Next Issue
Volume 10, March
Previous Issue
Volume 10, January
 
 

Gels, Volume 10, Issue 2 (February 2024) – 68 articles

Cover Story (view full-size image): Dental pulp stem cells (DPSCs) hosted in plastically compressed dense collagen hydrogels have demonstrated a strong capacity for bone regeneration in vivo. However, optimal conditions for the preparation of these DPSC-seeded collagen constructs have not been elucidated yet. Here, we demonstrate that both physico-chemical and biological parameters have a strong impact on the process of biomineralization in vitro. In particular, small variations in pH/buffering conditions have a significant impact on the ability of the hydrogel to sustain the compression process. Moreover, because DPSCs do not significantly proliferate within such networks, a high seeding density is necessary to achieve mineralization. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 879 KiB  
Review
Reasoning on Pore Terminology in 3D Bioprinting
by Alexander Trifonov, Ahmer Shehzad, Fariza Mukasheva, Muhammad Moazzam and Dana Akilbekova
Gels 2024, 10(2), 153; https://doi.org/10.3390/gels10020153 - 19 Feb 2024
Cited by 1 | Viewed by 1187
Abstract
Terminology is pivotal for facilitating clear communication and minimizing ambiguity, especially in specialized fields such as chemistry. In materials science, a subset of chemistry, the term “pore” is traditionally linked to the International Union of Pure and Applied Chemistry (IUPAC) nomenclature, which categorizes [...] Read more.
Terminology is pivotal for facilitating clear communication and minimizing ambiguity, especially in specialized fields such as chemistry. In materials science, a subset of chemistry, the term “pore” is traditionally linked to the International Union of Pure and Applied Chemistry (IUPAC) nomenclature, which categorizes pores into “micro”, “meso”, and “macro” based on size. However, applying this terminology in closely-related areas, such as 3D bioprinting, often leads to confusion owing to the lack of consensus on specific definitions and classifications tailored to each field. This review article critically examines the current use of pore terminology in the context of 3D bioprinting, highlighting the need for reassessment to avoid potential misunderstandings. We propose an alternative classification that aligns more closely with the specific requirements of bioprinting, suggesting a tentative size-based division of interconnected pores into ‘parvo’-(d < 25 µm), ‘medio’-(25 < d < 100 µm), and ‘magno’-(d > 100 µm) pores, relying on the current understanding of the pore size role in tissue formation. The introduction of field-specific terminology for pore sizes in 3D bioprinting is essential to enhance the clarity and precision of research communication. This represents a step toward a more cohesive and specialized lexicon that aligns with the unique aspects of bioprinting and tissue engineering. Full article
(This article belongs to the Special Issue Structure and Properties of Functional Hydrogels)
Show Figures

Graphical abstract

13 pages, 6193 KiB  
Article
Effect of Spray-Type Alginate Hydrogel Dressing on Burn Wounds
by Jeong Yeon Choi, Yong-Joon Joo, Ri Jin Kang, Hee Kyung Jeon and Gyeong Sik Hong
Gels 2024, 10(2), 152; https://doi.org/10.3390/gels10020152 - 19 Feb 2024
Viewed by 1286
Abstract
Immediate burn wound care is a critical factor influencing the outcomes of burn treatment. In this study, we developed a spray-type alginate hydrogel dressing that promotes wound healing, reduces pain, and increases the convenience of use in a burn treatment emergency. We investigated [...] Read more.
Immediate burn wound care is a critical factor influencing the outcomes of burn treatment. In this study, we developed a spray-type alginate hydrogel dressing that promotes wound healing, reduces pain, and increases the convenience of use in a burn treatment emergency. We investigated the efficiency of newly developed spray-type alginate hydrogel dressing on the wound healing process. We investigated the efficacy of the alginate hydrogel dressing for wound healing in 30 Sprague Dawley rats. Four deep, round second-degree burn wounds (diameter, 1.5 cm) were created bilaterally on the dorsum of the rat’s trunk; the rats were divided into four groups, in which different dressing materials were applied as follows: group A, gauze (control); group B, Mepilex™ (control); group C, 2.25% alginate hydrogel; and group D, 2.5% alginate hydrogel. The gross findings of each group were compared by tracing the remaining wound and performing visual and histological observations and biochemical analysis for proteins associated with wound healing at each time period. In burn wounds, groups C and D showed significantly higher contraction, epithelialization, and healing rates. Histologically, groups C and D showed an improved arrangement of collagen fibers and a thick epithelial layer 14 days after initial wound formation. Group C showed higher CD31, TGF-β, and fibronectin expression in Western blot analyses after day 14. This study suggests that the spray-type alginate hydrogel dressing is an effective material for initial burn wound care. Full article
Show Figures

Figure 1

15 pages, 10854 KiB  
Article
Micro and Macro Flooding Mechanism and Law of a Gel Particle System in Strong Heterogeneous Reservoirs
by Rongjun Ye, Lei Wang, Wenjun Xu, Jianpeng Zhang and Zhengbang Chen
Gels 2024, 10(2), 151; https://doi.org/10.3390/gels10020151 - 19 Feb 2024
Viewed by 1030
Abstract
To address the issue of ineffective injection resulting from the consistent channeling of injected water through highly permeable channels in ultra-deep, high-temperature, high-salinity, and strongly heterogeneous reservoirs during the production process, a gel particle profile control agent suitable for high-temperature and high-salinity conditions [...] Read more.
To address the issue of ineffective injection resulting from the consistent channeling of injected water through highly permeable channels in ultra-deep, high-temperature, high-salinity, and strongly heterogeneous reservoirs during the production process, a gel particle profile control agent suitable for high-temperature and high-salinity conditions was chosen. With the help of the glass etching visual microscopic model and the heterogeneous long core model, the formation mechanism of a water flooding channeling path and the distribution law of the remaining oil were explored, the microscopic profile control mechanism of the different parameters was clarified, and the profile control effect of macroscopic core displacement was analyzed. The research shows that the formation mechanism of a water flooding channeling path is dominated by the distribution law of the permeability section and the connection mode between different penetration zones. The remaining oil types after water flooding are mainly contiguous block, parallel throats, and multi-branch clusters. The profile control effect of gel particles on reservoir vertical heterogeneity is better than that of reservoir lateral heterogeneity. It was found that 10 wt% submicron particles with a median diameter of 600 nm play a good role in profiling and plugging pores of 5–20 μm. In addition, 10 wt% micron-sized particles with a median diameter of 2.63 μm mainly play a strong plugging role in the pores of 20–30 μm, and 5 wt% micron-sized particles with a median diameter of 2.63 μm mainly form a weak plugging effect on the pores of 10–20 μm. The overall profile control effect of 10 wt% submicro particles is the best, and changes in concentration parameters have a more significant effect on the profile control effect. In the macroscopic core profile control, enhanced oil recovery (EOR) can reach 16%, and the gel particles show plugging, deformation migration, and re-plugging. The research results provide theoretical guidance for tapping the potential of the remaining oil in strong heterogeneous reservoirs. To date, the gel particles have been applied in the Tahe oilfield and have produced an obvious profile control effect; the oil production has risen to the highest value of 26.4 t/d, and the comprehensive water content has fallen to the lowest percentage of 32.1%. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (2nd Edition))
Show Figures

Figure 1

14 pages, 3391 KiB  
Article
Bacterial Nanocellulose Hydrogel for the Green Cleaning of Copper Stains from Marble
by Erica Sonaglia, Emily Schifano, Mohammad Sharbaf, Daniela Uccelletti, Anna Candida Felici and Maria Laura Santarelli
Gels 2024, 10(2), 150; https://doi.org/10.3390/gels10020150 - 18 Feb 2024
Viewed by 1125
Abstract
Cultural heritage stone materials frequently experience significant discoloration induced by copper corrosion products, especially calcareous stones associated with bronze or copper statues and architectural elements. This alteration originates from the corrosion of unprotected copper, resulting in the formation of various Cu minerals and [...] Read more.
Cultural heritage stone materials frequently experience significant discoloration induced by copper corrosion products, especially calcareous stones associated with bronze or copper statues and architectural elements. This alteration originates from the corrosion of unprotected copper, resulting in the formation of various Cu minerals and the migration of soluble ions to adjacent stone materials. Traditional cleaning methods involve mechanical, chemical, and laser techniques, which are generally time-consuming, costly, not ecological, or can possibly damage original materials. The loading of highly effective chelating agents, such as ethylenediaminetetraacetic acid (EDTA), into hydrogels has recently been exploited. However, the preference for synthetic hydrogels has been prominent until now, although they lack renewability and biodegradability and require high costs. This study explores for the first time the potential to clean copper corrosion with bacterial nanocellulose (BC) loaded with EDTA as a biologically based, sustainable, and biodegradable hydrogel. The BC hydrogel was characterised by field emission–scanning electron microscopy (FE–SEM), X-ray diffraction analysis (XRD), attenuated total reflectance–Fourier transform infrared spectroscopy (ATR–FTIR), simultaneous thermal analysis (TG-DSC), and tensile testing. It revealed a nano-fibrous structure with high crystallinity and purity and mechanical properties suitable for cultural heritage applications. The EDTA-loaded hydrogel effectively removed copper stains from marble after 120 min of application. Micro-Raman and colorimetric analyses assessed the cleaning efficacy. The study introduces bacterial nanocellulose as a green and effective alternative for heritage conservation, aligning with sustainable methodologies in stone conservation. Full article
(This article belongs to the Special Issue Gels and Eco-Materials Used for Heritage Conservation)
Show Figures

Graphical abstract

18 pages, 4236 KiB  
Article
Hydrogel of Thyme-Oil-PLGA Nanoparticles Designed for Skin Inflammation Treatment
by Camila Folle, Natalia Díaz-Garrido, Mireia Mallandrich, Joaquim Suñer-Carbó, Elena Sánchez-López, Lyda Halbaut, Ana M. Marqués, Marta Espina, Josefa Badia, Laura Baldoma, Ana Cristina Calpena and Maria Luisa García
Gels 2024, 10(2), 149; https://doi.org/10.3390/gels10020149 - 18 Feb 2024
Viewed by 1022
Abstract
Thyme oil (THO) possesses excellent antibacterial and antioxidant properties which are suitable for skin inflammatory disorders such as acne vulgaris. However, THO is insoluble in water and its components are highly volatile. Therefore, these drawbacks may be overcome by its encapsulation in biodegradable [...] Read more.
Thyme oil (THO) possesses excellent antibacterial and antioxidant properties which are suitable for skin inflammatory disorders such as acne vulgaris. However, THO is insoluble in water and its components are highly volatile. Therefore, these drawbacks may be overcome by its encapsulation in biodegradable PLGA nanoparticles (THO-NPs) that had been functionalized using several strategies. Moreover, cell viability was studied in HaCat cells, confirming their safety. In order to assess therapeutic efficacy against acne, bacterial reduction capacity and antioxidant properties were assessed. Moreover, the anti-inflammatory and wound-healing abilities of THO-NPs were also confirmed. Additionally, ex vivo antioxidant assessment was carried out using pig skin, demonstrating the suitable antioxidant properties of THO-NPs. Moreover, THO and THO-NPs were dispersed in a gelling system, and stability, rheological properties, and extensibility were assessed. Finally, the biomechanical properties of THO-hydrogel and THO-NP-hydrogel were studied in human volunteers, confirming the suitable activity for the treatment of acne. As a conclusion, THO has been encapsulated into PLGA NPs, and in vitro, ex vivo, and in vivo assessments had been carried out, demonstrating excellent properties for the treatment of inflammatory skin disorders. Full article
(This article belongs to the Special Issue Gels for Biomedical Applications)
Show Figures

Graphical abstract

40 pages, 6023 KiB  
Article
Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete
by Xuyang Shi, Shuzhao Chen, Qiang Wang, Yijun Lu, Shisong Ren and Jiandong Huang
Gels 2024, 10(2), 148; https://doi.org/10.3390/gels10020148 - 16 Feb 2024
Cited by 2 | Viewed by 1118
Abstract
As an environmentally responsible alternative to conventional concrete, geopolymer concrete recycles previously used resources to prepare the cementitious component of the product. The challenging issue with employing geopolymer concrete in the building business is the absence of a standard mix design. According to [...] Read more.
As an environmentally responsible alternative to conventional concrete, geopolymer concrete recycles previously used resources to prepare the cementitious component of the product. The challenging issue with employing geopolymer concrete in the building business is the absence of a standard mix design. According to the chemical composition of its components, this work proposes a thorough system or framework for estimating the compressive strength of fly ash-based geopolymer concrete (FAGC). It could be possible to construct a system for predicting the compressive strength of FAGC using soft computing methods, thereby avoiding the requirement for time-consuming and expensive experimental tests. A complete database of 162 compressive strength datasets was gathered from the research papers that were published between the years 2000 and 2020 and prepared to develop proposed models. To address the relationships between inputs and output variables, long short-term memory networks were deployed. Notably, the proposed model was examined using several soft computing methods. The modeling process incorporated 17 variables that affect the CSFAG, such as percentage of SiO2 (SiO2), percentage of Na2O (Na2O), percentage of CaO (CaO), percentage of Al2O3 (Al2O3), percentage of Fe2O3 (Fe2O3), fly ash (FA), coarse aggregate (CAgg), fine aggregate (FAgg), Sodium Hydroxide solution (SH), Sodium Silicate solution (SS), extra water (EW), superplasticizer (SP), SH concentration, percentage of SiO2 in SS, percentage of Na2O in SS, curing time, curing temperature that the proposed model was examined to several soft computing methods such as multi-layer perception neural network (MLPNN), Bayesian regularized neural network (BRNN), generalized feed-forward neural networks (GFNN), support vector regression (SVR), decision tree (DT), random forest (RF), and LSTM. Three main innovations of this study are using the LSTM model for predicting FAGC, optimizing the LSTM model by a new evolutionary algorithm called the marine predators algorithm (MPA), and considering the six new inputs in the modeling process, such as aggregate to total mass ratio, fine aggregate to total aggregate mass ratio, FASiO2:Al2O3 molar ratio, FA SiO2:Fe2O3 molar ratio, AA Na2O:SiO2 molar ratio, and the sum of SiO2, Al2O3, and Fe2O3 percent in FA. The performance capacity of LSTM-MPA was evaluated with other artificial intelligence models. The results indicate that the R2 and RMSE values for the proposed LSTM-MPA model were as follows: MLPNN (R2 = 0.896, RMSE = 3.745), BRNN (R2 = 0.931, RMSE = 2.785), GFFNN (R2 = 0.926, RMSE = 2.926), SVR-L (R2 = 0.921, RMSE = 3.017), SVR-P (R2 = 0.920, RMSE = 3.291), SVR-S (R2 = 0.934, RMSE = 2.823), SVR-RBF (R2 = 0.916, RMSE = 3.114), DT (R2 = 0.934, RMSE = 2.711), RF (R2 = 0.938, RMSE = 2.892), LSTM (R2 = 0.9725, RMSE = 1.7816), LSTM-MPA (R2 = 0.9940, RMSE = 0.8332), and LSTM-PSO (R2 = 0.9804, RMSE = 1.5221). Therefore, the proposed LSTM-MPA model can be employed as a reliable and accurate model for predicting CSFAG. Noteworthy, the results demonstrated the significance and influence of fly ash and sodium silicate solution chemical compositions on the compressive strength of FAGC. These variables could adequately present variations in the best mix designs discovered in earlier investigations. The suggested approach may also save time and money by accurately estimating the compressive strength of FAGC with low calcium content. Full article
(This article belongs to the Special Issue Gel Formation and Processing Technologies for Material Applications)
Show Figures

Figure 1

61 pages, 12697 KiB  
Review
Recent Developments in 3D-(Bio)printed Hydrogels as Wound Dressings
by Olga Kammona, Evgenia Tsanaktsidou and Costas Kiparissides
Gels 2024, 10(2), 147; https://doi.org/10.3390/gels10020147 - 14 Feb 2024
Viewed by 2040
Abstract
Wound healing is a physiological process occurring after the onset of a skin lesion aiming to reconstruct the dermal barrier between the external environment and the body. Depending on the nature and duration of the healing process, wounds are classified as acute (e.g., [...] Read more.
Wound healing is a physiological process occurring after the onset of a skin lesion aiming to reconstruct the dermal barrier between the external environment and the body. Depending on the nature and duration of the healing process, wounds are classified as acute (e.g., trauma, surgical wounds) and chronic (e.g., diabetic ulcers) wounds. The latter take several months to heal or do not heal (non-healing chronic wounds), are usually prone to microbial infection and represent an important source of morbidity since they affect millions of people worldwide. Typical wound treatments comprise surgical (e.g., debridement, skin grafts/flaps) and non-surgical (e.g., topical formulations, wound dressings) methods. Modern experimental approaches include among others three dimensional (3D)-(bio)printed wound dressings. The present paper reviews recently developed 3D (bio)printed hydrogels for wound healing applications, especially focusing on the results of their in vitro and in vivo assessment. The advanced hydrogel constructs were printed using different types of bioinks (e.g., natural and/or synthetic polymers and their mixtures with biological materials) and printing methods (e.g., extrusion, digital light processing, coaxial microfluidic bioprinting, etc.) and incorporated various bioactive agents (e.g., growth factors, antibiotics, antibacterial agents, nanoparticles, etc.) and/or cells (e.g., dermal fibroblasts, keratinocytes, mesenchymal stem cells, endothelial cells, etc.). Full article
(This article belongs to the Special Issue 3D Printing of Gels: Applications and Properties)
Show Figures

Graphical abstract

12 pages, 3964 KiB  
Article
Evaluation of Fused Deposition Modeling Materials for 3D-Printed Container of Dosimetric Polymer Gel
by Minsik Lee, Seonyeong Noh, Jun-Bong Shin, Jungwon Kwak and Chiyoung Jeong
Gels 2024, 10(2), 146; https://doi.org/10.3390/gels10020146 - 14 Feb 2024
Viewed by 1008
Abstract
Accurate dosimetric verification is becoming increasingly important in radiotherapy. Although polymer gel dosimetry may be useful for verifying complex 3D dose distributions, it has limitations for clinical application due to its strong reactivity with oxygen and other contaminants. Therefore, it is important that [...] Read more.
Accurate dosimetric verification is becoming increasingly important in radiotherapy. Although polymer gel dosimetry may be useful for verifying complex 3D dose distributions, it has limitations for clinical application due to its strong reactivity with oxygen and other contaminants. Therefore, it is important that the material of the gel storage container blocks reaction with external contaminants. In this study, we tested the effect of air and the chemical permeability of various polymer-based 3D printing materials that can be used as gel containers. A methacrylic acid, gelatin, and tetrakis (hydroxymethyl) phosphonium chloride gel was used. Five types of printing materials that can be applied to the fused deposition modeling (FDM)-type 3D printer were compared: acrylonitrile butadiene styrene (ABS), co-polyester (CPE), polycarbonate (PC), polylactic acid (PLA), and polypropylene (PP) (reference: glass vial). The map of R2 (1/T2) relaxation rates for each material, obtained from magnetic resonance imaging scans, was analyzed. Additionally, response histograms and dose calibration curves from the R2 map were evaluated. The R2 distribution showed that CPE had sharper boundaries than the other materials, and the profile gradient of CPE was also closest to the reference vial. Histograms and dose calibration showed that CPE provided the most homogeneous and the highest relative response of 83.5%, with 8.6% root mean square error, compared with the reference vial. These results indicate that CPE is a reasonable material for the FDM-type 3D printing gel container. Full article
(This article belongs to the Special Issue 3D Printing of Gels: Applications and Properties)
Show Figures

Graphical abstract

12 pages, 2479 KiB  
Article
Polydopamine Blending Increases Human Cell Proliferation in Gelatin–Xanthan Gum 3D-Printed Hydrogel
by Preetham Yerra, Mario Migliario, Sarah Gino, Maurizio Sabbatini, Monica Bignotto, Marco Invernizzi and Filippo Renò
Gels 2024, 10(2), 145; https://doi.org/10.3390/gels10020145 - 14 Feb 2024
Viewed by 1050
Abstract
Background: Gelatin–xanthan gum (Gel–Xnt) hydrogel has been previously modified to improve its printability; now, to increase its ability for use as cell-laden 3D scaffolds (bioink), polydopamine (PDA), a biocompatible, antibacterial, adhesive, and antioxidant mussel-inspired biopolymer, has been added (1–3% v/v) [...] Read more.
Background: Gelatin–xanthan gum (Gel–Xnt) hydrogel has been previously modified to improve its printability; now, to increase its ability for use as cell-laden 3D scaffolds (bioink), polydopamine (PDA), a biocompatible, antibacterial, adhesive, and antioxidant mussel-inspired biopolymer, has been added (1–3% v/v) to hydrogel. Methods: Control (CT) and PDA-blended hydrogels were used to print 1 cm2 grids. The hydrogels’ printability, moisture, swelling, hydrolysis, and porosity were tested after glutaraldehyde (GTA) crosslinking, while biocompatibility was tested using primary human-derived skin fibroblasts and spontaneously immortalized human keratinocytes (HaCaT). Keratinocyte or fibroblast suspension (100 µL, 2.5 × 105 cells) was combined with an uncrosslinked CT and PDA blended hydrogel to fabricate cylinders (0.5 cm high, 1 cm wide). These cylinders were then cross-linked and incubated for 1, 3, 7, 14, and 21 days. The presence of cells within various hydrogels was assessed using optical microscopy. Results and discussion: PDA blending did not modify the hydrogel printability or physiochemical characteristics, suggesting that PDA did not interfere with GTA crosslinking. On the other hand, PDA presence strongly accelerated and increased both fibroblast and keratinocyte growth inside. This effect seemed to be linked to the adhesive abilities of PDA, which improve cell adhesion and, in turn, proliferation. Conclusions: The simple PDA blending method described could help in obtaining a new bioink for the development of innovative 3D-printed wound dressings. Full article
(This article belongs to the Special Issue Hydrogels for 3D Printing)
Show Figures

Graphical abstract

24 pages, 5028 KiB  
Review
Progress of Research on Conductive Hydrogels in Flexible Wearable Sensors
by Juan Cao, Bo Wu, Ping Yuan, Yeqi Liu and Cheng Hu
Gels 2024, 10(2), 144; https://doi.org/10.3390/gels10020144 - 14 Feb 2024
Viewed by 1854
Abstract
Conductive hydrogels, characterized by their excellent conductivity and flexibility, have attracted widespread attention and research in the field of flexible wearable sensors. This paper reviews the application progress, related challenges, and future prospects of conductive hydrogels in flexible wearable sensors. Initially, the basic [...] Read more.
Conductive hydrogels, characterized by their excellent conductivity and flexibility, have attracted widespread attention and research in the field of flexible wearable sensors. This paper reviews the application progress, related challenges, and future prospects of conductive hydrogels in flexible wearable sensors. Initially, the basic properties and classifications of conductive hydrogels are introduced. Subsequently, this paper discusses in detail the specific applications of conductive hydrogels in different sensor applications, such as motion detection, medical diagnostics, electronic skin, and human–computer interactions. Finally, the application prospects and challenges are summarized. Overall, the exceptional performance and multifunctionality of conductive hydrogels make them one of the most important materials for future wearable technologies. However, further research and innovation are needed to overcome the challenges faced and to realize the wider application of conductive hydrogels in flexible sensors. Full article
(This article belongs to the Special Issue Gels for Flexible Electronics and Energy Devices)
Show Figures

Figure 1

21 pages, 8266 KiB  
Article
Ibuprofen-Loaded Silver Nanoparticle-Doped PVA Gels: Green Synthesis, In Vitro Cytotoxicity, and Antibacterial Analyses
by Ezgi Altınay, Fatma Zehra Köse, Sezen Canım Ateş and Kadriye Kızılbey
Gels 2024, 10(2), 143; https://doi.org/10.3390/gels10020143 - 14 Feb 2024
Viewed by 1315
Abstract
In contrast to conventional drug delivery systems, controlled drug release systems employ distinct methodologies. These systems facilitate the release of active substances in predetermined quantities and for specified durations. Polymer hydrogels have gained prominence in controlled drug delivery because of their unique swelling–shrinkage [...] Read more.
In contrast to conventional drug delivery systems, controlled drug release systems employ distinct methodologies. These systems facilitate the release of active substances in predetermined quantities and for specified durations. Polymer hydrogels have gained prominence in controlled drug delivery because of their unique swelling–shrinkage behavior and ability to regulate drug release. In this investigation, films with a hydrogel structure were crafted using polyvinyl alcohol, a biocompatible polymer, and silver nanoparticles. Following characterization, ibuprofen was loaded into the hydrogels to evaluate their drug release capacity. The particle sizes of silver nanoparticles synthesized using a green approach were determined. This study comprehensively examined the structural properties, morphological features, mechanical strength, and cumulative release patterns of the prepared films. In vitro cytotoxicity analysis was employed to assess the cell viability of drug-loaded hydrogel films, and their antibacterial effects were examined. The results indicated that hydrogel films containing 5% and 10% polyvinyl alcohol released 89% and 97% of the loaded drug, respectively, by day 14. The release kinetics fits the Korsmeyer–Peppas model. This study, which describes nanoparticle-enhanced polyvinyl alcohol hydrogel systems prepared through a cost-effective and environmentally friendly approach, is anticipated to contribute to the existing literature and serve as a foundational study for future research. Full article
(This article belongs to the Special Issue Research on Hydrogels for Controlled Drug Delivery)
Show Figures

Graphical abstract

22 pages, 5082 KiB  
Article
Efficient and Selective Removal of Heavy Metals and Dyes from Aqueous Solutions Using Guipi Residue-Based Hydrogel
by Xiaochun Yin, Pei Xu and Huiyao Wang
Gels 2024, 10(2), 142; https://doi.org/10.3390/gels10020142 - 13 Feb 2024
Cited by 1 | Viewed by 1233
Abstract
The presence of organic dyes and heavy metal ions in water sources poses a significant threat to human health and the ecosystem. In this study, hydrogel adsorbents for water pollution remediation were synthesized using Guipi residue (GP), a cellulose material from Chinese herbal [...] Read more.
The presence of organic dyes and heavy metal ions in water sources poses a significant threat to human health and the ecosystem. In this study, hydrogel adsorbents for water pollution remediation were synthesized using Guipi residue (GP), a cellulose material from Chinese herbal medicine, and chitosan (CTS) through radical polymerization with acrylamide (AM) and acrylic acid (AA). The characteristics of the hydrogels were analyzed from a physicochemical perspective, and their ability to adsorb was tested using model pollutants such as Pb2+, Cd2+, Rhodamine B (RhB), and methyl orange (MO). The outcomes revealed that GP/CTS/AA-co-AM, which has improved mechanical attributes, effectively eliminated these pollutants. At a pH of 4.0, a contact duration of 120 min, and an initial concentration of 600 mg/L for Pb2+ and 500 mg/L for Cd2+, the highest adsorption capabilities were 314.6 mg/g for Pb2+ and 289.1 mg/g for Cd2+. Regarding the dyes, the GP/CTS/AA-co-AM hydrogel displayed adsorption capacities of 106.4 mg/g for RhB and 94.8 mg/g for MO, maintaining a stable adsorption capacity at different pHs. Compared with other competitive pollutants, GP/CTS/AA-co-AM demonstrated a higher absorption capability, mainly targeted toward Pb2+. The adsorption processes for the pollutants conformed to pseudo-second-order kinetics models and adhered to the Langmuir models. Even after undergoing five consecutive adsorption and desorption cycles, the adsorption capacities for heavy metals and dyes remained above 70% and 80%. In summary, this study effectively suggested the potential of the innovative GP/CTS/AA-co-AM hydrogel as a practical and feasible approach for eliminating heavy metals and dyes from water solutions. Full article
Show Figures

Figure 1

13 pages, 1596 KiB  
Article
Effects of Freeze-Drying Processes on the Acoustic Absorption Performance of Sustainable Cellulose Nanocrystal Aerogels
by Ju-Qi Ruan, Kai-Yue Xie, Jun-Nan Wan, Qing-Yuan Chen, Xiaoqing Zuo, Xiaodong Li, Xiaodong Wu, Chunlong Fei and Shanshan Yao
Gels 2024, 10(2), 141; https://doi.org/10.3390/gels10020141 - 12 Feb 2024
Viewed by 1415
Abstract
Cellulose aerogels have great prospects for noise reduction applications due to their sustainable value and superior 3D interconnected porous structures. The drying principle is a crucial factor in the preparation process for developing high-performance aerogels, particularly with respect to achieving high acoustic absorption [...] Read more.
Cellulose aerogels have great prospects for noise reduction applications due to their sustainable value and superior 3D interconnected porous structures. The drying principle is a crucial factor in the preparation process for developing high-performance aerogels, particularly with respect to achieving high acoustic absorption properties. In this study, multifunctional cellulose nanocrystal (CNC) aerogels were conveniently prepared using two distinct freeze-drying principles: refrigerator conventional freezing (RCF) and liquid nitrogen unidirectional freezing (LnUF). The results indicate that the rapid RCF process resulted in a denser CNC aerogel structure with disordered larger pores, causing a stronger compressive performance (Young’s modulus of 40 kPa). On the contrary, the LnUF process constructed ordered structures of CNC aerogels with a lower bulk density (0.03 g/cm3) and smaller apertures, resulting in better thermal stability, higher diffuse reflection across visible light, and especially increased acoustic absorption performance at low–mid frequencies (600–3000 Hz). Moreover, the dissipation mechanism of sound energy in the fabricated CNC aerogels is predicted by a designed porous media model. This work not only paves the way for optimizing the performance of aerogels through structure control, but also provides a new perspective for developing sustainable and efficient acoustic absorptive materials for a wide range of applications. Full article
(This article belongs to the Special Issue Recent Advances in Aerogel-Based Composites)
Show Figures

Graphical abstract

13 pages, 4423 KiB  
Article
Development of 3D Printed pNIPAM-Chitosan Scaffolds for Dentoalveolar Tissue Engineering
by Mehdi Salar Amoli, Resmi Anand, Mostafa EzEldeen, Liesbet Geris, Reinhilde Jacobs and Veerle Bloemen
Gels 2024, 10(2), 140; https://doi.org/10.3390/gels10020140 - 12 Feb 2024
Viewed by 1161
Abstract
While available treatments have addressed a variety of complications in the dentoalveolar region, associated challenges have resulted in exploration of tissue engineering techniques. Often, scaffold biomaterials with specific properties are required for such strategies to be successful, development of which is an active [...] Read more.
While available treatments have addressed a variety of complications in the dentoalveolar region, associated challenges have resulted in exploration of tissue engineering techniques. Often, scaffold biomaterials with specific properties are required for such strategies to be successful, development of which is an active area of research. This study focuses on the development of a copolymer of poly (N-isopropylacrylamide) (pNIPAM) and chitosan, used for 3D printing of scaffolds for dentoalveolar regeneration. The synthesized material was characterized by Fourier transform infrared spectroscopy, and the possibility of printing was evaluated through various printability tests. The rate of degradation and swelling was analyzed through gravimetry, and surface morphology was characterized by scanning electron microscopy. Viability of dental pulp stem cells seeded on the scaffolds was evaluated by live/dead analysis and DNA quantification. The results demonstrated successful copolymerization, and three formulations among various synthesized formulations were successfully 3D printed. Up to 35% degradability was confirmed within 7 days, and a maximum swelling of approximately 1200% was achieved. Furthermore, initial assessment of cell viability demonstrated biocompatibility of the developed scaffolds. While further studies are required to achieve the tissue engineering goals, the present results tend to indicate that the proposed hydrogel might be a valid candidate for scaffold fabrication serving dentoalveolar tissue engineering through 3D printing. Full article
(This article belongs to the Special Issue Soft Materials with a Focus on Hydrogels)
Show Figures

Graphical abstract

13 pages, 3729 KiB  
Article
Gelation upon the Mixing of Amphiphilic Graft and Triblock Copolymers Containing Enantiomeric Polylactide Segments through Stereocomplex Formation
by Yuichi Ohya, Yasuyuki Yoshida, Taiki Kumagae and Akinori Kuzuya
Gels 2024, 10(2), 139; https://doi.org/10.3390/gels10020139 - 09 Feb 2024
Viewed by 1182
Abstract
Biodegradable injectable polymer (IP) systems that form hydrogels in situ when injected into the body have considerable potential as medical materials. In this paper, we report a new two-solution mixed biodegradable IP system that utilizes the stereocomplex (SC) formation of poly(l-lactide) [...] Read more.
Biodegradable injectable polymer (IP) systems that form hydrogels in situ when injected into the body have considerable potential as medical materials. In this paper, we report a new two-solution mixed biodegradable IP system that utilizes the stereocomplex (SC) formation of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA). We synthesized triblock copolymers of PLLA and poly(ethylene glycol), PLLA-b-PEG-b-PLLA (tri-L), and a graft copolymer of dextran (Dex) attached to a PDLA-b-PEG diblock copolymer, Dex-g-(PDLA-b-PEG) (gb-D). We found that a hydrogel can be obtained by mixing gb-D solution and tri-L solution via SC formation. Although it is already known that graft copolymers attached to enantiomeric PLLA and PDLA chains can form an SC hydrogel upon mixing, we revealed that hydrogels can also be formed by a combination of graft and triblock copolymers. In this system (graft vs. triblock), the gelation time was shorter, within 1 min, and the physical strength of the resulting hydrogel (G′ > 100 Pa) was higher than when graft copolymers were mixed. Triblock copolymers form micelles (16 nm in diameter) in aqueous solutions and hydrophobic drugs can be easily encapsulated in micelles. In contrast, graft copolymers have the advantage that their molecular weight can be set high, contributing to improved mechanical strength of the obtained hydrogel. Various biologically active polymers can be used as the main chains of graft copolymers, and chemical modification using the remaining functional side chain groups is also easy. Therefore, the developed mixing system with a graft vs. triblock combination can be applied to medical materials as a highly convenient, physically cross-linked IP system. Full article
(This article belongs to the Special Issue Recent Advances in Thermoreversible Gelation)
Show Figures

Graphical abstract

17 pages, 4163 KiB  
Article
Preparation of a Novel Lignocellulose-Based Aerogel by Partially Dissolving Medulla Tetrapanacis via Ionic Liquid
by Long Quan, Xueqian Shi, Jie Zhang, Zhuju Shu and Liang Zhou
Gels 2024, 10(2), 138; https://doi.org/10.3390/gels10020138 - 09 Feb 2024
Viewed by 1103
Abstract
A novel lignocellulosic aerogel, MT-LCA, was successfully prepared from MT by undergoing partial dissolution in an ionic liquid, coagulation in water, freezing in liquid nitrogen, and subsequent freeze-drying. The MT-LCA preserves its original honeycomb-like porous structure, and the newly formed micropores contribute to [...] Read more.
A novel lignocellulosic aerogel, MT-LCA, was successfully prepared from MT by undergoing partial dissolution in an ionic liquid, coagulation in water, freezing in liquid nitrogen, and subsequent freeze-drying. The MT-LCA preserves its original honeycomb-like porous structure, and the newly formed micropores contribute to increased porosity and specific surface area. FT-IR analysis reveals that MT, after dissolution and coagulation, experiences no chemical reactions. However, a change in the crystalline structure of cellulose is observed, transitioning from cellulose I to cellulose II. Both MT and MT-LCA demonstrate a quasi-second-order kinetic process during methylene blue adsorption, indicative of chemical adsorption. The Langmuir model proves to be more appropriate for characterizing the methylene blue adsorption process. Both adsorbents exhibit monolayer adsorption, and their effective adsorption sites are uniformly distributed. The higher porosity, nanoscale micropores, and larger pore size in MT-LCA enhance its capillary force, providing efficient directional transport performance. Consequently, the prepared MT-LCA displays exceptional compressive performance and efficient directional transport capabilities, making it well-suited for applications requiring high compressive performance and selective directional transport. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (2nd Edition))
Show Figures

Figure 1

19 pages, 1561 KiB  
Review
Collagen-Based Scaffolds for Chronic Skin Wound Treatment
by Francesco La Monica, Simona Campora and Giulio Ghersi
Gels 2024, 10(2), 137; https://doi.org/10.3390/gels10020137 - 08 Feb 2024
Viewed by 1628
Abstract
Chronic wounds, commonly known as ulcers, represent a significant challenge to public health, impacting millions of individuals every year and imposing a significant financial burden on the global health system. Chronic wounds result from the interruption of the natural wound-healing process due to [...] Read more.
Chronic wounds, commonly known as ulcers, represent a significant challenge to public health, impacting millions of individuals every year and imposing a significant financial burden on the global health system. Chronic wounds result from the interruption of the natural wound-healing process due to internal and/or external factors, resulting in slow or nonexistent recovery. Conventional medical approaches are often inadequate to deal with chronic wounds, necessitating the exploration of new methods to facilitate rapid and effective healing. In recent years, regenerative medicine and tissue engineering have emerged as promising avenues to encourage tissue regeneration. These approaches aim to achieve anatomical and functional restoration of the affected area through polymeric components, such as scaffolds or hydrogels. This review explores collagen-based biomaterials as potential therapeutic interventions for skin chronic wounds, specifically focusing on infective and diabetic ulcers. Hence, the different approaches described are classified on an action-mechanism basis. Understanding the issues preventing chronic wound healing and identifying effective therapeutic alternatives could indicate the best way to optimize therapeutic units and to promote more direct and efficient healing. Full article
(This article belongs to the Special Issue Engineering Advanced Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

18 pages, 4789 KiB  
Article
3D-Printable Sustainable Bioplastics from Gluten and Keratin
by Jumana Rashid Mohammed Haroub Alshehhi, Nisal Wanasingha, Rajkamal Balu, Jitendra Mata, Kalpit Shah, Naba K. Dutta and Namita Roy Choudhury
Gels 2024, 10(2), 136; https://doi.org/10.3390/gels10020136 - 07 Feb 2024
Viewed by 1358
Abstract
Bioplastic films comprising both plant- and animal-derived proteins have the potential to integrate the optimal characteristics inherent to the specific domain, which offers enormous potential to develop polymer alternatives to petroleum-based plastic. Herein, we present a facile strategy to develop hybrid films comprised [...] Read more.
Bioplastic films comprising both plant- and animal-derived proteins have the potential to integrate the optimal characteristics inherent to the specific domain, which offers enormous potential to develop polymer alternatives to petroleum-based plastic. Herein, we present a facile strategy to develop hybrid films comprised of both wheat gluten and wool keratin proteins for the first time, employing a ruthenium-based photocrosslinking strategy. This approach addresses the demand for sustainable materials, reducing the environmental impact by using proteins from renewable and biodegradable sources. Gluten film was fabricated from an alcohol–water mixture soluble fraction, largely comprised of gliadin proteins. Co-crosslinking hydrolyzed low-molecular-weight keratin with gluten enhanced its hydrophilic properties and enabled the tuning of its physicochemical properties. Furthermore, the hierarchical structure of the fabricated films was studied using neutron scattering techniques, which revealed the presence of both hydrophobic and hydrophilic nanodomains, gliadin nanoclusters, and interconnected micropores in the matrix. The films exhibited a largely (>40%) β-sheet secondary structure, with diminishing gliadin aggregate intensity and increasing micropore size (from 1.2 to 2.2 µm) with an increase in keratin content. The hybrid films displayed improved molecular chain mobility, as evidenced by the decrease in the glass-transition temperature from ~179.7 °C to ~173.5 °C. Amongst the fabricated films, the G14K6 hybrid sample showed superior water uptake (6.80% after 30 days) compared to the pristine G20 sample (1.04%). The suitability of the developed system for multilayer 3D printing has also been demonstrated, with the 10-layer 3D-printed film exhibiting >92% accuracy, which has the potential for use in packaging, agricultural, and biomedical applications. Full article
(This article belongs to the Special Issue 3D Printing of Gel-Based Materials)
Show Figures

Figure 1

14 pages, 3256 KiB  
Article
Mechanical Properties of Cellulose Aerogel Composites with and without Crude Oil Filling
by Tatjana Paulauskiene, Egle Sirtaute, Arturas Tadzijevas and Jochen Uebe
Gels 2024, 10(2), 135; https://doi.org/10.3390/gels10020135 - 07 Feb 2024
Viewed by 1146
Abstract
Aerogels are an excellent alternative to traditional oil absorbents and are designed to remove oil or organic solvents from water. Cellulose-based aerogels can be distinguished as polymers that are non-toxic, environmentally friendly, and biodegradable. The compression measurement properties of aerogels are often evaluated [...] Read more.
Aerogels are an excellent alternative to traditional oil absorbents and are designed to remove oil or organic solvents from water. Cellulose-based aerogels can be distinguished as polymers that are non-toxic, environmentally friendly, and biodegradable. The compression measurement properties of aerogels are often evaluated using dry samples. Here, oil-soaked, hydrophobized cellulose aerogel samples were examined in comparison to dry samples with and without additional hemp fibers and various levels of starch for crosslinking. The samples were characterized by compression measurement properties and filmed to evaluate the regeneration of the sorbent with repeated use. Overall, the measurements of the mechanical properties for the dry samples showed good reproducibility. The Young’s modulus of samples with additional hemp fibers is significantly increased and also shows higher strength than samples without hemp fibers. However, samples without hemp fibers showed slightly better relaxation after compression. Oil acts as a weak plasticizer for all aerogel samples. However, it is important to note that the oil does not cause the samples to decompose in the way unmodified cellulose aerogels do in water. Therefore, using hydrophobized cellulose aerogels as sorbents for oil in a sea or harbor with swell means that they can be collected in their entirety even after use. Full article
(This article belongs to the Special Issue Advanced Hydrogel for Water Treatment)
Show Figures

Figure 1

4 pages, 190 KiB  
Editorial
Shaping and Structuring of Polymer Gels
by Toshiaki Dobashi
Gels 2024, 10(2), 134; https://doi.org/10.3390/gels10020134 - 07 Feb 2024
Viewed by 951
Abstract
Most industrial gels are prepared as apparently isotropic and homogeneous materials through a preparation process encompassing alterations in temperature, application of isotropic mechanical stress, exposure to high-energy electromagnetic waves, and mixing with cross-linkers (gelators) [...] Full article
(This article belongs to the Special Issue Shaping and Structuring of Polymer Gels)
16 pages, 3398 KiB  
Article
Design of Nickel-Containing Nanocomposites Based on Ordered Mesoporous Silica: Synthesis, Structure, and Methylene Blue Adsorption
by Tatyana Kouznetsova, Andrei Ivanets, Vladimir Prozorovich, Polina Shornikova, Lizaveta Kapysh, Qiang Tian, László Péter, László Trif and László Almásy
Gels 2024, 10(2), 133; https://doi.org/10.3390/gels10020133 - 06 Feb 2024
Viewed by 1132
Abstract
Mesoporous materials containing heteroelements have a huge potential for use as catalysts, exchangers, and adsorbents due to their tunable nanometer-sized pores and exceptionally large internal surfaces accessible to bulky organic molecules. In the present work, ordered mesoporous silica containing Ni atoms as active [...] Read more.
Mesoporous materials containing heteroelements have a huge potential for use as catalysts, exchangers, and adsorbents due to their tunable nanometer-sized pores and exceptionally large internal surfaces accessible to bulky organic molecules. In the present work, ordered mesoporous silica containing Ni atoms as active sites was synthesized by a new low-temperature method of condensation of silica precursors on a micellar template from aqueous solutions in the presence of nickel salt. The homogeneity of the resulting product was achieved by introducing ammonia and ammonium salt as a buffer to maintain a constant pH value. The obtained materials were characterized by nitrogen sorption, X-ray and neutron diffraction, scanning electron microscopy, infrared spectroscopy, and thermal analysis. Their morphology consists of polydisperse spherical particles 50–300 nm in size, with a hexagonally ordered channel structure, high specific surface area (ABET = 900–1200 m2/g), large pore volume (Vp = 0.70–0.90 cm3/g), average mesopore diameter of about 3 nm, and narrow pore size distribution. Adsorption tests for methylene blue show sorption capacities reaching 39–42 mg/g at alkaline pH. The advantages of producing nickel silicates by this method, in contrast to precipitation from silicon alkoxides, are the low cost of reagents, fire safety, room-temperature processing, and the absence of specific problems associated with the use of ethanol as a solvent, as well as the absence of the inevitable capture of organic matter in the precipitation process. Full article
(This article belongs to the Special Issue Advances in Xerogels: From Design to Applications (2nd Edition))
Show Figures

Figure 1

16 pages, 4125 KiB  
Article
In Vitro Viability Tests of New Ecofriendly Nanosystems Incorporating Essential Oils for Long-Lasting Conservation of Stone Artworks
by Flavia Bartoli, Leonora Corradi, Zohreh Hosseini, Antonella Privitera, Martina Zuena, Alma Kumbaric, Valerio Graziani, Luca Tortora, Armida Sodo and Giulia Caneva
Gels 2024, 10(2), 132; https://doi.org/10.3390/gels10020132 - 06 Feb 2024
Viewed by 1226
Abstract
The study explores the application of natural biocides (oregano essential oil and eugenol, directly applied in solutions or encapsulated within silica nanocapsules) for safeguarding stone cultural heritage from biodeterioration, using green algae (Chlorococcum sp.) and cyanobacteria (Leptolyngbya sp.) as common pioneer [...] Read more.
The study explores the application of natural biocides (oregano essential oil and eugenol, directly applied in solutions or encapsulated within silica nanocapsules) for safeguarding stone cultural heritage from biodeterioration, using green algae (Chlorococcum sp.) and cyanobacteria (Leptolyngbya sp.) as common pioneer biodeteriogens. Core-shell nanocontainers were built for a controlled release of microbicidal agents, a safe application of chemicals and a prolonged efficacy. The qualitative and quantitative evaluations of biocide efficiency at different doses were periodically performed in vitro, after six scheduled intervals of time (until 100 days). The release kinetics of composite biocide-embedding silica nanocapsules were characterized by the UV-Vis spectroscopy technique. Data showed both promising potential and some limitations. The comparative tests of different biocidal systems shed light on their variable efficacy against microorganisms, highlighting how encapsulation influences the release dynamics and the overall effectiveness. Both the essential oils showed a potential efficacy in protective antifouling coatings for stone artifacts. Ensuring compatibility with materials, understanding their differences in biocidal activity and their release rates becomes essential in tailoring gel, microemulsion or coating products for direct on-site application. Full article
(This article belongs to the Special Issue Gels and Eco-Materials Used for Heritage Conservation)
Show Figures

Graphical abstract

14 pages, 4785 KiB  
Article
L-Theanine Improves the Gelation of Ginkgo Seed Proteins at Different pH Levels
by Luyan Zhang, Huifang Ge, Jing Zhao, Changqi Liu and Yaosong Wang
Gels 2024, 10(2), 131; https://doi.org/10.3390/gels10020131 - 06 Feb 2024
Viewed by 1159
Abstract
L-theanine (L-Th), a non-protein amino acid naturally found in teas and certain plant leaves, has garnered considerable attention due to its health benefits and potential to modify proteins such as ginkgo seed proteins, which have poor gelling properties, thereby expanding their applications in [...] Read more.
L-theanine (L-Th), a non-protein amino acid naturally found in teas and certain plant leaves, has garnered considerable attention due to its health benefits and potential to modify proteins such as ginkgo seed proteins, which have poor gelling properties, thereby expanding their applications in the food industry. The objective of this study was to investigate the impact of varying concentrations of L-Th (0.0%, 0.5%, 1.0%, and 2.0%) on the gelling properties of ginkgo seed protein isolate (GSPI) at various pH levels (5.0, 6.0, and 7.0). The GSPI gels exhibited the highest strength at a pH of 5.0 (132.1 ± 5.6 g), followed by a pH of 6.0 (95.9 ± 3.9 g), while a weak gel was formed at a pH of 7.0 (29.5 ± 0.2 g). The incorporation of L-Th increased the hardness (58.5–231.6%) and springiness (3.0–9.5%) of the GSPI gels at a pH of 7.0 in a concentration-dependent manner. However, L-Th did not enhance the gel strength or water holding capacity at a pH of 5.0. The rheological characteristics of the GSPI sols were found to be closely related to the textural properties of L-Th-incorporated gels. To understand the underlying mechanism of L-Th’s effects, the physicochemical properties of the sols were analyzed. Specifically, L-Th promoted GSPI solubilization (up to 7.3%), reduced their hydrophobicity (up to 16.2%), reduced the particle size (up to 40.9%), and increased the ζ potential (up to 21%) of the sols. Overall, our findings suggest that L-Th holds promise as a functional ingredient for improving gel products. Full article
(This article belongs to the Special Issue Food Gels: Gelling Process and Advanced Applications)
Show Figures

Graphical abstract

15 pages, 5227 KiB  
Article
Role of Physico-Chemical and Cellular Conditions on the Bone Repair Potential of Plastically Compressed Collagen Hydrogels
by Daline Mbitta Akoa, Ludovic Sicard, Christophe Hélary, Coralie Torrens, Brigitte Baroukh, Anne Poliard and Thibaud Coradin
Gels 2024, 10(2), 130; https://doi.org/10.3390/gels10020130 - 06 Feb 2024
Viewed by 1207
Abstract
Since their first description nearly 20 years ago, dense collagen hydrogels obtained by plastic compression have become popular scaffolds in tissue engineering. In particular, when seeded with dental pulp stem cells, they have demonstrated a great in vivo potential in cranial bone repair. [...] Read more.
Since their first description nearly 20 years ago, dense collagen hydrogels obtained by plastic compression have become popular scaffolds in tissue engineering. In particular, when seeded with dental pulp stem cells, they have demonstrated a great in vivo potential in cranial bone repair. Here, we investigated how physico-chemical and cell-seeding conditions could influence the formation and in vitro mineralization of these cellularized scaffolds. A qualitative assessment demonstrated that the gel stability before and after compression was highly sensitive to the conditions of fibrillogenesis, especially initial acid acetic and buffer concentrations. Gels with similar rheological properties but different fibrillar structures that exhibited different stabilities when used for the 3D culture of Stem cells from Human Exfoliated Deciduous teeth (SHEDs) could be prepared. Finally, in our optimal physico-chemical conditions, mineralization could be achieved only using human dental pulp stem cells (hDPSCs) at a high cell density. These results highlight the key role of fibrillogenic conditions and cell type/density on the bone repair potential of cell-laden plastically compressed collagen hydrogels. Full article
(This article belongs to the Special Issue Feature Papers in Chemistry and Physics of Biological Gels)
Show Figures

Figure 1

28 pages, 10057 KiB  
Article
Composite Photocatalysts with Fe, Co, and Ni Oxides on Supports with Tetracoordinated Ti Embedded into Aluminosilicate Gel during Zeolite Y Synthesis
by Gabriela Petcu, Elena Maria Anghel, Irina Atkinson, Daniela C. Culita, Nicoleta G. Apostol, Andrei Kuncser, Florica Papa, Adriana Baran, Jean-Luc Blin and Viorica Parvulescu
Gels 2024, 10(2), 129; https://doi.org/10.3390/gels10020129 - 05 Feb 2024
Viewed by 1011
Abstract
Ti-aluminosilicate gels were used as supports for the immobilization of Fe, Co, and Ni oxides (5%) by impregnation and synthesis of efficient photocatalysts for the degradation of β-lactam antibiotics from water. Titanium oxide (1 and 2%) was incorporated into the zeolite network by [...] Read more.
Ti-aluminosilicate gels were used as supports for the immobilization of Fe, Co, and Ni oxides (5%) by impregnation and synthesis of efficient photocatalysts for the degradation of β-lactam antibiotics from water. Titanium oxide (1 and 2%) was incorporated into the zeolite network by modifying the gel during the zeolitization process. The formation of the zeolite Y structure and its microporous structure were evidenced by X-ray diffraction and N2 physisorption. The structure, composition, reduction, and optical properties were studied by X-ray diffraction, H2-TPR, XPS, Raman, photoluminescence, and UV–Vis spectroscopy. The obtained results indicated a zeolite Y structure for all photocatalysts with tetracoordinated Ti4+ sites. The second transitional metals supported by the post-synthesis method were obtained in various forms, such as oxides and/or in the metallic state. A red shift of the absorption edge was observed in the UV–Vis spectra of photocatalysts upon the addition of Fe, Co, or Ni species. The photocatalytic performances were evaluated for the degradation of cefuroxime in water under visible light irradiation. The best results were obtained for iron-immobilized photocatalysts. Scavenger experiments explained the photocatalytic results and their mechanisms. A different contribution of the active species to the photocatalytic reactions was evidenced. Full article
(This article belongs to the Special Issue Designing Gels for Catalysts)
Show Figures

Figure 1

21 pages, 12035 KiB  
Article
Chitosan and Sodium Hyaluronate Hydrogels Supplemented with Bioglass for Bone Tissue Engineering
by Lidia Ciołek, Ewa Zaczyńska, Małgorzata Krok-Borkowicz, Monika Biernat and Elżbieta Pamuła
Gels 2024, 10(2), 128; https://doi.org/10.3390/gels10020128 - 05 Feb 2024
Viewed by 1388
Abstract
The aim of the study was to produce biocomposites based on chitosan and sodium hyaluronate hydrogels supplemented with bioglasses obtained under different conditions (temperature, time) and to perform an in vitro evaluation of their cytocompatibility using both indirect and direct methods. Furthermore, the [...] Read more.
The aim of the study was to produce biocomposites based on chitosan and sodium hyaluronate hydrogels supplemented with bioglasses obtained under different conditions (temperature, time) and to perform an in vitro evaluation of their cytocompatibility using both indirect and direct methods. Furthermore, the release of ions from the composites and the microstructure of the biocomposites before and after incubation in simulated body fluid were assessed. Tests on extracts from bioglasses and hydrogel biocomposites were performed on A549 epithelial cells, while MG63 osteoblast-like cells were tested in direct contact with the developed biomaterials. The immune response induced by the biomaterials was also evaluated. The experiments were carried out on both unstimulated and lipopolysaccharide (LPS) endotoxin-stimulated human peripheral blood cells in the presence of extracts of the biocomposites and their components. Extracts of the materials produced do not exhibit toxic effects on A549 cells, and do not increase the production of proinflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL-6) by blood cells in vitro. In direct contact with MG63 osteoblast-like cells, biocomposites containing the reference bioglass and those containing SrO are more cytocompatible than biocomposites with ZnO-doped bioglass. Using two testing approaches, the effects both of the potentially toxic agents released and of the surface of the tested materials on the cell condition were assessed. The results pave the way for the development of highly porous hydrogel–bioglass composite scaffolds for bone tissue engineering. Full article
(This article belongs to the Special Issue Advances in Chitin- and Chitosan-Based Hydrogels)
Show Figures

Figure 1

17 pages, 2144 KiB  
Article
Evaluation of Profile Control and Oil Displacement Effect of Starch Gel and Nano-MoS2 Combination System in High-Temperature Heterogeneous Reservoir
by Lianfeng Zhang, Yanhua Liu, Zhengxin Wang, Hao Li, Yuheng Zhao, Yinuo Pan, Yang Liu, Weifeng Yuan and Jirui Hou
Gels 2024, 10(2), 127; https://doi.org/10.3390/gels10020127 - 04 Feb 2024
Viewed by 990
Abstract
The Henan Oilfield’s medium-permeability blocks face challenges such as high temperatures and severe heterogeneity, making conventional flooding systems less effective. The starch gel system is an efficient approach for deep profile control in high-temperature reservoirs, while the nano-MoS2 system is a promising [...] Read more.
The Henan Oilfield’s medium-permeability blocks face challenges such as high temperatures and severe heterogeneity, making conventional flooding systems less effective. The starch gel system is an efficient approach for deep profile control in high-temperature reservoirs, while the nano-MoS2 system is a promising enhanced oil recovery (EOR) technology for high-temperature low-permeability reservoirs. Combining these two may achieve the dual effects of profile control and oil displacement, significantly enhancing oil recovery in high-temperature heterogeneous reservoirs. The basic performance evaluation of the combination system was carried out under reservoir temperature. Displacement experiments were conducted in target blocks under different permeabilities and extreme disparity core flooding to evaluate the combination system’s oil displacement effect. Additionally, the displacement effects and mechanisms of the starch gel and nano-MoS2 combination system in heterogeneous reservoirs were evaluated by simulating interlayer and intralayer heterogeneity models. The results show that the single nano-MoS2 system’s efficiency decreases with increased core permeability, and its effectiveness is limited in triple and quintuple disparity parallel experiments. After injecting the starch gel–nano-MoS2 combination system, the enhanced oil recovery effect was significant. The interlayer and intralayer heterogeneous models demonstrated that the primary water flooding mainly affected the high-permeability layers, while the starch gel effectively blocked the dominant channels, forcing the nano-MoS2 oil displacement system towards unswept areas. This coordination significantly enhanced oil displacement, with the combination system improving recovery by 15.33 and 12.20 percentage points, respectively. This research indicates that the starch gel and nano-MoS2 combination flooding technique holds promise for enhancing oil recovery in high-temperature heterogeneous reservoirs of Henan Oilfield, providing foundational support for field applications. Full article
(This article belongs to the Special Issue Applications of Gels for Enhanced Oil Recovery)
Show Figures

Figure 1

16 pages, 3735 KiB  
Article
Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks
by Ane García-García, Leyre Pérez-Álvarez, Leire Ruiz-Rubio, Asier Larrea-Sebal, Cesar Martin and José Luis Vilas-Vilela
Gels 2024, 10(2), 126; https://doi.org/10.3390/gels10020126 - 04 Feb 2024
Viewed by 1161
Abstract
Photocuring of chitosan has shown great promise in the extrusion-based 3D printing of scaffolds for advanced biomedical and tissue engineering applications. However, the poor mechanical stability of methacrylated chitosan photocuring ink restricts its applicability. The inclusion of co-networks by means of simultaneous polycomplex [...] Read more.
Photocuring of chitosan has shown great promise in the extrusion-based 3D printing of scaffolds for advanced biomedical and tissue engineering applications. However, the poor mechanical stability of methacrylated chitosan photocuring ink restricts its applicability. The inclusion of co-networks by means of simultaneous polycomplex formation is an effective method by which to solve this drawback, but the formed hydrogel inks are not printable. This work aims to develop new photocurable chitosan inks based on the simultaneous photocrosslinking of methacrylated chitosan (CHIMe) with N,N′-methylenebisacrylamide, polyethylene glycol diacrylate, and acrylic acid to be applied in extrusion 3D printing. Interestingly, the polycomplex co-network corresponding to the acrylic-acid-based ink could be successfully printed by the here-presented simultaneous photocuring strategy. Further, the conversion of photocrosslinking was studied via photo-DSC analyses that revealed a clear dependence on the chemical structure of the employed crosslinking agents (from 40 to ~100%). In addition, the mechanical and rheological properties of the photocured hydrogels were comparatively studied, as well as the printing quality of the extruded scaffolds. The newly developed chitosan photocurable inks demonstrated extrusion printability (squareness ~0.90; uniformity factor ~0.95) and tunable mechanical properties (Young modulus 14–1068 Pa) by means of different crosslinking approaches according to the chemical architecture of the reactive molecules employed. This work shows the great potential of photocrosslinkable chitosan inks. Full article
(This article belongs to the Special Issue Advances in Chitin- and Chitosan-Based Hydrogels)
Show Figures

Graphical abstract

14 pages, 3887 KiB  
Article
Citric Acid Loaded Hydrogel-Coated Stent for Dissolving Pancreatic Duct Calculi
by Jing Li, Yanwei Lv, Zheng Chen, Jiulong Zhao and Shige Wang
Gels 2024, 10(2), 125; https://doi.org/10.3390/gels10020125 - 03 Feb 2024
Cited by 3 | Viewed by 1137
Abstract
In recent years, the incidence of chronic pancreatitis has increased significantly. Pancreatic calculi obstruct the pancreatic duct and induce abdominal pain in the patients. Pancreatic duct stenting is the major treatment option for chronic pancreatitis with calculi. In this study, a new kind [...] Read more.
In recent years, the incidence of chronic pancreatitis has increased significantly. Pancreatic calculi obstruct the pancreatic duct and induce abdominal pain in the patients. Pancreatic duct stenting is the major treatment option for chronic pancreatitis with calculi. In this study, a new kind of drug-eluting stent, a pancreatic stent coated by methacrylated gelatin (GelMA) hydrogel loaded with citric acid (CA), was designed for the interventional treatment of pancreatic duct calculi. The CA loading capacity reached up to 0.7 g CA/g hydrogel-coated stent. The GelMA hydrogel coating has higher mechanical strength and lower swelling performance after loading with CA. The in vitro experiments of stents exhibited good performance in CA sustained release and the calculi can be dissolved in almost 3 days. The stents also showed good blood compatibility and cell compatibility. This research has important clinical value in the treatment of chronic pancreatitis with pancreatic calculi. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use)
Show Figures

Figure 1

12 pages, 5087 KiB  
Article
Physicochemical Properties of Mixed Gelatin Gels with Soy and Whey Proteins
by Dong-Heon Song, Na-Eun Yang, Youn-Kyung Ham and Hyun-Wook Kim
Gels 2024, 10(2), 124; https://doi.org/10.3390/gels10020124 - 03 Feb 2024
Viewed by 1266
Abstract
The physicochemical properties of the mixed gelatin gels with soy and whey proteins were investigated to develop the gel base with a soft texture and abundant essential amino acids for the elderly. Gelatin-only gel (control) was prepared at 6% (w/v [...] Read more.
The physicochemical properties of the mixed gelatin gels with soy and whey proteins were investigated to develop the gel base with a soft texture and abundant essential amino acids for the elderly. Gelatin-only gel (control) was prepared at 6% (w/v), and mixed gelatin gels were formulated by replacing gelatin with soy protein isolate and whey protein concentrate at different mixing ratios [gelatin (G):soy protein isolate (S):whey protein concentrate (W)]. Results showed that replacing gelatin with the globular proteins in gelatin gels increased the pH value and processing yield (p < 0.05). Moreover, the mixed gelatin gels, particularly the G2:S1:W3 treatment, showed significantly higher essential amino acids than the gelatin-only control. The partial replacement of gelatin with the globular proteins could decrease the hardness of gelatin gel (p < 0.05), but there was no difference in hardness between the G2:G3:W1, G2:S2:W2, and G2:S1:W3 treatments (p > 0.05). The results of protein pattern, x-ray diffraction, and microstructure had no clear evidence for specific protein–protein interaction in the mixed gelatin gels. Therefore, this study indicates that mixed gelatin gels with the globular proteins at specific mixing ratios could be a practical approach to providing a soft texture and high-level essential amino acids to the elderly. Full article
(This article belongs to the Special Issue Physicochemical Properties and Applications of Gel Materials)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop