore, it
can be found that CSCA-GA and STCA-GA are superior to CSCA-NE and STCA-NE,
respectively, due to the higher accuracy of genetic algorithms compared to the nearest-end
strategy. From Table 3, it can further be observed that under different numbers of regions,
when using the average task completion time as a measurement standard, CSCA-NE’s
result is 19.6% lower than STAC-NE, and CSCA-GA’s result is 9.7% lower than STAC-GA.
Moreover, the average difference between CSCA-NE and CSCA-GA is 60.6% lower than the
average difference between STCA-NE and STCA-GA. This indicates that under different
region quantities, the CSCA algorithm has a higher adaptability for the sequential allocation
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of regions in clustering. As a result, the above analysis demonstrates that under the premise
of a fixed number of UAVs scanning multiple regions, the CSCA algorithm exhibits higher
reliability and accuracy compared to the STCA algorithm.
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Figure 6. Comparison of task completion time achieved using the four algorithms when the region
number increases from 10 to 40.

Table 3. The statistical results (in seconds) of task completion time under different region numbers.

Numbers STCA-NE CSCA-NE STCA-GA CSCA-GA

10 4479 4304 3942 3942
15 5293 4380 4395 4063
20 7061 5613 6111 5279
25 8018 6275 6712 5875
30 9682 7387 7665 6603
35 11,428 8789 8206 7706
40 11,419 9357 9096 8201

In Figure 7, the number of regions is set to 20, and we attempt to compare the results
of the four algorithms under different numbers of UAVs. To better understand the results,
the statistical results of task completion time obtained using different algorithms are shown
in Table 4. It can be seen that with the increase of UAVs, the overall task completion time of
the four methods shows a downward trend. In addition, under different numbers of UAVs,
the average task completion time calculated using CSCA-NE is 21.1% lower than STCA-NE,
and CSCA-GA is 13.1% lower than STCA-GA. The results of CSCA-NE even outperform
those of STCA-GA consistently throughout the entire process, with the exception of UAVs;
the number is four. Furthermore, it is apparent that there is a minimal disparity in outcomes
between CSCA-NE and CSCA-GA, with their average difference being 60.4% lower than
the average difference between STCA-NE and STCA-GA. This reinforces the notion of the
CSCA algorithm’s remarkable adaptability in sequentially allocating regions in clustering.
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Table 4. The statistical results (in seconds) of task completion time under different UAV numbers.

Numbers STCA-NE CSCA-NE STCA-GA CSCA-GA

3 8018 6625 6718 5866
4 6224 5572 4928 4811
5 6122 4155 5028 3950
6 4979 3924 4044 3560
7 4136 3300 3582 3128
8 4211 2999 3678 2999

5.3. Execution Time Simulation

This section further compares the differences in calculation time between algorithms
based on the previous subsection. Figure 8 demonstrates the comparative results of simu-
lation time for four algorithms as the number of regions increases from 10 to 40. Table 5
presents the statistical results of the time consumed by various algorithms for different
numbers of regions. The computation time for CSCA-GA and STCA-GA is within the same
order of magnitude, around 0.1 s, while the computation time for CSCA-NE and STCA-NE
is in the millisecond range. In Table 5, despite STCA-NE having the shortest computation
time, the maximum difference between STCA-NE and CSCA-NE is approximately 3 mil-
liseconds. The computation time of CSCA-NE and STCA-NE is significantly lower than
that of CSCA-GA and STCA-GA due to the higher complexity of GA in contrast to the
nearest-end strategy. Moreover, the increase in the number of regions displays a gradual
rise in computation time, suggesting a minimal impact of the number of regions on the
algorithm’s computation time.

Table 6 displays the time consumed by various algorithms as the number of UAVs
increases from 3 to 8; Figure 9 is a graphical representation of Table 6. As can be seen in
Figure 9, the execution times of CSCA-GA and STCA-GA remain highly similar, and this
similarity also holds for CSCA-NE and STCA-NE. The calculation times for both CSCA-NE
and STCA-NE scarcely increase with an increasing number of UAVs; however, CSCA-GA
and STCA-GA exhibit a gradual increase. This occurs because the increase in UAVs results
in a rise in the number of calls made to GA, which, in turn, results in an increase in time.
The computation time of STCA-NE is the shortest, while the computation time of CSCA-NE
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is also within the same scale of magnitude as STCA-NE, with a maximum difference of
5 milliseconds between them.
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Table 5. The statistical results (in seconds) of the time consumed using various algorithms under
different region numbers.

Numbers STCA-NE CSCA-NE STCA-GA CSCA-GA

10 0.00055 0.00160 0.20540 0.19980
15 0.00058 0.00250 0.20890 0.21010
20 0.00085 0.00340 0.21550 0.21580
25 0.00120 0.00350 0.22160 0.22150
30 0.00160 0.00390 0.22550 0.22780
35 0.00220 0.00470 0.23060 0.23400
40 0.00250 0.00550 0.23110 0.23370

Table 6. The statistical results (in seconds) of the time consumed by various algorithms under
different UAV numbers.

Numbers STCA-NE CSCA-NE STCA-GA CSCA-GA

3 0.00140 0.00370 0.22350 0.22180
4 0.00110 0.00400 0.28540 0.29150
5 0.00110 0.00440 0.35270 0.34950
6 0.00100 0.00510 0.40410 0.41290
7 0.00091 0.00560 0.46260 0.46020
8 0.00085 0.00600 0.51740 0.52510

All of the above results demonstrate that, when compared to the STCA algorithm, the
CSCA algorithm proposed in this work can achieve more accurate results while ensuring
the computational speed at the same scale, and it has better adaptability for optimizing
subsequent access sequences.
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5.4. Flighting-Path Simulation

In this section, the top three UAVs from Table 2 will be selected, and the number
of regions will be set to 15. In order to enhance the visibility of simulation results, the
range of values for the long axes of the regions is [6–8], while the range for the short
axes is [4, 4.5, 5]. Furthermore, the minimum turning radius constraint of fixed-wing UAVs
is considered. In this simulation, the minimum turning radius of each UAV is set to 200 m,
and the flight trajectory is optimized using the Dubins curve optimization method [37].
Figure 10 shows the allocation sequence obtained using the CSCA-GA algorithm, and it
displays UAVs represented by lines of different colors, with black arrows indicating their
respective flight directions.
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The flight trajectories of the UAVs obtained using the BSSS algorithm and long edge
scanning strategy (in this study called LESS) are depicted in Figures 11a and 11b, respec-
tively. Upon comparing the two figures, it becomes evident that the UAV employs distinct
scanning methods for the area enclosed by the red dashed circle in each figure. Unlike
LESA, BSSS does not carry out scanning along the longer side. In contrast to scanning
along the longer side, BSSS achieves a reduction of approximately 8 km in total distance
compared to LESA. As a result, this also substantiates the superiority of the proposed BSSS,
as presented in this study.
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6. Conclusions

This study researched the multi-region coverage path-planning problem to identify
appropriate region coverage schemes for UAVs with varying flight speeds and scanning
widths. The main conclusions are as follows:

1. A novel clustering algorithm was proposed to assign regions to UAVs, which effec-
tively reduces the computational complexity during the task allocation process;

2. A regional iterative strategy was designed to ensure the balancing of task completion
time among UAVs;

3. A path-planning method was devised to select the entry points and scanning modes
of the regions by considering the shortest flight distance, offering a reference trajectory
for the actual flight of UAVs;

4. The simulation results demonstrated that the clustering algorithm (CSCA) proposed
in this study surpasses others in terms of both quality and flexibility. Compared
to utilizing STCA for clustering, the average task completion time of CSCA has
decreased by 9–21%. In addition, the discrepancy between CSCA-NE and CSCA-GA
was approximately 60% lower than the discrepancy between STCA-NE and STCA-
GA. Furthermore, the path-planning method (BSSS) proposed in this study can yield
shorter flight paths.

Although the method proposed in this study has the capability of swiftly achieving
results within a brief timeframe, we also want to enhance the algorithm’s accuracy by
increasing the coupling between subproblems, which will be the primary focus of our
future research.
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