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Abstract: Chronic wounds, commonly known as ulcers, represent a significant challenge to public
health, impacting millions of individuals every year and imposing a significant financial burden
on the global health system. Chronic wounds result from the interruption of the natural wound-
healing process due to internal and/or external factors, resulting in slow or nonexistent recovery.
Conventional medical approaches are often inadequate to deal with chronic wounds, necessitating
the exploration of new methods to facilitate rapid and effective healing. In recent years, regenerative
medicine and tissue engineering have emerged as promising avenues to encourage tissue regener-
ation. These approaches aim to achieve anatomical and functional restoration of the affected area
through polymeric components, such as scaffolds or hydrogels. This review explores collagen-based
biomaterials as potential therapeutic interventions for skin chronic wounds, specifically focusing on
infective and diabetic ulcers. Hence, the different approaches described are classified on an action-
mechanism basis. Understanding the issues preventing chronic wound healing and identifying
effective therapeutic alternatives could indicate the best way to optimize therapeutic units and to
promote more direct and efficient healing.

Keywords: wound healing; acute wound; chronic wound; scaffold; collagen; tissue engineering;
regenerative medicine

1. Introduction

Chronic skin wounds, known as ulcers, are a significant global health challenge,
impacting millions of patients annually and imposing a considerable burden on their
lives. Ulcers exhibit an extremely slow or absent healing rate, attributed to a complex
interplay of internal and external factors [1]. The current therapeutic strategies employed
by hospitals struggle to effectively regulate these factors, leading to prolonged hospital
stays and huge costs. The gravity of this situation is exacerbated by the continual rise
in risk factors associated with chronic wound development. Therefore, it is necessary to
investigate therapeutic solutions able to restart the healing process by focusing on the
specific mechanisms involved in wound healing. In recent decades, tissue engineering has
gained prominence as a promising avenue, focusing on the development of functionalized
skin substitutes capable of promoting wound healing, and reducing healing time [2].
Discovering an efficient therapeutic approach could be crucial in expediting the healing
rate of chronic wounds, enhancing the quality of life for patients, and concurrently reducing
healthcare costs.

Acute and Chronic Wound Healing

The largest human organ is the skin, which is the interface between the organism
and the environment. Acting as a barrier for internal organs, the skin protects the or-
ganism against external agents and exploits its pivotal role in maintaining physiological
homeostasis [3].
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However, the skin itself is subject to internal and external factors, that can physio-
logically interrupt its anatomical integrity and functionality, resulting in a wound [4,5].
Two categories of skin wounds can be distinguished, acute and chronic, which differ in
the healing time [6,7]. Acute skin wounds form as a result of traumas that violate the
integrity of the skin (although they can also affect the lower layers), due to both physical
(e.g., sharp bodies) and environmental (e.g., chemicals, high temperatures, radiation, ex-
cessive pressure) agents [6,8]. Acute wounds heal independently through a physiological
wound-healing process, restoring the affected region [7]. The healing rate of acute wounds
depends both on factors specific to the wound, like size and depth, and the patient’s
condition, such as age or pre-existing disease. Generally, actively healing wounds are
free of bacterial infection and show cells in active fibroblast proliferation and secretion of
extracellular matrix and molecules characteristic of inflammatory events such as proteases,
metalloproteases, and pro-inflammatory cytokines [9] (Figures 1 and 2). Wound healing is
a complex, highly regulated process carried out by the resident fibroblasts, keratinocytes,
and endothelial cells of the affected area, and immune cells to restore the anatomical and
functional physiology of the wounded tissue [10–12].
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Although it is a continuous process, wound healing is commonly divided into four
overlapping phases: hemostasis, inflammation, proliferation, and remodeling (Figure 1).
During the initial phase, blood flow is halted through both vasoconstriction and clot for-
mation. Neutrophils are recruited to the wound first, followed by macrophages, to carry
out the inflammatory phase aimed at eradicating bacteria entering the wound. In this
phase, macrophages are classically activated (M1), secreting pro-inflammatory cytokines
and stimulating inflammation. After a few days, bacteria and damaged tissue should
have been removed, and the macrophage phenotype switches to the alternatively activated
(M2), which secretes anti-inflammatory cytokines and growth factors to stimulate tissue
regeneration. In three days, granulation tissue formation occurs, giving the wound bed
a granular appearance due to the proliferation and migration of fibroblasts and the de-
velopment of new blood vessels (angiogenesis). In this phase, fibroblasts begin to secrete
collagen and other matrix molecules, facilitating wound filling and re-epithelialization.
Finally, during the remodeling phase, the extracellular matrix undergoes modification by
matrix metalloproteinases (MMPs), restructuring the tissue and forming the scar [7,13,14]
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(Figure 1). In healthy people, the wound-healing process takes place properly, without any
interruption, to restore the original tissue structure and function. Each of these steps is
essential for wound closure; however, certain pre-existing conditions and/or pathologies
may lead to the interruption of one or more of these steps, slowing or interrupting the
healing process and thus leading to chronic wound formation [10,15].
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Wounds that do not heal spontaneously within a month are commonly called chronic
wounds, also known as ulcers, characterized by a persistent inflammatory state [16,17].
Chronic wounds are a severe health problem that affects many people; it is estimated that
1–2% of the world population will be affected by ulcers at least once in their lifetime [18].
Moreover, ulcers determine a poor quality of life, causing health, social, and economic
problems for patients and their families [18,19]. The increase in risk factors further worsens
these statistics, with a higher number of patients affected by this problem each year. Age
is an important determinant of chronic wounds; as individuals grow older, the risk of
developing ulcers naturally escalates. Therefore, many studies have shown that the average
age of people affected by ulcers is generally between 70 and 80 and probably these statistics
will worsen due to the global increase in the elderly population [16,20,21]. One of the
major risk factors for ulcers is comorbidity, a condition in which the patient affected by
a wound already possesses one or more chronic underlying diseases [16,22]. Based on
pre-existing chronic diseases, different types of ulcers can be distinguished. Conditions
such as chronic venous insufficiency increase the risk of developing venous ulcers (VU),
mainly affecting the extremities. Moreover, when a pathology forces the patient to stay in
bed for a prolonged time, pressure ulcers (PU), also called decubitus wounds, are formed.
A wound can become chronic if infected, due to the cells of the immune system being
unable to kill bacteria. However, the most serious cases occur when a chronic wound
coexists in a patient suffering from diabetes and/or obesity; diabetic ulcers almost always
arise on the feet, hence the name diabetic foot ulcer (DFU) [16,17,23]. For this reason, most
of the literature focused on finding appropriate care for diabetic and infected ulcers.

DFUs have a great impact both socially, as complications can worsen to the point of am-
putation, and economically [24]. The diabetic foot consists of deep tissue lesions associated
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with neurological disorders and peripheral vascular disease of the lower limbs [25]. The
annual risk of contracting DFU for a diabetic patient is estimated to be 2.5% [26], while the
overall prevalence of diabetic foot ulceration is 6.3%, higher in males (4.5%) than in females
(3.5%), and higher in type 2 diabetic patients (6.4%) than in type 1 diabetics (5.5%) [24].
Moreover, the skin is our body’s first barrier against pathogens, and at the same time, it
is rich soil for the growth of commensal bacteria that form microbiota [27]. Thus, when a
wound forms, it is colonized by the bacteria present on the skin: it begins the inflammatory
phase, where the body’s immune system responds immediately by eradicating bacterial
contamination and preparing the wound for the next steps by recruiting signal cells and
molecules that will allow tissue regeneration [28,29]. However, especially in patients with
a compromised immune system, bacterial colonization may become critical to the point of
overcoming the host’s immune system; there is a transition from colonization to infection,
and the wound enters a continuous inflammatory phase, leading to wound chronicity.
Among the bacteria most frequently found in ulcers, Staphylococcus aureus (93.5%), and
Pseudomonas aeruginosa (52.2%) are particularly relevant, as they can form biofilms [28,29]. A
biofilm is a bacterial community encapsulated within an extracellular polymeric substance
(EPS) that nourishes and protects the bacterial community from antibiotics and antiseptics,
rendering canonical treatments ineffective [30].

In chronic wounds, the environment is highly altered, with residing low-mitogenic
cells that downregulate grow factor (GF) receptors and show an increasing level of reactive
oxygen species (ROS) and metalloproteases (MMPs) that cause both GF decrease and
extracellular matrix (ECM) degradation (Figure 2). These conditions do not allow ECM
deposition and granulation tissue formation, originating a nonhealing wound [23]. Partic-
ularly, the inflammatory phase, the second stage of the wound-healing process, persists
longer than usual in chronic wounds, due to factors such as hypoxia, prolonged trauma,
the presence of bacteria, and compromised host responses [31]. Regardless of the etiolog-
ical agent, a prolonged inflammation establishes an unfavorable environment for tissue
regeneration. It attracts an increased influx of immune cells to the wound site, determining
oxidative stress through the release of ROS and suppressing the release of antioxidants
such as nitric oxide (NO). Oxidative stress reinforces the inflammatory response in a cyclic
positive feedback loop by stimulating the release of MMPs (especially MMP-2 and MMP-9)
and pro-inflammatory cytokines, leading to inflammation improvement, ECM degradation,
and reduced GF levels. This context not only stops the healing process but also worsens the
wound, increasing its susceptibility to infections and potentially culminating in necrosis
and ulceration [31].

The management and treatment of chronic wounds represent a heavy burden on global
health, accounting for about 3% of total expenditure. Overall, expenditure is estimated at
USD 28.1 per year (in 2014), which increased to a maximum of 96.8 billion, considering
wounds as secondary diagnosis [32,33]. The largest costs are incurred for diabetic wounds:
for instance, it is estimated that in Europe the cost amount for DFU care is between EUR
4 and 6 billion per year and that the overall annual cost of a single DFU averages USD
8659 [24]. Costs increase considering the worldwide prevalence of diabetes mellitus and
the longer life expectancy of diabetic patients [33].

The hospital management of chronic wounds is often a protracted and challenging
process. A considerable aspect of treating chronic wounds is debridement, a procedure
involving the removal of necrotic tissue present on the wound bed. This necrotic tissue
serves as a fertile ground for bacterial proliferation, and its removal exposes well-perfused
tissue with mitotically active cells, creating conditions conducive to wound closure [12,34].
Topical treatment employing antibacterial agents and antibiofilm substances is commonly
employed to address infected wounds [35]. Additionally, the application of growth factors,
which are often deficient in ulcerous conditions, is a widely used approach. Hyperbaric
chambers, designed to counteract the hypoxia typical of ulcers, and negative pressure
therapy are also utilized to promote the healing of ulcers [12,34]. While these methods
facilitate the healing process, they are not absolute and may involve extended healing times.
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Wound dressings play a crucial role in wound care, primarily serving to shield wounds
from the external environment, thereby preventing infections and maintaining optimal
moisture levels. Moreover, dressings can be functionalized with additional substances
such as antibiotics, antibiofilm agents, or growth factors to provide secondary therapeutic
benefits. Depending on the material composition of the dressing, different effects can be
achieved; for instance, hydrocolloids and hydrogels help maintain optimal moisture levels,
thereby promoting autolytic debridement [36]. However, with the increasing prevalence of
antibiotic resistance and the limited half-life of growth factors, the nonspecificity of these
healing approaches, and, in general, the prolongation of healing times, require finding new
approaches to treat ulcers, making the healing process faster and safer, reducing healthcare
costs and improving patients’ quality of life.

In recent years, scientific research has shifted towards tissue engineering to overcome
the limits of current chronic wound treatments. In this context, the use of biopolymeric
functionalized scaffolds for regenerative medicine aims to stimulate and promote the heal-
ing process. The scaffold design and functionalization play a key role in developing the
best medical strategy, depending on the nature and features of the wound. Specifically,
this review focuses on therapeutic approaches analysis in using collagen-based scaffolds in
combination with other biopolymers, for ulcer treatment. Notably, the scaffold project has
to consider different aspects including inflammatory response, oxidative stress, hypoxia,
cell proliferation, angiogenesis, and bacterial infections. Therefore, the review provides
a comprehensive overview, highlighting the diverse strategies in the project and func-
tionalization of collagen-based scaffolds for tissue engineering and regenerative medicine
applications in ulcer treatment, focusing on the diabetic one and showcasing their potential
across a broad spectrum.

2. Chronic Wounds Treatment
Tissue Engineering for Wound Healing

One of the most important approaches in wound-healing treatment is tissue engi-
neering, which aims to develop biological substitutes by applying engineering principles
to restore wounded tissues [37]. The basis of tissue engineering is the creation of three-
dimensional scaffolds engineering to anchor the cellular compounds and to release drugs
in a stimuli-controlled way for the development of a newly forming tissue [2]. Regenerative
medicine (RM) is strictly connected to tissue engineering as it employs tissue substitutes
to “regenerate” damaged tissues, reinstating a physiological state both anatomically and
functionally [38]. In clinical practice, regenerative medicine is currently integrated with
standard care to attempt to reverse organ failure, thereby mitigating the potential need for
transplantation. The advantage of regenerative medicine lies in its ability to tailor treat-
ments for specific pathologies by introducing cells from the affected tissue and molecules to
enhance targeted processes [39]. Scaffolds in regenerative medicine have multiple functions
being biocompatible, degrading safely, and having pores for nutrient transport. Natural
and synthetic polymers are commonly used as scaffolding materials because they are
flexible, biocompatible, and biodegradable. Biomaterials are crucial for tissue repair as they
provide a framework for cells and their attachment and can influence cellular activities like
proliferation, differentiation, and tissue formation [2]. One of the most used biomaterials in
tissue engineering and regenerative medicine is collagen.

Collagen, the main constituent of the ECM of connective tissues, represents approxi-
mately 30% of total mammalian proteins. Collagen plays a fundamental role in regulating
the structural properties of bones, tendons, cartilage, and skin. There are more than
20 genetically distinct isoforms of collagen, of which collagens type-I and type-III are par-
ticularly present in dermal ECM, where they promote the penetration and proliferation
of fibroblasts. These properties make collagen an excellent material, biocompatible and
biodegradable, for tissue engineering and regenerative medicine applications. Furthermore,
collagen, when polymerized, shows good mechanical properties and structural integrity,
especially if copolymerized with other biopolymers [40–42]. Collagen scaffolds have been
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shown to allow exchanges of both gases and nutrients with the external environment,
making them appropriate niches for cell growth [43]. In the context of wound healing,
collagen scaffolds also play a fundamental role in regulating moisture levels and the activ-
ity of metalloproteases [44], becoming their substrate to prevent them from affecting the
pre-existing on-growing matrix and providing collagen fibrils to reconstitute ECM.

Even if collagen as a biomaterial for scaffold design presents many advantages, it has
some limitations. When polymerized in 3D structures, collagen is not structurally resistant
and therefore it has a fast degradation rate, limiting its stability over time. The use of
crosslinkers and copolymerization with other biomaterials can enhance structural proper-
ties and lifetime. Another limitation stems from the animal origin of collagen, frequently
sourced from porcine or bovine, raising concerns about allergies, disease transmission
(e.g., bovine spongiform encephalopathy), and bacterial contamination [45] Additionally,
social and religious factors may hinder the acceptance of animal-derived collagen skin
substitutes by some patients. An alternative option is marine-origin collagen, derived
from sources like jellyfish or sponges [46]. Nevertheless, this alternative presents some
negative features, including low biodegradation, amino acid content, and mechanical
strength. Furthermore, synthetic collagen is challenging to produce due to its intricate
structure [47–49]. In any case, in most cases, collagen remains the most used biomaterial in
regenerative medicine.

In the last decades, collagen-based biomaterials in different forms have been widely
used in regenerative medicine as a copolymer to create scaffolds and hydrogels in different
therapeutic combinations for the treatment of wounds, including or no other factors, such as
cellular components or bioactive molecules, to promote, improve and accelerate the healing
process. One of the best-known cases is Integra® Dermal Regeneration Template (IDRT),
a membrane consisting of a layer of collagen type-I crosslinked to glycosaminoglycans
(chondroitin-6-sulfate) covered with a semipermeable silicone sheet [50]. Integra today is
used for the treatment of surgical wounds in the clinic, as it is approved for the treatment
of venous ulcers and combat-related wounds. In general, it promotes cell migration, and
angiogenesis, and allows for granulation tissue formation, but is susceptible to infection
and graft loss [50,51]. In a further study, researchers have tried to enhance Integra’s healing
power by adding microvascular fragments extracted from adipose tissue (ad-MVFs) [52].
The results showed rapid blood perfusion within 3–6 days after treatment, due to the
enhanced angiogenic germinative activity of the ad-MVFs which, stimulated to release
pro-angiogenic factors, were able to both perfuse the newly formed tissue and reconnect to
the host vessels. The ability of collagen to enhance microvessel sprouting and anastomosis
with the host circulatory system was further confirmed by a study in which ad-MVFs were
seeded onto 3D collagen hydrogels, which were then used for transplantation of islets of
Langerhans. Microvessels showed high expression of factors such as VEGF and PDGF,
suggesting the activation of an angiogenic pathway that led to the proper vascularisation of
the islets [53]. Over the years, many skin substitutes that exploit, like Integra, the beneficial
potential of collagen to promote tissue regeneration, facilitating the healing of chronic
wounds of different natures, have been engineered (Table 1) [54–56].

Table 1. Collagen-based FDA-approved skin substitutes.

Name Composition Use

OrCel®
Bilayered bovine collagen scaffold seeded with both

keratinocytes and fibroblasts Burns

Biobrane® A porous nylon mesh with a silicone membrane including a
porcine type I collagen dermal matrix

Chronic wounds, venous ulcers, partial thickness
burns, dermabrasion

Apligraf®
Bilayered construct composed of an upper part with

keratinocytes embedded on a bovine collagen type I gel and
a lower part with fibroblasts included into a dermal matrix

Burns, and pressure, venous, and diabetic ulcers
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On these bases, this review aims to provide a complete vision of the main approaches
in which collagen-based biomaterials have been used to solve the problem of chronic
wounds. Particularly, studies are classified into different groups depending on the process
they target to promote wound healing, as shown in Table 2.

Table 2. Application of different types of scaffolds for wound-healing treatment.

Application Scaffold Functionalization Ref.

Promoting angiogenesis and
revascularization

Collagen scaffold CBD-VEGF fusion protein [57]
Collagen scaffold CBD-VEGF and CBD-SDF-1α fusion proteins [58]
Collagen scaffold Bcl-2-ADSCs [59]

Fish collagen and bioactive glass microfibrous mat Copper/cobalt ion [60]

Counteracting inflammation

Crosslinked collagen scaffolds Gold nanoparticles [61]
Collagen/chitosan scaffold Thymosin beta 4 [62]
Collagen/chitosan scaffold Pioglitazone [63]

Collagen/GAG scaffold siMMP-9 [64]
Collagen scaffold Antisense oligonucleotides against Cx43 [65]

Counteracting oxidative stress

Collagen–polycaprolactone sandwich scaffold N-acetylcysteine [66]
Collagen–polyamide sandwich scaffold N-acetylcysteine [67]

Graphene oxide–collagen hybrid membrane N-acetylcysteine [68]
Collagen scaffold Polydatin [69]

Collagen/chitosan scaffolds Curcumin-conjugated nanoparticles [70]
Alginate/collagen scaffolds Curcumin-conjugated chitosan nanoparticles [71]

Counteracting microbial
infections

PVA (Polyvinyl alcohol) and collagen scaffold Licorice extracts [72]
collagen, ethyl cellulose (EC), and poly-lactic acid

(PLA) scaffold Silver Sulfadiazine [73]

Collagen scaffold Mupirocin-loaded silica microspheres [74]
Collagen scaffold Molybdenum trioxide nanoparticles [75]

Collagen/chitosan scaffold Norfloxacin [76]

Combination of antibacterial,
antioxidant, and

anti-inflammatory properties

Scaffolds made of a mix of bovine and
marine collagen Pistacia lentiscus and/or Calendula officinalis [77]

Honey-propolis wax Collagen hydrolysates [78]

Collagen Scaffold Mupirocin-Loaded Chitosan Microspheres and
Piper Betle Extract [79]

Collagen aerogel Wheatgrass [80]
Collagen scaffold Acanthus ebracteatus vahl extract [81]

Promoting cell proliferation

PLA scaffold Plasma pretreatment and kefiran coating [82]
Collagen scaffold Silkworm gland hydrolysate (SSGH) [83]

Collagen/PLGA/chitosan scaffold VEGF and bFGF [84]
Collagen–glycosaminoglycan scaffold Autologous micrografts [85]
Zein/PCL (zein/poly-ε-caprolactone)

and Collagen ZnO nanoparticles and Aloe vera extracts [86]

Gelatin and collagen electrospinned onto a
chitosan scaffold Lithosperm radix (LR) extract [87]

Sodium alginate and collagen type-I hydrogel Human umbilical cord mesenchymal stem
cells (hUC-MSCs) [88]

Stimulating ECM regeneration

Collagen/chitosan scaffold Doxycycline [89]
Collagen scaffold Silver nanoparticles conjugated with juglone [90]

Collagen type-I and tropoelastin scaffold Not functionalized [91]
Bilayered collagen/chitosan—collagen–

glycosaminoglycan scaffold Not functionalized [92]

Collagen type-I and type-III crossed-fiber scaffold Not functionalized [93]

Particular case Collagen/PLGA
(poly-lactic-co-glycolic acid) scaffold Glucophage (metformin) [94]

3. Scaffold Properties for Wound-Healing Treatment

Scaffold design plays a pivotal role in wound-healing treatment. Generally, they can
be made of synthetic polymers combined with components of extracellular matrix, princi-
pally collagen (Figure 3). Depending on the functionalization (with cells, microvascular
fragments, or nanoparticles) and the conjugation with additives like growth factors, an-
timicrobial, anti-inflammatory or antioxidant molecules, they can be involved in different
applications concerning angiogenesis and revascularization, inflammation, oxidative stress,
microbial infections antibacterial, antioxidant, and anti-inflammatory properties (Figure 3).
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3.1. Promoting Angiogenesis and Revascularization

One of the key aspects of the wound-healing process is the stimulation of angiogen-
esis, especially in the case of diabetic foot ulcers (DFUs), characterized by hypoxia. The
formation of a new capillary network at the wound site would ensure a constant supply of
oxygen and nutrients, remove metabolic waste, rebalance pH, reduce levels of ROS, and,
in general, promote healing. For this reason, many studies focused on creating wound
dressings that could enhance wound healing by particularly boosting the angiogenic pro-
cess. For instance, Tan and colleagues proposed a new composite biomaterial as a drug
delivery system for the treatment of diabetic wounds induced in a rat model. They de-
veloped a collagen scaffold with CBD-VEGF, a fusion protein created by combining the
vascular endothelial growth factor (VEGF) with a collagen-binding domain (CBD) to permit
a gradual and sustained release of VEGF, one of the key pro-angiogenic factors crucial
for wound healing (Figure 3). Compared to control groups, rats treated with this kind
of scaffold showed an enhancement of the formation of new blood vessels, promoting
cell migration and wound closure [57]. In the following study, pro-angiogenic properties
were further enhanced by coupling another fusion protein to the CBD-VEGF fusion pro-
tein, CBD-SDF-1α (cell-derived factor 1α, known for its role in sending homing signals
to endothelial progenitor cells, EPCs) [58,95]. The two factors were attached to a collagen
scaffold and were gradually released into the surrounding environment when used to treat
diabetic rat wound models. In vivo tests showed that the scaffold promoted angiogene-
sis and vessel reparation, reduced inflammation, and overall accelerated the healing of
the diabetic wound by improving cell proliferation, re-epithelialization, and extracellular
matrix accumulation [58]. On the other hand, Ding et al. investigated the ability of the
anti-apoptotic factor Bcl-2, to enhance the survival of adipose-derived stem cells (ADSCs)
and increase their expression of VEGF to promote angiogenesis [59]. Specifically, collagen-
based Bcl-2-modified ADSCs (Bcl-2-ADSCs) scaffolds were synthesized to treat induced
diabetic wound models in mice. The collagen–Bcl-2-ADSCs scaffold demonstrated signifi-
cant efficacy in promoting tissue revascularization and accelerated growth compared to all
controls, including treatment with collagen scaffold-ADSCs without Bcl-2, substantiating
its therapeutic potential [59]. The angiogenic process can also be enhanced by combining
fish collagen and copper/cobalt ion-loaded bioactive glass to create a microfibrous mat for
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the treatment of diabetic wounds as proposed by Jana and colleagues [60]. Both copper
and cobalt promote angiogenesis through physical interaction and by inducing the tran-
scription of many pro-angiogenic genes via the stabilization of hypoxia-inducible factor-1
(HIF1). The scaffold thus formed not only possesses good mechanical and cytocompatibility
capabilities but has also demonstrated the ability to enhance wound healing in diabetic
conditions, by promoting angiogenesis, extracellular matrix formation, and wound closure
in in vivo rabbit models.

Collectively, these studies focus on implementing or stabilizing factors involved in the
angiogenic process, promoting both angiogenesis and vasculogenesis, ultimately increasing
the number of vessels and improving nutrient transport.

3.2. Counteracting Inflammation

The persistence of a chronic inflammatory state represents one of the main features of
chronic wounds. This condition creates an environment within the wound that counters
the regenerative process, not only providing a favorable setting for bacterial proliferation
but also potentially leading to necrosis. The inflammatory process can be modulated in
various ways, such as through the use of nanoparticles (Figure 3) [96]. For example, gold
nanoparticles (AuNPs) can be employed, serving not only to impart greater mechanical
stability to collagen scaffolds (CSs) crosslinked with glutaraldehyde but also to possess anti-
inflammatory activity. AuNPs have been shown to downregulate the pro-inflammatory
factors TNFα and interleukin-6 (IL-6) thereby suppressing inflammation [97]. In a full-
thickness skin wound model, they exhibited promising therapeutic effects, including a
reduced inflammatory response, improved wound closure, and enhanced tissue revascu-
larization [61]. In other cases, molecules with anti-inflammatory activity can be coupled
to scaffolds to target the inflammatory phase during wound healing. Anti-inflammatory
agents, like thymosin beta 4 (Tβ4), have been explored for their inhibitory effects again
NF-κB and inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-
1β (IL-1β), and IL-10 [98]. In addition, the Tβ4 activity was investigated also for its
pro-angiogenic properties. Specifically, the study employs a porous collagen/chitosan scaf-
fold containing Tβ4 to assess its therapeutic potential in the healing of diabetic rats with
hindlimb ischemia. The results showed that the gradual release of Tβ4 from the scaffold
inhibited the inflammatory process in favor of angiogenesis, resulting in faster closure
of the diabetic wound and tissue with improved dermal reorganization and increased
vascularization [62]. Another strategy aims to reduce inflammation by modulating MMP-9
activity, which is the principal MMP responsible for chronic inflammation, along with
MMP-2 [63]. Specifically, pioglitazone-loaded lipidic nanoparticles have been incorporated
into collagen–chitosan scaffolds to promote diabetic wound healing by reducing inflam-
mation, owing to pioglitazone’s ability to inhibit MMP-9. In in vivo diabetic rat models,
the scaffolds downregulated MMP-9 levels, leading to a lower inflammatory response
and faster wound closure compared to controls. On the other hand, the expression of
genes involved in the inflammation process can be downregulated through noncoding
RNA. Specifically, a MMP-9 small interfering RNA (siRNA) was conjugated to a collagen–
glycosaminoglycan scaffold, to obtain a drug delivery system capable of reducing MMP-9
expression in both dermal fibroblasts and M1 macrophages suggesting a potential ther-
apeutic effect in modulating inflammation for in vivo use [64]. Antisense strategy was
adopted also in another study in which collagen scaffolds were coated with the antisense
oligodeoxynucleotides against connexin 43 (Cx43asODN), highly expressed in the foreign
body (such as a scaffold) inflammatory reactions. In vitro testes have demonstrated the
capability of inhibiting cell migration from the wound edge; while in vivo wound-healing
assays showed improved re-epithelialization and reduced inflammation intensity, resulting
in a more efficient wound closure [65,99].
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3.3. Counteracting Oxidative Stress

The increased inflammation in the wound bed causes a rise in ROS, leading to oxida-
tive stress and exacerbating inflammation by degrading the matrix and elevating levels
of pro-inflammatory cytokines in the local environment. Many studies have focused the
oxidative stress, trying to reduce it, and promoting wound healing. One of the most
utilized antioxidant molecules is N-acetylcysteine (NAC), crucial for reducing excessive
ROS production during inflammation, thereby promoting wound healing. Particularly,
NAC is involved in glutathione formation, the most important biological antioxidant due
to its ability to act as a free radical’s scavenger [100]. For example, two different types
of sandwich scaffolds were created as delivery systems for N-acetylcysteine (NAC). In
both scaffolds, the limited mechanical properties of collagen were complemented by su-
perior structural polymers, like polycaprolactone (PCL) [66] or polyamide [67], which
enhanced the mechanical properties. In the first case, a PCL core was complemented by
NAC-collagen on both sides, while in the second one, an inner electrospun polyamide
layer was surrounded by collagen/NAC. When tested in in vivo rat models for their ability
to promote wound healing, both scaffolds demonstrated to increment wound healing
compared to controls, improving collagen deposition, revascularization, and wound re-
epithelialization. Moreover, NAC can be used as an antioxidant agent not only against
reactive oxygen species but also against graphene oxide (GO). Indeed, a NAC-loaded
graphene oxide–collagen hybrid membrane (N-Col-GO) for enhanced skin regeneration
was synthesized [68]. The scaffold exhibited features such as water retention and biocom-
patibility. In mouse models of full-thickness skin wounds, the membrane promoted the
reduction in ROS during the inflammatory phase, consequently facilitating healing by
supporting various processes, including angiogenesis, re-epithelialization, and cell migra-
tion. Furthermore, the membrane showed anti-fibrotic effects, preventing the formation
of hypertrophic scarring. Also, the polyphenol polydatin possesses antioxidant activity
similar to NAC, by seizing free radicals, consequently reducing the amount of ROS [101].
A collagen scaffold conjugated with polydatin was employed to enhance wound healing
in both diabetic and nondiabetic rat models [69]. The results for both types of ulcers were
very encouraging, showing antioxidant ability higher 82% than untreated controls. Overall,
the construct showed accelerated wound closure, and improved angiogenesis, epithelial-
ization, and collagen deposition. Many molecules, like curcumin, possess both antioxidant
and anti-inflammatory activities, mainly because these two processes are interconnected.
Topical curcumin treatments in diabetic-rat-induced wounds manifested reduced inflam-
mation by downregulation of pro-inflammatory factors such as TNF-α, IL-1β, and MMP-9,
and upregulation of IL-10. Moreover, antioxidant activity was importantly increased by
the overexpression of enzymes such as superoxide dismutase, catalase, and glutathione
peroxidase [102]. On the other hand, the properties of collagen/chitosan scaffolds can be en-
hanced by adding curcumin-conjugated nanoparticles (CNs) to treat full-thickness wounds
in Wistar rats, as proposed by Rezaii and colleagues [70]. Due to curcumin’s antioxidant
and anti-inflammatory capabilities, along with its ability to increase the expression levels of
the crucial factor in the wound-healing process TGF-β1 (transforming growth factor- β1), a
significant acceleration in the healing rate was achieved in the treated rats compared to the
controls. This was evidenced by a significant reduction in wound area, increased epidermal
thickness, augmented density of granulation tissue, elevated number of new vessels, and a
higher collagen content. In another study, copolymeric alginate/collagen scaffolds coupled
to curcumin-conjugated chitosan nanoparticles (CUR-CSNPs) were used to treat diabetic
wounds [71]. The nanohybrid scaffolds showed optimal physical qualities, corrosion rate,
and biodegradation and ensured a sustained release of curcumin. Wounds induced in
diabetic mouse models and treated with the scaffolds allowed significantly faster wound
contraction than in the control groups. In addition, histopathological analysis revealed
increased fibroblast proliferation, collagen synthesis, and orderly dermal formation, while
reducing chronic inflammation.
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3.4. Counteracting Microbial Infections

Bacterial contamination, as previously discussed, represents one of the main etiological
agents in chronic wounds, particularly when biofilm formation occurs. Biofilms shield
bacteria from both the host’s immune system and externally introduced molecules with
antibacterial activity [103]. Additionally, the increasing antibiotic resistance of some bacte-
rial strains makes it essential to identify new molecules potentially suitable for combating
infections. Many studies combine the beneficial properties of scaffolds with the action of
antibiotics, natural extracts, or nanoparticles with antibacterial activity [104]. For instance,
bio-nano scaffolds were manufactured with a PVA (polyvinyl alcohol) core and an outer
layer of collagen [72]. Both layers were incorporated with Licorice extracts, a traditional herb
containing molecules with antibacterial and antiviral properties. In vivo studies involving
full-thickness wounds induced in rabbits demonstrated tissue regeneration promotion
within 10 days, enhancing wound healing. On this basis, the intrinsic antibacterial potential
of silver in the form of silver sulfadiazine was conjugated with a nanofibrous copolymeric
scaffold composed of collagen, ethyl cellulose (EC), and poly-lactic acid (PLA) [73]. In vitro
studies suggested a good biocompatibility and a nontoxic effect. However, the rates of
cell adhesion and proliferation, along with the antibacterial potential, were examined and
demonstrated satisfactory results, making this scaffold a potential candidate for wound
healing. On the other hand, the antibacterial power of mupirocin, coupled with silica
microspheres, was investigated to enhance the healing properties of a collagen scaffold
for chronic wounds [74]. In vivo studies highlighted a faster closure of wounds, attributed
to the shortened duration of the inflammatory phase due to the presence of mupirocin,
increased fibroblast proliferation, and subsequent enhanced collagen deposition. More-
over, Indrakumar et al., coupled collagen properties with those of molybdenum trioxide
nanoparticles, known for their antibacterial and pro-angiogenic activities, to investigate
their wound-healing potential [75]. Using in vivo wound models in Wistar rats, the com-
posite scaffolds demonstrated a faster wound closure compared to the untreated controls.
Additionally, the nanoparticles exhibited both antibacterial and pro-angiogenic activities,
even at low concentrations. These findings were confirmed by histological sections, re-
vealing improved revascularization, collagen deposition, and overall tissue reformation,
including skin appendages [75].

Chitosan, one of the most commonly used copolymers with collagen, is often chosen
for its ability to enhance the structural properties of collagen and for its antimicrobial
and antioxidant properties [105]. Chitosan is a polysaccharide biomaterial derived from
chitin, exhibiting antimicrobial properties against a broad spectrum of bacteria, both
Gram-positive and Gram-negative [106]. On this basis, the antibacterial properties were
particularly emphasized by combining the antibiotic activity of Norfloxacin with the
intrinsic antibacterial properties of chitosan [76]. Particularly, chitosan was copolymerized
with collagen to create an antibiotic-medicated collagen/chitosan sponge scaffold for skin
tissue engineering. In vivo, tests on full-thickness wound models in rats demonstrated that
both the norfloxacin-treated and the untreated scaffolds accelerated healing compared to
the controls. However, the former exhibited superior properties with reduced inflammation
and faster wound closure. Histological tests further confirmed the accelerated healing rate
of the antibiotic-coupled scaffold, resulting in faster tissue regeneration, a normal intact
epidermal layer, and decreased inflammatory cell infiltration.

3.5. Scaffoldings with Antibacterial, Antioxidant, and Anti-Inflammatory Properties

To improve the healing properties in chronic wounds treatment, scaffolds can be
combined with natural extracts, a blend of bioactive molecules that collectively possess
various abilities, including antioxidant, anti-inflammatory, and antibacterial properties.
Often, underlying action mechanisms of the single molecules are not well known, and only
the therapeutic power of the partial or total extract is studied. For instance, scaffolds made
of a mix of collagen from bovine and marine sources were synthesized and functional-
ized alternately or in combination with two plant extracts: extracts from Pistacia lentiscus
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(with antioxidant and antibacterial properties) and from Calendula officinalis (known for
its therapeutic potential against skin diseases) [77]. These scaffolds, when soaked with
bioactive extracts, significantly enhanced wound closure in treated mice compared to
conventional gauze, reducing the healing period of four days (from 13 to 9), especially
those soaked with Pistacia lentiscus extracts, which showed a 50% wound closure at 3 days.
Alternatively, honey-propolis wax (HPW), a resinous mixture produced by honeybees with
antimicrobial, anti-inflammatory, and antioxidant properties, was used as a matrix to host
collagen hydrolysates for wound treatment [78]. HPW increased re-epithelialization and
wound closure speed in induced wounds in in vivo murine models. Specifically, the resin
inhibited the infiltration of immune cells, reducing inflammation, as confirmed by the
downregulation of pro-inflammatory markers such as IL-1β (interleukin-1β) and TNF-α
(tumor necrosis factor- α). Conversely, the expression of genes involved in extracellular
matrix formation, such as VEGF, EGF (epidermal growth factor), and TGF-β, have been up-
regulated, promoting the regenerative process. In a different approach, a collagen scaffold
was fabricated, incorporating chitosan microspheres conjugated with mupirocin (M-CSM)
on one side and Piper betle (PB) Linn leaf extracts on the other [79]. PB leaves are known
for their anti-inflammatory, antioxidant, antidiabetic, and antimicrobial properties. The in-
trinsic antibacterial activities of chitosan, mupirocin, and PB extracts provide the construct
with triple antibacterial action, in addition to other unique properties attributed to the
molecules within PB extracts. In vivo tests conducted on a full-thickness wound model in
rats demonstrated an accelerated regenerative process, characterized by increased collagen
deposition, fibroblast proliferation, blood vessel formation, and reduced inflammation. In
another study, wheatgrass, recognized for its bioactive components with anti-inflammatory,
antibacterial, and antioxidant properties, has been used as a crosslinker for collagen, to
augment the stability and therapeutic attributes of the resulting aerogel [80]. In in vitro
tests, the aerogel supported cell proliferation and exhibited notable antibacterial efficacy,
with a concentration-dependent antibacterial impact against Gram-positive bacteria. In a
rat in vivo wound-healing model, the construct displayed enhanced proangiogenic activity,
contributing to an accelerated wound-healing process. Also, Acanthus ebracteatus vahl ex-
tracts, known for their potent anti-inflammatory, antibacterial, and antioxidant properties,
were administered topically daily, combined with a collagen scaffold in a mouse model of
full-thickness wounds [81]. Results underline the superior effectiveness of the synergistic
action between collagen and Acanthus ebracteatus vahl extract compared to either component
alone in fostering wound closure. The complete treatment demonstrated a reduction in
inflammation by limiting neutrophil infiltration, facilitated angiogenesis through elevated
production of VEGF, and expedited re-epithelialization.

3.6. Promoting Cell Proliferation

Although antibacterial, antioxidant, and anti-inflammatory properties play a pivotal
role in scaffold design for wound-healing treatment, another very important aspect focuses
on improving cellular proliferation, specifically on fibroblasts (cells predominantly found in
the dermis). Several approaches have been employed to achieve this objective. For example,
the combination of plasma pretreatment and kefiran coating on PLA (poly-lactic acid)
electrospun scaffolds can increase fibroblast cell attachment and proliferation, and collagen
production [82]. On the other hand, another strategy harnesses the fibroblast-proliferating
and apoptosis-inhibiting properties of soluble silkworm gland hydrolysate (SSGH), combin-
ing it with human collagen within a scaffold designed for treating full-thickness excisional
wound models [83]. In vivo outcomes have demonstrated that SSGH/collagen scaffolds ex-
pedited wound healing compared to control groups, stimulating cells to generate essential
growth factors, thereby amplifying capillary and fibroblast proliferation. In another study
collagen/PLGA/chitosan nanofibers containing nanoparticles loaded with growth factors
such as VEGF and basic fibroblast growth factor (bFGF) were electrospun [84]. Both growth
factors assume a crucial role during wound healing, by stimulating cell proliferation and
angiogenesis. In in vivo studies in diabetic wounded mice models, the scaffold showed
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improved wound closure, angiogenesis, fibroblast proliferation, collagen deposition, and
re-epithelialization. In another investigation, the stimulation of cellular proliferation was
achieved through the incorporation of autologous micrografts of full-thickness dermal
tissue into a collagen–glycosaminoglycan scaffold [85]. As these micrografts originate
from healthy tissue, they serve as nucleation centers for cellular proliferation, emitting
signals (pro-angiogenic and growth factors, or ECM molecules) that stimulate cells in the
wound bed to multiply. In murine dorsal wound models, the scaffolds expedited the heal-
ing process by fostering collagen deposition, cellular migration, and proliferation, while
enhancing vascularization.

In some instances, the promotion of cell proliferation is complemented by antibacterial
activity. In this investigation, Aloe vera, recognized for its capabilities in wound hydration
and in stimulating fibroblast proliferation and collagen synthesis, was integrated into
the matrix constituted of Zein/PCL (zein/poly-ε-caprolactone) and collagen and supple-
mented with ZnO nanoparticles (NPs) for antibacterial efficacy [86]. The nanofibrous mats
demonstrated robust antibacterial characteristics and facilitated the proliferation, adhesion,
and growth of cells. In another study, a bilayer scaffold was developed, consisting of
mixtures of gelatin and collagen electrospinned onto a porous chitosan scaffold and con-
taining Lithosperm radix (LR) extract, which has resistance to bacterial contamination and
promotes fibroblast viability and proliferation. In vivo experiments on rats showed that
the bilayer scaffold containing LR extract had the highest wound recovery rate compared
to other dressings [87]. An improvement in the therapeutic effects of human umbilical cord
mesenchymal stem cells (hUC-MSCs) in wound healing was obtained by utilizing an in
situ injectable hydrogel composed of sodium alginate (SA) and collagen type-I (Col) [88].
SA/Col hydrogel loaded with hUC-MSCs significantly promotes wound closure by en-
hancing cell proliferation, re-epithelialization capability, collagen deposition, and tissue
remodeling. Moreover, the hydrogel mitigates inflammation and promotes angiogenesis by
increasing the secretion of proangiogenic factors such as VEGF and TGF-β1.

Therefore, cell proliferation has been promoted both directly providing growth fac-
tors and stimulating their production using natural extracts or health-tissue components.
Overall, fibroblast proliferation is promoted by improving the wound-healing rate.

3.7. Stimulating ECM Regeneration

Different studies have focused on promoting the regeneration of the extracellular
matrix, both using matrix molecules for scaffold creation and by designing architectural
environments that mimic the ECM, providing a physiological, favorable environment for
tissue regeneration. For instance, the inflammation and the ECM were modulated by
incorporating doxycycline into a collagen/chitosan scaffold [89]. Doxycycline is a specific
inhibitor for matrix metalloproteinase 9 (MMP-9) involved in the inflammatory phase for
matrix remodeling during physiologic wound healing. However, in chronic contexts, such
as diabetic ulcers, the excessive presence of MMPs, particularly MMP-9, can disrupt the
ECM, further delaying the healing process. Diabetic wound models demonstrated faster
and more complete healing compared to controls, with reduced levels of both inflammation
and infection when treated with the doxycycline scaffold. To regulate the balance between
extracellular matrix degradation and neoformation, Natarajan and Kiran proposed a system
aimed at modulating enzymatic activity through juglone, a quinone-based nutraceutical
that improves collagen scaffolds conferring anti-proteolytic and pro-angiogenic character-
istics when combined with silver nanoparticles [90]. Specifically, a collagen scaffold was
engineered as a drug delivery system for silver nanoparticles conjugated with juglone. In
in vivo wound-healing experiments using Wistar rats, the system was found to promote
the angiogenic process through the regulation of MMPs. The scaffold improved the wound-
healing process, exhibiting a higher wound closure rate than controls, probably due to the
increased juglone-induced angiogenesis [90]. In another approach, an engineered scaffold
is proposed to emulate the dermal architecture using collagen type-I and tropoelastin as
copolymers to promote wound healing [91]. The scaffold exhibited a functional stratum
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corneum, improved re-epithelialization, and the presence of elastin in the dermis, not
typically present in wound healing. An improvement in mimicking the skin’s architec-
ture was obtained by creating a bilayer scaffold consisting of a collagen/chitosan film to
emulate the epidermis and a collagen–glycosaminoglycan scaffold to simulate the dermis
features [92]. In vitro tests revealed that the epidermal layer exhibited not only antibac-
terial properties but also the ability to support keratinocyte proliferation for epidermal
reformation. On the other hand, the dermal layer promoted endothelial cell proliferation,
suggesting a role in enhancing revascularization. Furthermore, the organization of collagen
type-I and type-III fibers have been modulated in a specific ratio to create a biomimetic
scaffold with a crossed-fiber organization [93]. Compared to scaffolds featuring aligned
and randomly arranged fibers, in in vitro tests the crossed collagen nanofibrous scaffolds
induced a distinct response in fibroblasts concerning morphology, migration, and gene
expression related to wound healing. Moreover, despite all three scaffold types enhanced
the regenerative process, in vivo tests on diabetic rats showed that the crossed nanofi-
brous scaffolds yielded the best results; indeed, they reduced inflammation and promoted
angiogenesis and cell migration.

3.8. Particular Case

In some cases, collagen structures can be functionalized to counteract the underlying
disease that causes ulcer formation. For instance, in this scenario, Glucophage (metformin),
an anti-diabetic agent, was used and linked to collagen/PLGA (poly-lactic-co-glycolic acid)
membranes for treating diabetic ulcers [94]. Metformin was chosen for its ability to promote
re-epithelialization and prevent collagen degradation. These composite membranes were
tested in in vivo wound-healing assays in streptozotocin-induced diabetes rats. The results
showed that the release of high concentrations of metformin ensured faster healing of
diabetic wounds, with improvements both in collagen content and the re-epithelialization
process compared to collagen/PLGA nanofibers alone and gauze dressings.

4. Conclusions

Chronic wounds or ulcers, which are wounds that do not naturally heal, pose a signifi-
cant global health challenge due to their widespread occurrence, increased risk factors, and
negative impact on lifestyle. The current treatments available are not universally effective
and often fall short of ensuring complete healing. Additionally, even when successful, these
treatments significantly contribute to global healthcare costs due to prolonged healing peri-
ods. In recent years, there has been a notable increase in studies focusing on the exploration
of alternative, faster, and more effective healing methods utilizing tissue engineering and
regenerative medicine. The primary objective is to develop biopolymeric three-dimensional
structures, either combined or not with molecules possessing diverse properties, to expedite
the wound-healing process. Notably, collagen has emerged as one of the most extensively
utilized biopolymers, thanks to its exceptional biocompatibility, biodegradability, and
inherent ability to promote wound healing. This review aims to systematically gather find-
ings from regenerative medicine studies that, through comprehensive in vitro and in vivo
testing, have demonstrated the practical applicability of collagen-based structures in the
context of wound healing. The therapeutic approaches discussed are categorized based
on the specific biological processes they target to facilitate and accelerate the healing of
wounds. Consequently, these scaffold-based approaches can be tailored to exhibit specific
therapeutic properties based on the biopolymers constituting them and on the strategic
conjugation of various molecules, growth factors, or nanoparticles.

The review explores the therapeutic effectiveness of collagen as a biomaterial in tis-
sue engineering and highlights critical processes that must be addressed to reactivate
the wound-healing process in nonresponsive wounds. As discussed, chronic wounds
are characterized by an excessive inflammatory response, oxidative stress, hypoxia, and
susceptibility to bacterial infections, potentially leading to the formation of biofilms. There-
fore, tissue engineering represents a promising strategy for ulcer treatment by using smart
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polymers carrying molecules, cellular components, nanoparticles, and other elements. The
goal is to optimize the healing process by tailoring specific interventions for each type of
ulcer. Numerous studies explore different biopolymers conjugated with both natural and
synthetic molecules, making the identification of singular therapeutic solutions a complex
task. Consequently, an in-depth analysis of therapeutic constructs presented in the litera-
ture becomes necessary to identify biomaterials, molecules, and other components with the
most significant impact on wound healing to be strategically combined to create an ideal
skin substitute that effectively counteracts the underlying processes associated with each
category of chronic wounds.

Future studies should focus on combining different compounds in a single therapeutic
unit to counter chronic wounds on multiple fronts. Anti-inflammatory and antioxidant
activities should be coupled to convert the reducing and hypoxic chronic wound bed
into a microenvironment that allows wound healing. At the same time, cell proliferation,
angiogenesis, and ECM molecule accumulation must be stimulated to promote wound
closure and scar formation. Incorporating antibacterial and anti-biofilm molecules into
scaffolds allows safer wound healing by preventing bacterial contamination, consequently
expediting the inflammation phase. A complete skin substitute carrying all these features
would be a promising alternative in chronic wound treatments due to its ability to promote
wound healing from different points of view.
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