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Abstract: Unmanned aerial vehicles (UAVs) have been increasingly utilized for facility safety inspec-
tions due to their superior safety, cost effectiveness, and inspection accuracy compared to traditional
manpower-based methods. High-resolution images captured by UAVs directly contribute to identi-
fying and quantifying structural defects on facility exteriors, making image quality a critical factor
in achieving accurate results. However, motion blur induced by external factors such as vibration,
low light conditions, and wind during UAV operation significantly degrades image quality, leading
to inaccurate defect detection and quantification. To address this issue, this research proposes a
deblurring network using a Generative Adversarial Network (GAN) to eliminate the motion blur
effect in UAV images. The GAN-based motion deblur network represents an image inpainting
method that leverages generative models to correct blurry artifacts, thereby generating clear images.
Unlike previous studies, this proposed approach incorporates deblur and blur learning modules
to realistically generate blur images required for training the generative models. The UAV images
processed using the motion deblur network are evaluated using a quality assessment method based
on local blur map and other well-known image quality assessment (IQA) metrics. Moreover, in the
experiment of crack detection utilizing the object detection system, improved detection results are
observed when using enhanced images. Overall, this research contributes to improving the quality
and accuracy of facility safety inspections conducted with UAV-based inspections by effectively
addressing the challenges associated with motion blur effects in UAV-captured images.

Keywords: UAV inspection; motion deblurring; image quality enhancement; generative adversarial
network; object detection

1. Introduction

The utilization of unmanned aerial vehicles (UAVs) for facility safety inspections has
brought about a significant transformation in various industries, including civil engineering.
It offers cost effectiveness and increased operational efficiency compared to conventional
human-based safety inspections. Structural monitoring, which relies on reliable technological
methods to assess infrastructure conditions, is a crucial practice to ensure the long-term
serviceability of targeted structures. Manual inspection conducted by human worker, a widely
employed approach for monitoring structures over the years, entails evaluating the condition
of a structure based on subjective judgment. However, this method presents several challenges,
including exposing inspectors to hazardous environments, consuming substantial time and
financial resources, and yielding results that may not be fully dependable.

In recent years, a promising solution to overcome these limitations has emerged
through the active utilization of unmanned aerial vehicles (UAVs) for structure monitor-
ing. This method involves employing UAVs equipped with high-resolution vision sensors
or cameras to capture detailed images of a structure’s exterior. The UAV can be guided
along a predefined flight path or manually controlled to conduct the monitoring operation
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effectively. Based on these characteristics and advantages, numerous studies have been con-
ducted regarding the utilization of images captured by unmanned aerial vehicles (UAVs)
for bridge inspection [1–4]. Depending on the type of camera equipped on UAVs, research
has been conducted to detect various types of damages, such as crack detection using RGB
images and the quantification of deterioration, like concrete spalling and delamination, us-
ing thermal images [5,6]. Furthermore, research has proposed comprehensive frameworks
from the pre-inspection to post-inspection phases of bridge assessment [7,8]. However,
despite these efforts, challenges remain in addressing the quality issues of images captured
in dynamic environments. Particularly, issues related to image quality degradation due
to environmental factors such as wind or low lighting have been highlighted as hurdles
that UAV-based bridge inspection technologies need to overcome. Among various quality
degradation phenomena like noise, blur, low lighting, and defocusing, motion blurring
is a problem that is difficult to overcome through post-processing. Especially when cap-
turing large-scale structures like bridges, there is a tendency to choose the shortest path
to minimize operational time, which can be constrained by time limitations. As a result,
problems stemming from environmental factors like vibrations or wind affecting rapidly
moving UAVs have been identified as issues directly impacting image quality. In address-
ing the motion blur problem, some researchers have focused on the detection and removal
of blurry images. To identify areas of blurriness within an image, prior methodologies
predominantly focused on assessing the sharpness of image edges [9] or calculated the
gradient magnitude [10]. Alternatively, Su et al. [11] adopted a distinctive approach for
blur detection by combining several localized characteristics, including the power spec-
trum slope, Gradient Histogram Span, and Maximum Saturation, all of which become
apparent in the presence of blur. This approach also made a substantial contribution to
addressing the problem of image restoration by classifying blur into two distinct types,
motion blur and out-of-focus blur, relying on image patches as the basis for categorization.
Another method proposed by Bang et al. [12] entails the comparison of blur metric values
derived from adjacent frames through the application of moving averages. However, it is
important to note that these techniques continue to depend on threshold settings, which
can be problematic to ascertain with precision. In addition to blur area detection, research
on deblurring techniques aimed at directly improving the quality of blurry images has also
been actively conducted. Most non-uniform deblurring methodologies initiate their process
with the foundational assumption that the observed blurred image (B) results from the
convolution of an underlying sharp image (I) with a blur kernel (K), which is determined
based on a motion field.

The family of image deblurring approaches can be classified into blind and non-
blind deconvolution methods. Non-blind deconvolution assumes prior knowledge of
the blur kernels present in an image, while blind deconvolution is conducted without
any additional information on the blur kernels. Early work predominantly focused on
non-blind deconvolution methods, often relying on algorithms such as Richardson–Lucy,
Wiener filter, or Tikhonov filter to perform deblurring [13,14]. In more recent times, there
has been the development of blind deconvolution approaches aimed at handling situations
in which the blur kernel remains unidentified. Gupta et al. [15] estimated the spatially
non-uniform blur kernel resulting from camera vibration and deconvolved the image
using a motion density function. Nonetheless, it is evident that there is potential for
further refinement in the estimation of the blur kernel. Tai et al. [16] focused on spatially
varying camera motion blur and proposed a projective motion deblurring model based
on the Richardson–Lucy algorithm. However, it is worth noting that their approach
necessitates knowledge of a pre-defined camera motion path, thereby constraining its
practical applicability. Sieberth et al. [17] introduced two deblurring methodologies, one
based on the Fourier approach and the other utilizing the edge-shifting technique. While
both methods yielded outstanding results in deblurring aerial images, they exhibited certain
limitations related to the requirement of precise transformation parameters. Additionally,
the edge-shifting approach faces challenges in detecting complex crack patterns. The non-
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uniform blind deblurring algorithms mentioned earlier showcase proficient image deblurring
capabilities. However, their efficacy is hinged on a multitude of problem-specific parameters
and configurations, encompassing internal camera parameters, external motion functions,
thresholds, and termination criteria. Consequently, these algorithms encounter challenges
when it comes to practical implementation and generalization in real-world scenarios. In the
early stages, an analysis was conducted on the impact of motion blur in UAV-based images
on feature matching using SURF and brute force matching [17]. The results revealed that even
minor displacements of the camera, leading to image blur could have a significant adverse
effect on image processing. Furthermore, through related studies, it became evident that the
quality of images captured by UAVs directly influences the outcomes of visual inspections on
structures [8]. They demonstrated that excluding blurry images prior to photogrammetric
processing could greatly enhance feature detection and reconstruction. Additionally, they
observed that the extent of motion blur caused by camera shake led to a reduction in image
sharpness and a decrease in the accuracy of crack detection.

In recent times, owing to the progress in deep learning technology, there has been
a significant focus on investigating learning-based deblurring techniques. One such ap-
proach involves the utilization of convolutional neural networks (CNNs) for the estimation
of the blur kernel function. Extensive research has been conducted to develop a convo-
lutional neural network (CNN) capable of predicting blur kernels at the patch level to
effectively eliminate non-uniform blur in images [18]. Furthermore, considerable attention
has been directed towards research that explores the utilization of convolutional neural
networks (FCNs) for image deblurring through the estimation of motion flow [19]. Another
approach is using multi-scale CNNs to deblur images without explicitly estimating the
blur kernels [20,21]. Similarly, Generative Adversarial Networks (GANs), particularly
the DeblurGAN model [22,23], have shown promising results in image deblurring with
reduced computation time, without relying on explicit blur kernel estimation. In the context
of UAV-based crack images, they present an interesting case for analysis. Due to the hair-
line nature of many cracks, they can be easily distorted by blurring, leading to decreased
accuracy in crack detection. Nevertheless, the previously mentioned deblurring techniques
have not undergone dedicated testing on UAV-based images of cracks, leaving room for
potential enhancements in this domain.

Similarly, Generative Adversarial Networks (GANs), particularly the DeblurGAN
model [22,23], have shown promising results in image deblurring with reduced computa-
tion time, without relying on explicit blur kernel estimation. In the context of UAV-based
crack images, they present an interesting case for analysis. Due to the hairline nature
of many cracks, they can be easily distorted by blurring, leading to decreased accuracy
in crack detection. Liu et al. [24] conducted a study aimed at removing blur from crack
images captured by UAVs using a deblur GAN model. Given the challenges in obtaining
corresponding image pairs in real-world scenarios, artificially generated blurry images
through motion blur simulation were employed. Notably, this research focused on the
domain of crack images, utilizing an existing deblur GAN model as the generator network
and the VGG16 network [25] as the discriminator network. This novel approach, distinct
from previous studies, yielded impressive deblurring results, representing significant ad-
vancements in crack identification. Nevertheless, it is important to note that the use of
artificially created blurry images through motion blur simulation and clear images from
the same frame as data pairs has limitations in capturing the comprehensive characteristics
of real-world blurring.

In this study, the main goal is to minimize blurring between bridge monitoring us-
ing UAVs. Basically, the characteristics of blur in images taken in a static state and the
characteristics of motion blur in images acquired from UAVs are different in terms of the
shape, size, and shape of the blur kernel mentioned earlier. Technological solutions, such
as UAV speed control, camera vibration control, and sufficient illumination, exist for the
suppression of motion blur affected by multiplicative artifacts. However, more effective
solutions are required, as motion blur can occur within the image during filming due to the
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effects of flight time constraints and instability due to the UAV battery limit, flight path
deviation due to GPS signal shaded area, and error in shooting angle.

Therefore, in this study, GAN-based image deblurring networks and UAV image
domains are utilized to differentiate them from existing studies by solving problems
through image post-processing rather than a hardware approach. Typically, to employ
GAN for image deblurring, a dataset consisting of paired sharp and blurred images is
required [26]. However, in the case of images captured by UAVs, reference images are
often unavailable, necessitating the artificial synthesis of blurred images by combining
consecutive frames [27]. Nevertheless, this process may introduce discrepancies between
artificially synthesized blur characteristics and those occurring naturally. To address this,
this paper verifies the applicability in the UAV image domain by connecting a module that
learns deblurring with a module that learns blurring characteristics.

In other words, this paper contributes in the following ways: Firstly, based on the
recognition of domain differences between artificially synthesized blurry images and actu-
ally captured blurry images, it generates synthesized blurry images that closely resemble
real-world blurry images. Secondly, it trains the model using the synthesized blurry im-
ages, which closely resemble real ones and actual sharp images as data pairs. Thirdly, it
employs the trained GAN model to remove blur in UAV images used for bridge inspection
and validates its effectiveness using image quality metrics and a deep learning model for
object detection.

2. Proposed Motion Deblurring Network
2.1. Challenging Issues about Motion Blur in Bridge Inspection Using UAV

The drone image-based bridge monitoring process is largely divided into pre-inspection,
inspection, and post-inspection phases [7]. Bridge damage assessment uses image processing
techniques to identify, classify, and quantify damage assessment criteria using images
acquired in the inspection phase. However, if motion-blurred images are used, a proper
bridge damage assessment cannot be performed and, if necessary, a re-shooting of the area
must be performed. Additional costs and labor are inevitable and can be a major obstacle to
quick inspections of large structures, such as bridges. However, if the process of deblurring
within the post-inspection phase is carried out, it can be very useful not only to identify
damage but also to create inspection maps or 3D models of bridges required in the process
of identifying damage. Therefore, the challenges addressed in this study are essential parts
of enhancing the completeness of UAV-based bridge monitoring technology.

Motion blur is a challenging and ill-posed problem that often arises during image
acquisition. Undesirable image blur degradation can be caused by camera vibrations and
high-speed object motion, which are the two primary sources of motion blur commonly
encountered in the image acquisition process. With the advancement and growing accessi-
bility of UAV technology, unmanned aerial vehicles (UAVs) are progressively finding utility
as monitoring instruments across diverse facilities. Typically, these inspection UAVs are
equipped with an array of sensors, including a high-resolution vision system, to facilitate
large-scale inspections. Nevertheless, variations in external conditions, such as weather
fluctuations, wind-induced vibrations, or abrupt operator input errors, frequently give rise
to motion blur, resulting in undue oscillation of the vision system as illustrated in Figure 1.

Figure 1. A case where motion blur occurred in the UAV image for bridge inspection. (a) Original
image (b) Motion blurred image.
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Since the introduction of GAN models by Ian Goodfellow [28], various studies have
been conducted to improve the performance of GAN models. Deblur GAN [22], Cycle-
Deblur GAN [29], and Reblur GAN [30] are prominent models for restoring blurred images.

In general, in a single image deblurring, a blurred image B is usually modeled as:

B = K ∗ L + N (1)

where K, L, and N represent the blur kernel, the latent sharp image, and additive noise,
such as white Gaussian noise, while ∗ denotes the 2D convolution operator. The objective
in image deblurring is to estimate both K and L from the input blurred image. Nevertheless,
this problem is inherently imprecise, primarily due to the existence of an infinite number
of solutions capable of generating the same result denoted as B. Generally, a solution to
this problem necessitates the availability of prior knowledge regarding K and L, but the
absence of such prior information may result in inaccuracies in the deblurring process.
Consequently, a variety of diverse methodologies have been proposed over the past decades
to address the inherent imprecision of this image deblurring problem. In particular, blind-
deconvolution methods that perform deblurring are often applied to UAV images without
prior information on blur kernels. This approach is often assumed to apply a spatially
uniform blur kernel to the entire blur image. However, there is a limit to the uniform
blur kernel-based method because multiple factors such as camera rotation changes or
object movements work in the elements that generate actual motion blur. In addition,
despite many prior studies for non-uniform blur kernel estimation to compensate for
these limitations, it did not completely suppress dynamic blur (motion blur) caused by
object movement or camera movement. Therefore, to address this, we perform blur and
deblurring learning using a generative adversarial model, one of the image-to-image
translation methods, rather than a step-by-step kernel estimation method.

2.2. The Proposed Motion Deblurring Network Based on Improved Standard GAN
2.2.1. Architecture

The existing kernel estimation methods for image deblurring have limitations in
accurately resolving the blur problem in UAV images captured in dynamic environments.
To overcome this challenge, this study proposes a new deblurring model based on GAN
with the ultimate goal of removing the blurring effect from UAV images.

While there are several deblurring techniques based on CNN, they are not end-to-
end methods and exhibit low efficiency, with processing times exceeding 10 s per image.
In contrast, GAN networks offer the advantages of fast processing times for individual
images and accurate and effective blur removal. Generally, GAN-based deblurring methods
involve pairing artificially synthesized blurred images with corresponding clear images
and operate by generating sharp images from the blurred counterparts. However, since the
domain characteristics of artificially synthesized blur images differ from those of real-world
blur images, accurate deblurring effects cannot be reliably achieved. Therefore, the motion
deblurring network that is newly constructed, based on the GAN model, includes a blur
generation module that generates blur images closely resembling real-world blurs from
the dataset construction stage. It also incorporates a deblurring module that performs
the final deblurring process. By combining these modules, the proposed method aims
to achieve more accurate and effective deblurring results for UAV images. The deblur
network consists of two main modules: a deblur module and a blur module. Similar to
previous image deblurring works, the deblur module is trained on paired sharp and blurry
images to recover sharp images from blurry ones. These paired images are obtained from
the blur module, which is trained on unpaired data, using sharp images and blurry images
captured by UAV in bridge inspection. The overall architecture of the proposed framework
is illustrated as shown in Figure 2. In Figure 2 below, block G means the generator network
and block D means the discriminator network.
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Figure 2. The architecture of the proposed motion deblurring network.

This model utilizes the concept of relative loss to enhance the standard GAN model.
In contrast to deblurring models employing traditional GANs, the discriminator and
generator in this approach are not trained solely to increase the probability of input data
being considered real and the generated data appearing authentic. Rather, their objective is
to evaluate whether a given real image is superior to the generated image in realistically
portraying blurriness. During the training phase, clear images are provided as input to
the blur learning module, and the outcomes are subsequently fed into the deblur learning
module for training purposes. Both modules’ generators produce corresponding images,
while the discriminator generates a more refined composite image. Effective deblurring
performance necessitates only the generator from the deblur learning module, akin to
other models. However, what distinguishes the proposed motion deblurring network is
its construction, which involves the connection of two modules characterized by distinct
features. Furthermore, leveraging the directly captured UAV image dataset from bridge
inspections for training offers the advantage of addressing the motion blur phenomenon
frequently encountered in UAV environments. The proposed architecture, like other GAN-
based deblur networks [22,23,29,30], consists of a generator and discriminator network.

2.2.2. Phase 1: Blur Learning Module

In the initial phase, denoted as Phase 1, a UAV dataset encompassing diverse pre-
constructed scenes and high-clarity images is employed to introduce clear images into the
generator. Additionally, to replicate various environments where blurring takes place, a
noise map is integrated with the input image, capable of emulating a spectrum of conditions.
Specifically, we sample a noise vector of length 4 from a normal distribution and employ
it by replication across the spatial dimension. As depicted in Figure 3, the overarching
generator architecture comprises two convolutional layers and nine residual block layers,
with each residual block featuring an instance normalization layer and Relu activation.
Within this process, the application of the global skip connection, as introduced in the
deblurGAN model [22], is expected to yield advantages in terms of accelerated training
and enhanced generalization outcomes.

The output generated through the training process constitutes a synthesized blurry
image of the same dimensions as the input image. This synthesized image serves as the
input to the discriminator network, which adopts the well-established VGG19 network
architecture [25]. The ultimate output of this network is the probability assigned to classify-
ing the synthesized blurry image as a genuine one. Both the generator and discriminator
networks mentioned earlier undergo training with the aim of minimizing perceptual loss
and adversarial loss, respectively. The perceptual loss is computed based on synthetic
images generated by the generator network and images extracted from the UAV dataset.
Meanwhile, the adversarial loss is calculated by comparing the generated blurred images
from the newly created dataset with the actual blurred images.
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Figure 3. Generator of blur learning module.

2.2.3. Phase 2: Deblur Learning Module

In phase 2, a deblurring process is executed, relying on a synthesized blurry image
that closely resembles a real one generated earlier. This synthesized blurry image serves as
input to the generator network within the deblur learning module. Similar to the generator
network employed in Phase 1, this architecture comprises a convolutional layer followed
by an additional 16 residual block layers. The output of discriminator network provides
the probability that the generated sharp image convincingly resembles a genuine sharp
image, incorporating perceptual loss and adversarial loss as shown in Figure 4. All forms
of loss functions are computed based on the generated sharp images, and the perceptual
loss function is employed for updating the model.

Figure 4. Discriminator of deblur learning module.

While the proposed approach employs a loss function concept similar to that proposed
by Johnson et al. [31], it leverages features before the ReLU activation layer when computing
the perceptual loss. Mean Squared Error (MSE) stands as one of the widely utilized loss
functions in the field of image restoration. The MSE value is calculated to quantify the
content loss between the original image and the generated image. We enhanced the
performance of the generator network within the blur learning module by formulating a
relative loss function aimed at generating synthesized blurred images that closely mimic
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the characteristics of real blurred images. This loss function also facilitates continuous
model refinement to deceive the discriminator network effectively.

2.2.4. Loss Functions

The deblur module is trained using perceptual loss and content loss, and additionally
incorporates the concept of relativistic loss [32]. The idea for relativistic loss comes from
extending the role of the generator in the blur learning module (a network that generates
fake blurred images) to better align the generated fake blurred images to the real blurry
images. In addition, the real blurry images should be updated to reduce their probability
of being real. Most standard GANs with non-saturating loss function assume the cross-
entropy loss as

f1(D(x)) = −log(D(x))

f2(D(x)) = −log(1− D(x))
(2)

where f1, f2 are scalar-to-scalar functions, and D(x) represents the probability of the input
image x being a real image in discriminator [33] and can be denoted as sigmoid(C(x)).
Here, C(x) is a non-transformed discriminator output called a critic. In standard GAN, the
term critic C(x) refers to how authentically the discriminator assesses the input data. In this
context, positive values of D(x) indicate that the data appear realistic, while negative values
suggest that the data appear fake. According to the extended relativistic loss announced by
Jolicoeur-Martineau [32], Equation (2) can be modified to D(xr, x f ) = σ(C(xr)− C(x f )),
which can be interpreted as the discriminator assessing whether the provided real data are
more realistic that randomly sampled fake data. Therefore, by developing this relativistic
loss, the adversarial loss D is defined as follows:

D(Ireal , Iblurry) = σ(C(Ireal)− C(Iblurry))→ 1

D(I f ake, Iblurry) = D(G(Ireal , Isharp)) = σ(C(G(Ireal))− C(G(Isharp)))→ 0
(3)

where generator G is trained to increase the probability that synthesized images are looks
more realistic (0→ 1), and at the same time decrease the probability that real images look
realistic (1→ 0).

By applying the concept of relativistic loss defined in this way to the blur learning
module, Equation (2) contributes to fooling the D into thinking that a fake (generated)
blurry image is similar to the real blurry image (0→ 1), and at the same time, G is trained
to reduce the probability that a real blurry image is real (1→ 0).

Given by Equation (3), the relativistic loss in the blur learning module is defined as B1 loss:

LB1 = −[log ((D(Ireal , Iblurry))− D(G(Iinput))) + log (1− (D(G(Iinput)− D(Ireal , Iblurry)))]. (4)

Based on the B1 loss, the relativistic loss of the generator in the deblur learning module is

LB2 = −[log ((D(Ireal , Isharp))− D(G(Iinput))) + log (1− (D(G(Iinput)− D(Ireal , Isharp)))]. (5)

In the training phase, the loss functions of the blur and deblur learning modules are
constructed by multiplying their respective weight values as follows:

Lblurlearning = Lperceptual + β · LB1,Ldeblurlearning = Lperceptual + α · Lcontent + β · LB2. (6)

where α denotes the weighted parameter of content loss and β denotes weighted parameter
of B1 and B2 loss. The two-weighted parameters α and β were inferred to be suitable values
within a range that ensures the stability of the proposed model through multiple rounds of
training and optimization, preventing the overfitting of specific loss components during
the learning process.
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3. Experiments and Discussions
3.1. Generation of the Image Dataset

The blur image dataset used in the blur learning network and the clear image dataset
used in the deblur learning network learning consist of images taken of the sides and
bottom of the bridge. The target structure is a bridge consisting of 10 steel boxes and 10 PSC
box girders. In the case of the pier, the route was set at an interval between 2.42 and 2.49 m,
and images were captured by automatic flight as shown in Figure 5. In addition, in the
case of the deck plate, considering that it is a GPS-denied area, images were acquired at a
distance of 4 to 5 m at a level where sufficient communication is possible. Some images
of areas near the floor where GPS signals are weak were obtained by the pilot via manual
flight and caused a number of blurs. The overall process was taken using UAVs in the
same environment as normal bridge monitoring and a DSLR camera mounted on UAVs
secured 1100 blur images and 2000 clear images from 20 different scenes. Among the bridge
images acquired in the real world, 900 of the 1100 blurred images were used as training
datasets, the remaining 100 as validation datasets, and 100 as test sets to learn the blur
learning module. In addition, out of 2000 clear image data required for the deblur learning
module, 1600 were used as training datasets, 200 were used as test sets and the remaining
200 were used as validation datasets. Each image is in JPEG format, compressed at 50% of
the original size.

Figure 5. Image acquisition through autonomous–manual flight and target bridge.

A quadcopter-type UAV system was used to acquire the image dataset. The UAV
system is equipped with a Mini-PC for real-time image storage and coordinate mapping,
a Sony Alpha 7 or Alpha 9 DSLR camera, and a ZEISS Batis 85 mm f/1.8 lens, using a
customized three-axis gimbal to reduce vibration as shown in the Figure 6. The gimbal
used an iPower IR6212H-50T brush motor with a roll, pitch ±90° operating range and
an additional IMU sensor for control of the gimbal was attached. With these equipment
settings, stable image acquisition was performed with minimal probability of motion
blur occurrence.

Figure 6. UAV systems and components for image acquisition.
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The values of the camera’s internal parameters were set differently depending on the
region of interest. Since the illumination environment changes depending on the location of
each member, the values of ISO sensitivity, property size, and shutter speed were adjusted
accordingly as shown in Table 1.

Table 1. Camera parameter setting according to the amount of illumination used in this study.

Sides of Bridge (Pier and Girder) Bottom of Bridge Deck

ISO sensitivity 100∼320 or Auto ISO sensitivity 320∼500
Aperture size f/4.5∼f/5.6 Aperture size f/1.8∼f/3.5
Shutter speed 1/250∼1/800 s Shutter speed 1/100∼1/250 s

3.2. Training and Implementation Details

During the training process, image augmentation techniques were employed to introduce
variations such as image rotation (−20° to +20°), horizontal and vertical movement, and
horizontal and vertical flipping. This augmentation technique helps minimize overfitting and
allows for training with a diverse range of data using a relatively small number of images
captured by the UAV. Additionally, to simulate blur effects occurring in different environments,
the dataset was composed by applying various illumination values (−30 to +30). In the
training of the blur and deblur module, the weight initialization was carried out using a
Gaussian distribution characterized by a mean of 0 and a standard deviation of 0.01. After
processing a mini-batch consisting of four samples, the model’s weights were updated in each
iteration. To diversify the training dataset, a 128 × 128 patch was extracted from arbitrary
positions within an image. To further enhance dataset diversity, frames were randomly
flipped. The employed learning rate followed a scheme of annealing, commencing at 10−4

and progressively decreasing to 10−6 upon a convergence of the training loss. The weighted
parameters α and β were adjusted to 0.05 and 0.001, respectively.

3.3. Experimental Results and IQA

To validate the effectiveness of the proposed method, which constructs training data
pairs using a blur module that mimics the blurring effects occurring in actual UAV to create
blurry images, and trains a deblur module using these data, we applied it to real-world
blurry images. Figure 7 shows a blurry image taken during a bridge inspection using a UAV
and the deblurred image obtained by applying the proposed model. A total of 100 images
were tested, using the actual raw data images (6000 × 4000, 24 MP) compressed to 50% of
their size. Blurred images were taken in environments where motion blur is likely to occur,
such as under bridges with insufficient light, and only images with motion blur were used,
excluding cases with out-of-focus blur. Before validating, we added the blurry images
generated by the blur module to the training samples for training the deblur module in
order to improve the performance of the deblur module. This method was effective in
fine-tuning the deblur module, and the deblur performance improved compared to when
this was not performed.

Figure 7. Representative various scenes of UAV image dataset.
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Utilizing the results obtained from training the deblurring network to enhance given blurry
images as shown in Figure 8, we conducted a quality evaluation using three widely used image
quality metrics. The commercial metrics employed for image quality assessment included
BRISQUE [34], NIQE [35], and LBMS (Local Blur Map Score) [36], which evaluates the quality of
blur images based on local blur maps. Table 2 shows a comparison of the quality scores before
and after performing dynamic deblurring and presents the average values obtained by applying
the metrics to each of the 100 test images. When comparing quality using BRISQUE, the
proposed multi-module-based deblurring model exhibited an approximate 36.6% enhancement
in quality. Additionally, the NIQE evaluation results also indicated an improvement of about
37.68% in quality scores. Lastly, the LBMS-based evaluation of blur image quality demonstrated
an enhancement effect of approximately 33.99%, affirming that the motion deblurring network
employed earlier led to improved image quality.

Figure 8. Performing deblurring on blurring images between bridge inspections using UAV
(left) blurred image, (right) deblurred image.



Drones 2023, 7, 657 12 of 20

Table 2. Comparison of image quality evaluation results before and after deblurring.

Measure
Average Score

Blurry Images Deblurred Images Changes

BIRSQUE 35.94 22.77 +36.6%
NIQUE 6.21 3.87 +37.68%

LBM 0.606 0.812 +33.99%

4. Validation of Deblur Effect in Object Detection

An experiment was designed to verify the impact of the proposed motion deblur
network’s output on object detection. Specifically, the detection of cracks holds high im-
portance in the process of infrastructure inspection using UAV. Therefore, the experiment
compared the results of crack detection using blurry images and deblurred images di-
rectly. The crack detection process was simulated using actual images acquired through
UAVs. The ultimate goal was to compare the detection results and analyze the effects of
image deblurring.

4.1. Deep Learning Model for Detecting Object

The YOLO (You Only Look Once) network includes single-stage object detectors. In
this deep learning model, image frames are featurized through a backbone. These features
are combined and fused in the intermediary section, and subsequently forwarded to the
network’s head. YOLO then predicts the positions and categories of objects for which
bounding boxes need to be delineated. It achieves efficient inference speed by employing
extended efficient layer aggregation. Furthermore, it enhances the model architecture
by establishing connections between layers and simultaneously adjusting the network’s
depth and breadth. Moreover, the YOLO model employs a re-parameterization strategy to
identify which network modules should integrate this approach, guaranteeing the smooth
flow of gradient propagation. These adjustments together result in enhanced performance,
both in terms of speed and accuracy, for tasks related to object detection. In this study, the
performance of the proposed GAN-based deblur network is evaluated by comparing the
object detection results using both the blurry images and the deblurred images with cracks.
A dataset consisting of numerous UAV-acquired images containing cracks was created for
training the object detection model. As shown in Table 3, the YOLO-v7 model [37] pre-
trained with the MS COCO dataset [38] has an AP of 51.40% and a Batch 32 Average time
of 2.8 ms for 640 × 640 images. The YOLO-v7 network used in the validation experiment
is a pre-trained model designed for 640 × 640 image size, and the training dataset was
also resized to match the dimensions of 640 × 640. By applying the blur images and their
corresponding deblur images to the pre-trained model, the object detection results can
be compared to assess the improvement achieved through the deblurring process. All
training processes were executed in the Google Colab environment, utilizing an Intel Xeon
CPU@2.20 GHz, 83.5 GB of RAM, and an NVIDIA A100-SXM-40 GB GPU.

Table 3. The performance of YOLO-v7 series (MS COCO dataset) [37,38].

Model Test Size AP (Test) AP (50, Test) Batch 1 fps Batch 32 Average Time

YOLO-v7 640 51.40% 69.70% 161 fps 2.8 ms
YOLO-v7(X) 640 53.10% 71.20% 114 fps 4.3 ms

YOLO-v7(W6) 1280 54.90% 72.60% 84 fps 7.6 ms

4.2. Image Dataset for Training Model

In order to evaluate the performance of the proposed image quality improvement
(motion deblurring) method, a validation was conducted to compare the object detection
results using the YOLO-v7 network. The image dataset used in this study comprised
a total of 10,900 crack images (CrackNet dataset [39]) as shown in Figure 9. Among
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these, 9900 images were used for training, and 1000 images were reserved for validation.
Image data augmentation techniques were applied, including vertical and horizontal flips,
rotation within the range of −15 degrees to +15 degrees, and brightness adjustments
ranging from −25% to +25%. Additionally, noise and blur data were added to enhance
the object detection performance for blurred images. The weight model utilized transfer
learning, using the pre-trained segmentation model. Each image was assigned four types
of labels: slanted, crack, horizontal crack, and vertical crack. Both the image data and the
corresponding label were set as input values for the training course, and the training was
carried out through a total of 25 epochs.

Figure 9. Representative results of image augmentation.

4.3. Training and Implementation Details

This study attempted to increase detection performance and reduce learning time
through transfer learning using pre-trained models [40]. Pre-trained models have a
weighting scheme created by learning the characteristics of various images. If transfer
learning is not conducted, deep learning weights begin learning from random initial
values, but the learning effect is further improved by using pre-trained weights through
such transfer learning. All YOLO-v7 networks used in the validation experiment used pre-
trained weights as initial values of COCO dataset. The hyperparameter of the deep learning
model is a condition that defines the network structure and driving environment, and
hyperparameter optimization is the most important factor that determines the performance
and learning time of the model. Adjusting the weight by injecting all the training data
corresponds to one epoch, and the verification score is calculated for each epoch. After
finishing the entire epoch, we selected the one model with the best performance. Reflecting
these verification results, follow-up tasks, such as adjusting the hyperparameters to improve
generalization performance, were performed. Once the training and validation processes
were completed, the performance of the models was evaluated through a test evaluation.
The model with the highest mean Average Precision (mAP) value at an IoU threshold of
0.5 was selected. Precision, recall, and mAP@0.5 were applied as performance metrics for
object detection.

4.4. Validation Results

Tables 4 and 5 present the test evaluation results for the YOLO-v7 segmentation model,
including precision, recall, and mAP@0.5 for both bounding box and mask predictions.
Table 6 shows the confusion matrix for the YOLO-v7 segmentation model’s test results. To
assess the overall object detection performance, mAP@0.5 was calculated using the area
under the Precision–Recall (PR) curve as depicted in Figure 10. In terms of bounding box
predictions, the crack class achieved the highest mAP@0.5 value of 0.765. Regarding mask
predictions, the highest mAP@0.5 value of 0.642 was observed in the horizontal crack class.
In addition, as shown in Figure 11, the F1-score also showed more accurate prediction
and reproduction than expected with values of 0.66, 0.62 in each bounding box and mask
segmentation. The detection results for cracks were favorable, as the characteristics of these
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objects were distinct. Notably, the detection accuracy for vertical and horizontal cracks
was relatively higher compared to slanted cracks. It is challenging to generalize the crack
detection performance of the YOLO-v7 network due to the significantly higher number of
crack instances compared to the other three classes.

Table 4. Test performance of YOLO-v7 segmentation (bounding box).

Class Number of Instances Precision Recall mAP@0.5 mAP@0.5:0.95

Crack 990 0.74 0.774 0.765 0.619
Horizontal Crack 132 0.715 0.646 0.693 0.533

Vertical Crack 131 0.705 0.557 0.613 0.477
Slanted Crack 116 0.674 0.5 0.547 0.478

All 1369 0.709 0.619 0.654 0.527

Table 5. Test performance of YOLO-v7 segmentation (mask, segmentation).

Class Number of Instances Precision Recall mAP@0.5 mAP@0.5:0.95

Crack 990 0.626 0.655 0.561 0.171
Horizontal Crack 132 0.681 0.616 0.642 0.245

Vertical Crack 131 0.695 0.55 0.595 0.224
Slanted Crack 116 0.673 0.5 0.539 0.203

All 1369 0.669 0.58 0.584 0.211

Table 6. Confusion matrix of YOLO-v7 segmentation.

Prediction/Truth Crack Horizontal Crack Vertical Crack Slanted Crack

Crack 0.78 0.26 0.33 0.33
Horizontal crack 0.01 0.63 0 0.02

Vertical crack 0 0 0.55 0.09
Slanted crack 0.01 0.01 0.02 0.5

Figure 10. The results of the Precision–Recall (PR) curve for (a) box bounding and (b) mask segmen-
tation obtained through learning.
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Figure 11. The results of the F1 score curve for (a) box bounding and (b) mask segmentation obtained
through learning.

4.5. Test Results

Using the trained and validated crack detection model, tests were conducted on a set
of 19 blurry images and another set of 19 deblurred images. The original image size was
3840 × 2160, and for consistency with the training image size of the YOLO-v7, the images
were cropped to 640 × 640 before performing object detection. The original set of 19 images
and the deblur image set contain the same region of interest (ROI), and visual inspection in
the field shows that a total of 12 images contain cracks, and 7 images do not contain cracks
as shown in Figure 12.

Figure 12. Test image set for crack detection (original and deblurred).
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Generally, four main metrics are commonly used to evaluate the performance of an
object detection model. Precision, which measures the precision rate, calculates the ratio
of correctly predicted positive instances to all instances predicted as positive. In other
words, it focuses on the accuracy of positive predictions. Recall, which indicates sensitivity,
measures the ratio of correctly predicted positive instances to all actual positive instances.
Accuracy, which represents the overall accuracy of the model predictions, calculates the
ratio of correct predictions (both true positives and true negatives), to all instances. Lastly,
the F1 score is calculated as the harmonic mean of precision and recall.

The results of crack detection using the original and deblurred image sets are shown
in Figure 13. When applying crack detection to the original image set, out of 19 images
(23 instances), 5 images (6 instances) were classified as true positive, and 4 images (10 instances)
were classified as false negative. There were no false positive and 7 true negatives. Based
on these classifications, the four evaluation metrics were calculated and are presented in
Table 7. Using the same object detection model, the results for the original image set as input
showed P = 100%, R = 37.50%, Accuracy = 58.33%, and F1 score = 54.54. When using the
deblurred image dataset as input, which was obtained by applying the deblurring network to
the original images, there was a significant improvement in the performance. The accuracy
increased by 16.67% to 75.00%, recall improved by 27.2% to 64.70%, and the F1 score increased
by 24.02% to 78.56.

Figure 13. Crack detection performance comparison results. (a) Original. (b) Deblurred.

Table 7. The result of YOLO-v7 for detecting cracks (confidence = 0.25).

Evaluation Metric Original Deblurred Change

Accuracy (%) 58.33 75.00 +16.67
Precision (%) 100 100 0

Recall (%) 37.50 64.70 +27.2
F1 score 54.54 78.56 +24.02

Figure 14 shows the representative results of object detection performed using the
original image captured by a UAV and the improved quality image after deblurring. Each
image is annotated with numbers corresponding to visually identifiable instances, and
instances identified as cracks are illustrated with segmentation masks and bounding boxes.
The results of deblurring indicate that the progression of cracks within the images was
recreated in a clear state, regardless of their orientation, under motion blur conditions. For
a more quantitative comparison, Table 8 shows the classification results of crack detection
among 9 out of 12 images, including instances. Furthermore, upon analyzing the crack
detection images from both datasets, as shown in Figure 14, it can be observed that the
crack detection rate (class probability) is higher in the deblurred images compared to the
blurry images with poor image quality (#1, #3, #19). It is also evident that cracks were
detected in 4 images that were previously undetected prior to deblurring. However, in



Drones 2023, 7, 657 17 of 20

two instances (#4 and #12), false alarms occurred, leading to a decreased object detection
rate after deblurring as shown in Table 7. In these cases, the bounding box detection
failed to accurately identify the class, while the mask segmentation displayed a higher
value. This suggests that these false negatives can be attributed to the learning process
of the YOLO model rather than being a result of the deblurring network’s performance.
Consequently, based on these detection results, it can be inferred that the image deblurring
effect achieved using the multi-module-based generative model enhances the accuracy of
damage detection to a certain extent.

Figure 14. Representative result of object detection after deblurring. (#1, #3, #19).
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Table 8. The result of object detection using YOLO-v7.

Number of Image
Original Images Deblurred Images

Class Probability Class Probability Changes

1 No detect No detect 1 crack 0.26 s 0.26
2 1 crack 0.3 2 crack 0.55 s 0.25
3 No detect No detect 1 crack 0.46 s 0.46

4 2 crack 0.70, 2 crack 0.43 ∇ 0.27
0.3 0.32 s 0.02

5 1 crack 0.26 1 crack 0.37 s 0.11
7 No detect No detect 3 crack 0.44 s 0.44

11 1 crack 0.29 1 crack 0.36 s 0.07
12 1 crack 0.37 1 crack 0.33 ∇ 0.34
19 No detect No detect 1 crack 0.29 s 0.29

5. Conclusions

In the UAV-based bridge inspection technology, the occurrence of motion blur in
images poses a significant threat to the reliability of inspection results. Therefore, this study
introduces a standard GAN-based deblurring network model aimed at mitigating and en-
hancing the quality of images affected by motion blur during UAV-based bridge inspections.
Unlike conventional deblurring networks based on GANs that utilize artificially generated
images through simulations without accounting for the distinct characteristics of blur
during the learning process, our proposed model advances by generating synthetic images
that closely emulate real-world motion blur traits. Consequently, we successfully acquired
a collection of blurred images resembling various scenarios encountered in UAV-based
imaging, which serve as the foundation for subsequent deblurring processes.

Furthermore, validation experiments using three widely used image quality metrics
demonstrated an improvement in image quality of approximately 33% to 36%. Additionally,
in the context of crack damage detection using the latest object detection model, we
conducted validation experiments that showed higher instance detection rates and accuracy
in deblurred images compared to the original images. These experiments involved training
the YOLO-v7 deep learning model, and the results indicated a 16.67% increase in instance
detection accuracy, a 27.2% improvement in recall, and a 24% increase in F1 score. While
two instances of false alarms occurred during the validation process, it was concluded
that these were not due to constraints in the learning of the deblurring model but rather
performance limitations of the object detection model.

Therefore, based on these validation results, the motion deblurring network proposed
in this study are expected to enhance the reliability and accuracy of bridge inspection
technology using UAVs.
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