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Abstract: The study explores the application of natural biocides (oregano essential oil and eugenol,
directly applied in solutions or encapsulated within silica nanocapsules) for safeguarding stone
cultural heritage from biodeterioration, using green algae (Chlorococcum sp.) and cyanobacteria
(Leptolyngbya sp.) as common pioneer biodeteriogens. Core-shell nanocontainers were built for a
controlled release of microbicidal agents, a safe application of chemicals and a prolonged efficacy.
The qualitative and quantitative evaluations of biocide efficiency at different doses were periodically
performed in vitro, after six scheduled intervals of time (until 100 days). The release kinetics of
composite biocide-embedding silica nanocapsules were characterized by the UV-Vis spectroscopy
technique. Data showed both promising potential and some limitations. The comparative tests of
different biocidal systems shed light on their variable efficacy against microorganisms, highlighting
how encapsulation influences the release dynamics and the overall effectiveness. Both the essential
oils showed a potential efficacy in protective antifouling coatings for stone artifacts. Ensuring
compatibility with materials, understanding their differences in biocidal activity and their release rates
becomes essential in tailoring gel, microemulsion or coating products for direct on-site application.

Keywords: cultural heritage; multifunctional coating; green gels; biodeterioration; biofilms; natural
biocide; oregano oil; eugenol; silica gel

1. Introduction

Preservation of stone cultural heritage surfaces in outdoor environments is a chal-
lenging activity for conservators, due to the influence of environmental conditions and
tedaphic factors, which can promote abiotic weathering factors and damaging biological
growths [1–5]. Cyanobacteria, green algae and sometimes also meristematic fungi and
lichens are generally the first biological colonizers of stone as they are pioneer organisms
that only require light, little water and few nutrients, and they can survive at the alkaline
pH of stone building materials [6–10]. They form overall phototrophic biofilms and gelati-
nous patinas of different colors (brown, black, green and orange) on surfaces, which can
absorb and retain water to withstand long periods of drying. These patinas cause not only
aesthetic alteration, but in several cases, microorganisms grow inside the pores and crevices
of the substrate, forming mixed communities of algae, cyanobacteria and fungi, leading to
microcracks and bio-pitting as they are able to dissolve carbonates [8,10–18].
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In response to this challenge, various interventions have been developed to remove the
organisms responsible for degradation [19–26]. Generally, biocidal treatments or physical
methods have been applied [19,20,24–29], but often they are not long lasting, as the biode-
teriogens reappear on the stone after a short time if the environmental conditions remain
favorable [22,26–32]. Biocides can be classified according to several aspects, including their
chemical nature, the target organisms, the mode of action and the type of formulation;
they must also meet specific requirements to be applied in the treatment of works of art,
such as high efficacy against biodeteriogens, absence of interference with the materials and
low toxicity to human health and the environment [33,34]. The application of traditional
biocides can give rise to potential risks for human health and for the environment, de-
manding cautious assessment of their acute and chronic toxicity [19,20,25,27,34–36]. In any
country, regulations exist for the marketing and use of biocides against harmful organisms,
to protect humans, animals, plants and materials, such as for Europe with the “Biocidal
Product Regulation”, BPR (Regulation 528/2012).

To address the challenges of reducing risks, a shift was carried out towards using
“green” biocides derived from natural sources [22,23,26,29–33,35,37–49], and overall es-
sential oils (EOs), which are constituted by a mixture of different organic molecules, such
as terpenes, and then aldehydes, alcohols and esters that could be present too as minor
components were used, even if only a few of them have biocidal properties [46–49]. Such
green selection can be improved, when it is joined with the use of nanomaterials, which can
reduce and modulate the biocidal doses. Nanoparticles, such as those made by zinc, silver,
copper and titanium oxides, seem to offer alternative solutions providing antimicrobial
activities and when applied in coatings, they enhance the fixation on the stone surfaces,
reducing the potential environmental dispersion [19,33,50–60]. Ranging from inorganic
nanoparticles to hybrid composites and gels or microemulsions, like titanium oxide com-
bined with silver nanoparticles, showed enhanced efficacy against microorganisms due
to their large specific surface area, controlled shape, particle size, pore diameter and bio-
compatibility [19,33,50–58]. Furthermore, especially silica nanoparticles with mesoporous
structure, and their application on the stone surface incorporated in the gels, microemul-
sions or coating showed interesting results in providing controlled release mechanisms
and such compounds can be considered safe and prominent materials in the prevention of
biodeterioration [56–61].

In previous studies, we evaluated, using in vitro tests, the efficacy of silica nanocon-
tainers (nanocapsules (NC) and mesoporous nanoparticles (MNP) containing a commercial
biocide (Mercaptobenzothiazole) and a sea plant antimicrobial substance (Zosterate, ZOS)
on green algal species widely occurring on stone monuments, and in parallel, we also
evaluated different coatings’ formulations [61–63]. Such studies demonstrated that both the
differential nanosystems and the biocide chemical composition can produce a differential
efficacy in the antimicrobic activity against green algae. More deeply, ZOS applied as
free biocide did not show relevant biocidal action against the algal cells, probably due to
its capacity of preventing the adhesion of the microorganisms to the substrate, instead
of killing them. Furthermore, the MNP silica nanosystems presented a relative higher
efficacy than the NC ones, and this seems ascribable to their structure, characterized by
hexagonally packed cylindric mesopores, in which the biocide is less trapped and thus
quickly released [61–63]. At the same time, the synthesis of MNP resulted in being more
difficult and strictly correlated to the molecular structure of the selected biocide, so NC
resulted in being much more easily buildable and of potential practical use.

More recently, we also evaluated their effectiveness for a long-lasting efficacy, through
in situ tests, located in favorable conditions of humidity and solar radiations [64]. The
experimentations gave interesting results, and then, continuing the previous research, this
ongoing study focuses on testing new stone coatings formulated with promising green
biocides compatible with silica nanocapsules for a controlled release. This multifaceted
approach combines green biocides and nanomaterials to ensure effective conservation
strategies for stone cultural heritage to improve the sustainability and efficacy of lon-
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glasting conservation treatments while minimizing environmental and human health
impacts. In this work, by in vitro tests of combined natural biocide with nanotechnology in
controlled laboratory conditions, we aim to evaluate the encapsulation potentiality and
biocidal efficacy of two different essential oils (oregano oil and eugenol) for preventing
biological colonization.

2. Results and Discussion
2.1. SEM Characterization of the Nanocapsules

Scanning electron microscopy images of secondary electrons of silica nanocapsules,
empty (Figure 1a) and loaded with oregano oil (Figure 1b) and eugenol (Figure 1c), showed
that the shapes and morphologies of the nanocontainers were almost identical, presenting
spherical and regular shapes in each case, with no evidence of relevant differences.
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Figure 1. SEM images of nanocapsules, NCs: (a) not loaded with biocides (NC EMPTY); (b) loaded
with oregano oil (NC OO); (c) loaded with eugenol (NC EU); (note the bars); (d) dimensional analysis
of the silica nanosystems, emptied and loaded with biocides. The limit to 600 nm (red dotted line)
defines the nanostructures.

Generally, the diameter distribution, elaborated through the ImageJ 1.54h software, is
less than 600 nm (evidenced by a red line). Nevertheless, the densest area was represented
by the portion of Figure 1d under 200 nm, meaning that the majority of nanoparticles has
sizes equal to and lower than 200 nm.

The previous studies exploring natural biocides and silica nanostructured materials
for preserving cultural heritage in antifouling applications revealed promising possibilities
but also certain limitations [61–63]. Previous works on the one-step self-assembly synthesis
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method, involving TEOS condensation and diethyl ether outgassing, showed a consistent
production of nanocontainers with comparable shapes and morphologies regardless of the
integrated substances, suggesting scalability and practical application [61,65–67]. In the
same way, by comparing the new data with results of the previous experiments on silica
nanosystems loaded with the commercial biocide 2-mercaptobenzothiazole (MBT) [65],
we observed that the MBT nanoparticle showed spherical and regular shapes, but with a
higher average diameter with respect to the empty ones. This suggests that the dimensions
of the biocide’s molecules shaped the form of the surfactant micelles, and thus, that of the
silica nanocapsules, increasing their volume. In the case of the current research, instead,
it could be possible that molecular weights of oregano oil constituents and eugenol did
not significantly influenced the dimensions of the micelles during the synthesis process,
probably due to their reduced molecular weights in comparison with the one for MBT.

2.2. Identification of Microorganisms—Morphological Evaluations

Under the optical microscope (10×, 20× and 100× magnifications), two types of cellu-
lar structures have been observed: spherical/ellipsoidal cells light green/yellow colored
(Figure 2a), of dimensions varying between 5 and 10 µm, and dense aggregates formed by
long and thin green-colored filamentous structures (Figure 2b). The morphological analysis
allowed the identification of two genera of green algae and of cyanobacteria. The spherical
cells were related to the Chlorococcaceae family, and assigned to the genus Chlorococcum sp.
The filamentous cells were related to the Leptolyngbyaceae family, and assigned to Leptolyn-
gbya sp. These genera present a characteristic that is relevant for biodeterioration issues,
that is their capacity to form endolithic colonization on different stone substrates.
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Figure 2. Optical microscope images of the cells (100×): (a) coccoidal cells of the green algae
Chlorococcum sp.; (b) filamentous cells of the cyanobacteria Leptolyngbya sp.

2.3. UV–Vis Spectroscopy Results and Release Profiles

The UV–Vis calibration curves of OO and EU standard solutions were obtained as
absorbance versus concentration and we used these data to estimate the concentration
of the released compounds. The UV–Vis spectrum of OO showed a main band centered
at 273 nm (Figure 3A) and the relative OO Beer’s plot for a molar extinction coefficient
ε(273nm) = (2107 ± 17) M−1/cm (Figure 3B). The UV–Vis spectrum of EU showed a main
band centered at 279 nm (Figure 3C) and the relative Beer’s plot showed a molar extinction
coefficient ε(279nm) = (10,292 ± 102) M−1/cm (Figure 3D). For both systems, the lowest con-
centration (1 × 10−6 M) fell below the detection instrumental limits, resulting in an artifact
(dotted UV curve in Figure 3B,D). Using the protocol described in Section 4, dissolution
profiles of both green biocides were obtained as concentration versus time (symbols in
Figure 4) and a logarithmic fit was used to represent the kinetic curves (continuous curves
in Figure 4) [68]. The OO and EU plots differed both in the quantity of released biocide and
in the kinetics. In the case of oregano, an initial burst was observed, where approximately
70% of the total released biocide was measured after four days. Then, the remaining 30% of
biocide was released very slowly, reaching a total amount of released oregano oil equal to
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2.62 × 10−5 M. This release profile suggests that not all the encapsulated oregano oil has
been released in the considered time interval.
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Figure 3. UV–Vis absorption measurements of standard solutions: (A) OR standard UV curves and
(B) calibration curve obtained from the absorbance values at 273 nm; (C) EU standard UV curves and
(D) calibration curves obtained from the absorbance values at 279 nm. The R2 factors for the data fit
and the molar extinction coefficients are reported in the figures.
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Figure 4. Release profiles of oregano (circle symbol) and eugenol (square symbol). The kinetic curves
are represented by logarithmic fit (R2= 0.99657 for OO and R2= 0.98078 for EU).
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In the case of eugenol, the biocide was a gradual and sustained release of up to 40 days
(about 98% of the total released biocide), then a plateau was observed of up to 90 days. The
total amount of released eugenol was equal to 4.67 × 10−5 M.

Since the same synthesis procedure has been performed, the two systems have the
same nanoparticle structure and texture, thus not influencing the different release kinet-
ics. On the other hand, the release is a function of the biocide amount encapsulated
during the synthesis procedure (these aspects will be deeply described in another work
in progress) and of the biocides’ water solubility. For instance, the principal compound
present in oregano oil, carvacrol (60–86% of total metabolites), is moderately soluble in
water (1250 mg/L at 25 ◦C) [69], while p-cymene and g-terpinene, the two minor com-
pounds (up to about 10–20% of total metabolites), are nearly insoluble in water (23.4 mg/L
and 8.68 mg/L at 25 ◦C, respectively) [70]. Eugenol is more soluble than the oregano
compounds (2460 mg/L at 25 ◦C) [71], promoting the release and the diffusion of the
biocide in vitro as well as in the environment. Regarding release data, we can conclude
that the most efficient spreading system appears to be the one containing eugenol.

2.4. Analysis of the Efficacy of Biocides—Viability Tests

The experiments evaluated the efficacy of silica nanocapsules, empty ones, oregano oil-
loaded, eugenol-loaded, and pure biocides, oregano oil/eugenol at two different weights
of nanocontainers and pure biocide (1 mg and 3 mg). It was also useful to test the silica
nanocapsules empty (meaning not loaded with a biocide), because of their intrinsic biocidal
property, in comparison with the silica nanocontainers loaded with green biocides. The
observations of the samples under visible and fluorescence RGB filters demonstrated an
antimicrobial activity of all the biocidal systems, even if displaying distinct trends in
efficiency (Figure 5). In the case of the green alga Chlorococcum, initially, red fluorescence
was prominent in cells for all types of nanocapsules. After 100 days, red cells were prevalent
in tests with 1 mg, whereas those with 3 mg showed a reduced number of red cells and an
increase in blue/green ones.

Pure oregano oil and eugenol were both effective, causing an evident decrease in
fluorescence (red cells) under UV light, replaced by more blue/green cells. Towards the end
of the experiment, few or no living cells were observable in visible or UV light, showing a
total biocidal effect. Pure eugenol exhibited a decrease in fluorescent cells over time, with
an increase in blue/green cells surpassing red cells. Finally, after 100 days, no living cells
were observable with any filter, indicating complete efficacy. Similar trends were observed
in tests with Leptolyngbya sp., indicating subsequent decreases in cell viability over time. In
very few cases after 70–100 days from the beginning of the analysis, the filaments appeared
fluorescent at the observation with the green and the red filters.

Concerning Leptolyngbya sp., the obtained results showed a decreasing trend of vitality
very similar to that observed for Chlorococcum sp., especially in case of the lower quantity,
whereas the application of the highest quantity showed a higher variation in reducing the
biological colonization. In particular, a medium–high efficacy was observed for biocidal
systems in nanocontainers, with respect to free essential oils. In the same way, the highest
quantity of biocides in the silica nanocapsules seemed to be the most effective one, since red
fluorescence was never observed during the entire period of analysis; the same occurred
with the maximum quantity of silica nanocapsules loaded with eugenol. Indeed, in previous
tests with oregano oil and eugenol as pure substances, filaments of Leptolyngbya sp. resulted
in being quite resistant [8].

Considering the case of Chlorococcum sp., the cell count (Table 1) confirmed that the
qualitative data obtained by the optical microscope observations and that the vitality of the
cells underwent a reduction in all the biocidal systems.
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Figure 5. The trend of biocide efficiency observed in the six intervals of time using microscope images
at 20× magnification in visible light and UV filter green and red: (a) NC EU 3 mg; (b) NC OO 3 mg
(red fluorescence is an indicator of vitality).

However, the decline in fluorescence was not consistently linear over time, showcasing
different efficacy trends among the systems. In general, as expected, the efficiency was
proportional to the doses, and the silica nanocapsules with higher weight (3 mg) were
able to more efficiently reduce the number of active cells due to the higher quantity of
contained biocide with respect to those of lower weight (1 mg) containing lower biocide
quantities. Furthermore, the nanocontainers self-showed a good antimicrobial activity, but
they also gave rise to a reduction of the biocidal activity with respect to the same doses of
the pure substance.
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Table 1. Chlorococcum sp. percentage of cell count responses to fluorescence for each nanosystem and
RGB filter over time (T1–T6).

Time Filter Cells
NC

EMPTY
1 mg

NC
EMPTY

3 mg

NC OO
1 mg

NC OO
3 mg

NC EU
1 mg

NC EU
3 mg

OO
PURE
1 mg

OO
PURE
3 mg

EU
PURE
1 mg

EU
PURE
3 mg

T1

Green Red 43.5 68.1 35.5 50.5 51.6 46.3 45.3 75.1 81.6 69.8

Red
Red 40.8 63.3 29.9 48.5 51.1 42.6 42.1 75.9 81.6 68.5
Blue 38.7 97.0 29.8 40.7 36.0 30.6 35.8 27.0 11.5 16.7

Blue
Red 49.5 64.5 36.1 49.0 55.9 50.4 41.1 75.5 80.9 68.5

Green 31.0 86.7 26.0 29.4 36.0 27.3 72.6 29.0 13.9 19.1

T2

Green Red 37.2 24.0 41.4 40.5 47.1 43.1 54.4 54.5 36.8 53.3

Red
Red 39.8 23.6 41.4 35.8 45.3 41.8 55.1 54.0 34.2 47.5
Blue 40.1 51.2 35.2 43.9 36.6 41.2 42.2 41.7 41.0 36.1

Blue
Red 37.2 27.2 44.1 43.2 51.7 44.4 46.9 50.6 34.2 47.5

Green 36.6 48.0 31.7 37.2 36.0 39.2 44.9 36.2 27.4 21.3

T3

Green Red 22.7 13.4 24.4 23.1 27.7 18.5 39.4 40.2 44.3 57.8

Red
Red 22.7 14.8 26.2 24.1 27.9 17.3 48.0 57.1 41.0 52.6
Blue 70.0 71.0 64.5 49.5 52.7 43.9 43.7 35.0 42.6 54.5

Blue
Red 24.9 16.9 29.1 26.2 28.3 22.2 37.3 35.3 26.6 46.8

Green 55.4 60.2 41.0 27.7 34.3 22.7 33.6 38.7 32.4 33.1

T4

Green Red 19.8 9.3 20.9 11.8 39.9 26.1 17.6 44.1 36.6 27.7

Red
Red 18.9 9.8 20.9 11.8 38.8 24.7 9.1 43.3 36.1 27.7
Blue 45.4 73.2 60.1 67.0 57.7 64.0 73.9 63.5 52.3 61.5

Blue
Red 29.8 13.4 25.8 16.8 40.3 31.8 10.8 25.1 36.6 23.1

Green 30.9 55.6 33.3 47.2 39.2 37.8 44.9 56.5 25.9 36.9

T5

Green Red 18.2 10.7 25.6 24.8 47.1 36.2 19.1 22.0 44.2 41.4

Red
Red 18.2 11.4 25.0 24.1 47.1 35.7 12.8 5.1 15.5 27.6
Blue 52.8 79.9 57.1 58.4 48.8 63.4 87.2 86.4 72.1 75.9

Blue
Red 27.5 11.4 28.2 27.0 48.8 36.2 10.6 5.1 16.3 27.6

Green 27.2 59.2 35.4 46.0 34.3 46.9 78.7 81.4 63.6 51.7

T6

Green Red 39.7 9.4 22.5 33.0 43.4 34.5 10.5 0.0 29.4 12.5

Red
Red 39.7 10.4 21.6 35.2 54.0 39.5 10.5 0.0 29.4 25.0
Blue 55.4 89.6 73.0 48.4 28.3 55.5 89.5 90.9 52.9 62.5

Blue
Red 42.1 22.6 24.3 39.6 66.4 42.9 10.5 0.0 26.5 12.5

Green 14.9 58.5 38.7 19.8 4.4 35.3 65.8 45.5 38.2 37.5

In fact, both oregano oil and eugenol, when used as pure substances, showed more
marked effects with the minimum quantity, exhibiting a more consistent and linear reduc-
tion trend over time (Figure 6a). The comparative analyses carried out between different
biocidal systems, including empty nanocapsules and pure biocides, offered valuable in-
sights into their efficacy against diverse microorganisms. These insights provide a glimpse
into how encapsulation affects the release dynamics and overall effectiveness. Finally, simi-
lar decreasing paths for vitality trends were observed for the two tested taxa (Figure 6b).

Regarding Chlorococcum sp., it is possible to affirm that the empty silica nanocapsules
(3 mg) also seemed to be an effective biocidal system, also considering its almost linear
trend in the reduction of vitality within all the periods of observation, from 10 to 100 days
since the beginning of the experiment. Obviously, the most effective activity was observed
by using oregano oil and eugenol as free substances, while a loss of efficacy by nanocapsules
seemed to occur; even these technologies guarantee a more efficient long-lasting activity. In
fact, when using the same quantity, pure EOs showed the highest efficiency with respect
the encapsulated nanocontainers and this proves that nanocontainers loaded with biocides
need a higher quantity to work, instead, free substances can come into contact and start to
exert their action against colonies almost immediately [62,72].



Gels 2024, 10, 132 9 of 16

Gels 2024, 10, x FOR PEER REVIEW 9 of 18 
 

 

(3 mg) were able to more efficiently reduce the number of active cells due to the higher 

quantity of contained biocide with respect to those of lower weight (1 mg) containing 

lower biocide quantities. Furthermore, the nanocontainers self-showed a good 

antimicrobial activity, but they also gave rise to a reduction of the biocidal activity with 

respect to the same doses of the pure substance. 

In fact, both oregano oil and eugenol, when used as pure substances, showed more 

marked effects with the minimum quantity, exhibiting a more consistent and linear 

reduction trend over time (Figure 6a). The comparative analyses carried out between 

different biocidal systems, including empty nanocapsules and pure biocides, offered 

valuable insights into their efficacy against diverse microorganisms. These insights 

provide a glimpse into how encapsulation affects the release dynamics and overall 

effectiveness. Finally, similar decreasing paths for vitality trends were observed for the 

two tested taxa (Figure 6b). 

 

Figure 6. Biocidal efficiency of the different biocidal systems: (a) the efficacy’s trend of each biocidal 

system over time in the six intervals of timing (from T1 to T6 as T1 (after 10 days), T2 (after 20 days), 

T3 (after 30 days), T4 (after 50 days), T5 (after 70 days) and T6 (after 100 days (using only 

Chlorococcum sp. as reference organism); (b) the reduction of vitality trend for the two tested 

Figure 6. Biocidal efficiency of the different biocidal systems: (a) the efficacy’s trend of each bio-
cidal system over time in the six intervals of timing (from T1 to T6 as T1 (after 10 days), T2 (after
20 days), T3 (after 30 days), T4 (after 50 days), T5 (after 70 days) and T6 (after 100 days (using only
Chlorococcum sp. as reference organism); (b) the reduction of vitality trend for the two tested microor-
ganisms, Chlorococcum sp. in blue and Leptolyngbya sp. in red (NCs = nanocapsules, OO = oregano oil;
EU = eugenol).

Specifically, oregano oil and eugenol showed a more linear decreasing trend in vitality
of the cells, with respect to nanocontainers loaded with biocides that, on the contrary,
presented an oscillating trend. This could be likely due to the encapsulation, which allows a
gradual release of biocides from the core-shell nanostructures, producing a lower amount of
biocide, with respect to the quantity of not-confined product [62]. The influence of release,
which is also a function of the specific release rate, is also confirmed by the differences in
efficacy trends depending on quantities of biocidal systems. In fact, the silica nanocapsules
with the highest quantity produced a more marked reduction in vitality trends, with respect
to the results obtained with the nanocapsules with the lowest quantity, since the loading
capability of the nanocontainers influences the biocidal effectiveness of the nanosystems.

Among the nanosystems, in fact, it is noteworthy that empty silica nanocapsules
(1 mg), silica nanocapsules loaded with oregano oil (3 mg) and silica nanocapsules loaded
with eugenol (1 mg and 3 mg) seemed to be more effective at the very beginning of the
analysis (after only 10 days), with respect to empty silica nanocapsules (3 mg), oregano
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oil (3 mg) and eugenol (1 mg and 3 mg). However, after 50–70 days, they seemed to lose
their efficacy. This could be derived, firstly, by the release dynamics of biocides from the
nanocontainers, and it was supposed that once nanocapsules have been applied, the release
rate results are quite high, decreasing over time, up to the loss of their efficacy [62]. As
confirmed by the release profiles, the eugenol is more soluble in water than the oregano
oil [70,71], resulting in a higher rate of release and diffusion.

The research provides valuable insights into the potential of silica nanocapsules
for preserving cultural heritage artifacts. These good results can be the starting point
to test their application on the stone surface incorporated in the gel, microemulsion or
coating [56,64,73]. However, as proven by previous studies [61,62,65], the synthesis and
the nanoencapsulation step strictly depends on addressing the observed limitations, such
as the fluctuating efficacy trends, which demand more extensive investigations.

3. Conclusions

Nanotechnology offers the possibility to reduce the quantity of biocides while enhanc-
ing the treatment effectiveness in preventing colonization. Thus, silica nano-systems can be
a promising technology to preserve cultural heritage thanks to their long-lasting reliability,
enabling the controlled release of biocides and an eco-friendly approach. Both of the tested
essential oils (oregano oil and eugenol), such as the nanocapsules without addition of bio-
cides, showed a good efficacy against the selected target organisms. The controlled release
capabilities of silica nanocapsules indicated interesting potential applications in protective
antifouling gels, microemulsions or coatings for stone artifacts. To improve the efficiency
of the systems, understanding the differences in release rates of these biocides has become
essential in tailoring gels, microemulsions or coating products for direct on-site application.

4. Materials and Methods
4.1. Biocidal Description

Considering some previous results from a comparative evaluation of natural com-
pounds [22,35,40,72,74,75], we selected two natural biocides: the oregano essential oil and
eugenol (C10H12O2: phenylpropanoid). Oregano oil, derived from Origanum vulgare L.,
a Mediterranean aromatic perennial plant of the Lamiaceae family, contains components
like carvacrol, thymol, γ-terpinene and p-cymene; terpinene-4-ol, linalool, β-myrcene,
trans-sabinene hydrate and β-caryophyllene are also present [76–79]. Recognized for its
antimicrobial, antiviral and antifungal properties, oregano oil has been studied against
fungi affecting stone and wooden artifacts [43,80]. Eugenol is a phenolic aromatic com-
pound, characterized by an oily consistency and spicy aroma, extracted from different
plants belonging to Lamiaceae, Lauraceae, Myrtaceae and Myristicaceae families. It can be
synthesized via the allylation of guaiacol using allyl chloride or through biotransfor-
mation by various microorganisms such as Corynebacterium spp., Streptomyces spp. and
Escherichia coli [81,82]. The tested compounds were obtained respectively by NOW foods
company (https://www.nowfoods.com) (accessed on 15 January 2023) and REAGENT-
PLUS(R), (Eugenol 99%).

4.2. Nanoencapsulation Step

We synthesized silica nanocontainers, namely core-shell nanocapsules (NCs), by using
an oil-in-water mini-emulsion, stabilized in the presence of cetyltrimethylammonium
bromide (CTAB, Aldrich, Italy, Milan) surfactant micelles and in an alkaline environment,
basically following the procedure described by Privitera et al. [83]. Some adaptations
were needed during the nanoencapsulation of essential oils, particularly an increase in the
stirring (1000 rpm) to avoid the coalescence of the oil drops. In two separate synthesis
procedures, oregano oil and eugenol (respectively 0.01 g) were added to the oily phase
(diethyl ether, 25 mL). Then, the synthesis proceeded as described in the literature, such
as the characterization of the morphology, structure and texture of these loaded silica
nanocontainers [83]. The silica nanocapsules were characterized through scanning electron

https://www.nowfoods.com
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microscopy (SEM), using a Zeiss Sigma 300 (Oberkochen, Germany) instrument, coupled
with an ETSE (Everhart–Thornley secondary electron) detector. Moreover, the ImageJ
software had been exploited to evaluate the diameter size distribution of the core-shell
nanocapsules, by building a graphic of diameter distribution derived from the SEM images.

4.3. Release Study

The release study of both composite silica nanocapsules incorporating oregano essen-
tial oil (labeled as “OO”) and pure eugenol (labeled as “EU”) was performed by UV-Vis
spectroscopy technique. First, calibration curves for the estimation of the chemical concen-
tration were obtained from the UV-Vis spectra recorded on standard aqueous solutions of
OO and EU at fixed concentrations (1 × 10−4, 2 × 10−5, 1 × 10−5, 4 × 10−6, 2 × 10−6 and
1 × 10−6 mol/L) [83].

Subsequently, the following procedure was used to obtain the release profiles of
both nano systems in static conditions, in order to compare the release with the in vitro
antimicrobial activity data: ten aliquots of each sample (nanocapsules incorporating OO
and EU) were placed in Falcon tubes by dispersing 20 mg of sample powder in 5 mL of
ultrapure water as dissolution medium; the aliquots were stirred at 100 rpm for 5 min
to break up and homogeneously disperse the sample, after which they were left to settle.
Finally, the supernatant was picked up from each aliquot at set times (6 h, 1, 2, 4, 10, 20, 30,
40, 60 and 90 days) by using a syringe equipped with a filter (Whatman, Maidstone, UK,
0.2 µm pore size) and collected in a 1 cm path length quartz cuvette for the analysis.

UV–Visible absorbance spectra were obtained by using a Thermo Scientific™ Evolu-
tion™ 350 UV–Vis Spectrophotometer(Fisher Scientific, Milan, Italy), in the wavelength
range 350–190 nm, with a sampling step of 1 nm. The release profiles were obtained by eval-
uating the concentration of biocide dissolved in the medium versus time. All experiments
were performed at room temperature.

4.4. Cultivation and Identification of Microorganisms

The biofilms were collected from the northern side of the Aurelian Walls in Rome,
close to the Museum of the Walls, near Porta San Sebastiano. The biofilms were cultivated
in the laboratory using the BG-11 solution, diluted in deionized water and exposing
the cultures to natural light. Such procedure favors the growth of the photosynthetic
microflora, as usually observed as a major component in such conditions, as described in
previous works [45,61,62]. The morphological identification of the species was performed
through microscopy observations under visible light at the magnifications of 10×, 20× and
100×, according to UNI 10923 [84], consulting the international dataset and the taxonomic
identification available dichotomous keys e.g., Guiry and Guiry 2022; www.algaebase.com
(accessed on 15 January 2021) [85].

4.5. In Vitro Tests

The evaluation of the efficacy of the biocidal systems against the selected microor-
ganisms was conducted through viability tests, considering five different situations: silica
nanocapsules not loaded with a biocide (empty NC), silica nanocapsules loaded with
oregano oil (NC OO), silica nanocapsules loaded with eugenol (NC EU), oil of oregano as
pure substance (OO PURE) and eugenol as pure substance (EU PURE). The nanocontainers
were loaded with a concentration of biocide related to the loading capability. Empty silica
nanocapsules (not loaded with a biocide) were also evaluated for their biocidal action,
comparing them to the other silica nanomaterials loaded with green biocides. Indeed, they
contain hexadecyltrimethylammonium bromide (CTAB), a cationic surfactant which, in
bioprocesses, is active at the level of cellular membrane inhibiting the metabolic processes
of the cells of microorganisms. Each system was tested using a lower (1 mg) and a higher
(3 mg) weight of nanocontainers and pure substance, respectively, added to 1 mL of liquid
culture (following the protocol described in [62].

www.algaebase.com
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The biocidal efficacy was periodically evaluated, after scheduled intervals of time;
specifically, there were six intervals of time from one evaluation to the next one, indicated
as T1 (after 10 days), T2 (after 20 days), T3 (after 30 days), T4 (after 50 days), T5 (after
70 days) and T6 (after 100 days); so, the 12 filled test tubes for each product were tested
in each time control (in total 60 tubes). We observed the control and the treated cultures,
in triplicate form for each product, under an optical microscope (Zeiss Axioplan 2, Rome,
Italy) equipped with a photo camera (LEICA DFC 450 C, Rome, Italy) at 20× magnification
in visible and auto-fluorescent light. The autofluorescence of cultured microorganisms was
observed with multi-channel detection, in blue (450–500 nm), red (380–450 nm) and green
(500–570 nm) wavelengths (Figure 7).
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