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Abstract: Conductive hydrogels, characterized by their excellent conductivity and flexibility, have
attracted widespread attention and research in the field of flexible wearable sensors. This paper
reviews the application progress, related challenges, and future prospects of conductive hydrogels in
flexible wearable sensors. Initially, the basic properties and classifications of conductive hydrogels
are introduced. Subsequently, this paper discusses in detail the specific applications of conductive
hydrogels in different sensor applications, such as motion detection, medical diagnostics, electronic
skin, and human–computer interactions. Finally, the application prospects and challenges are
summarized. Overall, the exceptional performance and multifunctionality of conductive hydrogels
make them one of the most important materials for future wearable technologies. However, further
research and innovation are needed to overcome the challenges faced and to realize the wider
application of conductive hydrogels in flexible sensors.

Keywords: conductive hydrogel; biomaterials; flexible sensors

1. Introduction

In recent years, wearable sensors have gained extensive attention and entered a period
of booming development. Wearable sensors typically monitor body-related signals, such as
body temperature, skin mechanics, breathing rate, pulse, blood pressure, body movement,
electrophysiological signals, and biomacromolecule signals, through their layering onto
human skin or embedding in wearable fabrics [1–4]. Wearable sensors have gradually
evolved from single sensing devices that monitor human health to multifunctional, highly
integrated, miniaturized, and diverse sensors [5,6] for continuous body signal monitoring,
facilitating better information exchange with the environment. Compared to rigid sensors,
sensors based on flexible substrates (such as fabrics [7], paper-based substrates [8], poly-
mers [9], etc.) exhibit promising characteristics like stretchability, bendability, thinness,
portability, and excellent electrical performance. Thus, a large number of wearable sensors
based on flexible conductive materials have been developed. Traditional flexible wearable
sensors are usually prepared by coating or filling flexible substrates (such as graphene [10],
carbon nanotubes (CNTs) [11], silver nanowire (AgNW) [12], and Polyaniline (PANI) [13])
with conductive materials. Although their manufacturing methods are simple, the lack
of sufficient interface interaction between the flexible substrate and the conductive filler
not only limits the sensor’s strain response range but also causes a delamination of the
conductive filler from the substrate, affecting the sensor’s signal conversion efficiency.
Therefore, the development of flexible wearable sensing materials with good stretchability,
high sensitivity, stability, and biocompatibility is particularly urgent.
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Currently, conductive hydrogels with a three-dimensional network structure, due to
their high water content and excellent mechanical and extensible properties, are considered
an ideal choice for flexible wearable sensors [14,15]. Moreover, conductive hydrogels also
possess excellent biological properties like self-healing, self-adhesion, and antibacterial
qualities [16–18], presenting unique advantages when tracking signals in close contact with
biological tissues or organisms. Conductive hydrogels have become an active research
area in the field of flexible electronics, demonstrating huge developmental potential in
applications such as health monitoring [19], motion tracking [20], medical diagnostics [21],
and human–machine interaction [22] (Figure 1), propelling our rapid entry into the era of
“Internet of Everything”. Based on this, this paper discusses and systematically analyzes
the characteristics, latest research, and application progress of flexible wearable sensors
based on conductive hydrogels, and elaborates on their classification and research progress,
including conductive nanocomposite hydrogels, conductive polymer composite hydrogels,
and ionic conductive hydrogels. Subsequently, the application of conductive hydrogel-
based flexible wearable sensors in motion detection, medical diagnostics, electronic skin,
and HMIs is introduced. Finally, challenges and opportunities for future development are
summarized and anticipated.

Gels 2024, 10, x FOR PEER REVIEW 2 of 25 
 

 

with good stretchability, high sensitivity, stability, and biocompatibility is particularly ur-
gent. 

Currently, conductive hydrogels with a three-dimensional network structure, due to 
their high water content and excellent mechanical and extensible properties, are consid-
ered an ideal choice for flexible wearable sensors [14,15]. Moreover, conductive hydrogels 
also possess excellent biological properties like self-healing, self-adhesion, and antibacte-
rial qualities [16–18], presenting unique advantages when tracking signals in close contact 
with biological tissues or organisms. Conductive hydrogels have become an active re-
search area in the field of flexible electronics, demonstrating huge developmental poten-
tial in applications such as health monitoring [19], motion tracking [20], medical diagnos-
tics [21], and human–machine interaction [22] (Figure 1), propelling our rapid entry into 
the era of “Internet of Everything”. Based on this, this paper discusses and systematically 
analyzes the characteristics, latest research, and application progress of flexible wearable 
sensors based on conductive hydrogels, and elaborates on their classification and research 
progress, including conductive nanocomposite hydrogels, conductive polymer composite 
hydrogels, and ionic conductive hydrogels. Subsequently, the application of conductive 
hydrogel-based flexible wearable sensors in motion detection, medical diagnostics, elec-
tronic skin, and HMIs is introduced. Finally, challenges and opportunities for future de-
velopment are summarized and anticipated. 

 
Figure 1. Different types of conductive hydrogels and their applications. 

2. Types of Conductive Hydrogels 
Hydrogels are polymers with a three-dimensional network structure, formed from 

natural or synthetic materials through different mechanisms such as physical entangle-
ment, electrostatic interaction, and covalent chemical cross-linking. Their unique network 
structure endows hydrogels with high hydrophilicity, excellent biocompatibility, good 
viscoelasticity, and an ease of modification. A conductive hydrogel is prepared by intro-
ducing conductive components into the hydrogel. When it is used to make sensors, it can 

Figure 1. Different types of conductive hydrogels and their applications.

2. Types of Conductive Hydrogels

Hydrogels are polymers with a three-dimensional network structure, formed from
natural or synthetic materials through different mechanisms such as physical entangle-
ment, electrostatic interaction, and covalent chemical cross-linking. Their unique network
structure endows hydrogels with high hydrophilicity, excellent biocompatibility, good vis-
coelasticity, and an ease of modification. A conductive hydrogel is prepared by introducing
conductive components into the hydrogel. When it is used to make sensors, it can achieve
a combination of flexibility and electronic transmission characteristics, thus achieving the
combination of excellent mechanical properties, sensing characteristics, and biocompatibil-
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ity. Based on different conductive fillers, the conductive hydrogels used in flexible wearable
devices are classified into conductive nanocomposite hydrogels, conductive polymer hydro-
gels, and ionic conductive hydrogels, as shown in Table 1. Among them, the first two types
of conductive hydrogels achieve electronic conduction by integrating conductive materials
such as metal-based materials [23,24], carbon-based materials [25,26], and conductive poly-
mers [27,28] into the hydrogel matrix to establish a network for electron transport. These
hydrogels exhibit stable chemical properties and excellent electrical conductivity. The last
type involves the introduction of ionic conductive materials (such as salt solutions [29,30],
ionic liquids [31–33], etc.) into the hydrogel network. The three-dimensional network struc-
ture of the hydrogel provides pathways for ion migration, thereby facilitating the internal
transport of free ions and ultimately achieving ionic conduction. These hydrogels possess
good optical transparency, tunable mechanical properties, strain sensitivity, and stable
electrical conductivity [34]. Furthermore, their excellent optical properties also facilitate
their utilization within wearable sensors.

Table 1. Properties of conductive hydrogels based on different conductive materials.

Type Conductive
Materials

Hydrogel
Networks

Optical
Property Conductivity References

Conductive nanomaterials Ag nanoparticles PVA/CNC Black 4.61 S m−1 [23]
Conductive nanomaterials Au nanoparticles PAm Black - [24]

Liquid metal EGaIn PVA/TA Black 3.63 S m−1 [35]
Conductive nanomaterials CNTs PAA/SA Black 22.5 S cm−1 [25]
Conductive nanomaterials MXene/PEDOT:PSS PNIPAM Black 11.76 S m−1 [36]
Conductive nanomaterials MXene PAAm Black 1.9 mS cm−1 [26]

Conductive polymers PPy AC/chitosan Black 2.61 S m−1 [27]
Conductive polymers PPy/PEDOT:PSS PPy/PSS Black 867 S m–1 [28]
Conductive polymers PPy PAM-ALG Black 2.16 S m−1 [37]
Conductive polymers PANI PAA/PA Black 0.03~5.12 S m−1 [38]
Conductive polymers PDA/PPy PAm Transparent 12 S m−1 [39]
Conductive polymers PANI PVA Black 1.7 mS cm−1 [40]

Metal ion Zn2+/Al3+ AA/AAm Transparent 48.39 mS cm−1 [31]
Metal ion Fe3+ PVP/TA Transparent 0.79 S m−1 [32]
Metal ion LiCl P(AM-co-AA/SA Transparent - [29]
Metal ion Fe3+ CS-P(AM-co-AA) Brown 0.31 S m−1 [33]
Metal ion LiCl PVA/PEI Transparent 11.76 S cm−1 [30]

2.1. Conductive Nanocomposite Hydrogel

Incorporating conductive nano-fillers (such as metal nanomaterials [41], carbon nano-
materials [42], and MXene (Ti3C2TX, 2D transition metal carbides/carbon nitrides) [43],
etc.) into hydrogel networks marks a significant breakthrough in the field of flexible sensors.
Firstly, the detection sensitivity of conductive nano-hydrogels can be enhanced through the
contact resistance effect and the tunneling effect [44]. Secondly, by adjusting the interac-
tions between conductive fillers and the hydrogel matrix, the mechanical characteristics of
hydrogels can be significantly improved [45]. Moreover, due to the distinctive attributes
of conductive nanofillers, such as electromagnetic shielding, thermal conductivity, and
photovoltaic effects, it is possible to design and create more flexible sensors endowed with
multifaceted functionalities [46].

2.1.1. Metal Nanomaterial-Based Composite Hydrogels

Metal nanomaterials, including metal nanoparticles [47], metal oxide nanoparti-
cles [48], and metal nanowires [49], etc., possess excellent conductivity and high surface
energy, making them ideal raw materials for preparing conductive composite hydrogel
materials. Combining metal nanomaterials with hydrogels not only enlarges the specific
surface area of the metal nanomaterials, enhancing the conductivity and mechanical prop-
erties of the hydrogels, but also confers to the metal materials a unique flexibility and
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ductility [50,51]. Traditional metal nanoparticles tend to aggregate and settle in the hydro-
gel matrix. To address this, Lu et al. [23] immobilized silver nanoparticles (Ag) on cellulose
nanocrystals (CNC) modified with tannic acid (TA), utilizing the excellent dispersibility of
CNC and its compatibility with hydrophilic polymers to achieve a good dispersion of Ag in
a PVA matrix, creating a borax–silver/tannic acid@cellulose (PB-Ag/TA@CNCs) hydrogel
which has good electrical and mechanical properties. Ag/TA@CNCs not only act as a
conductive component and nano-reinforcement domain, significantly improving the gel’s
conductivity (4.61 S m−1) and stretchability (>4000%), but also impart excellent antibacterial
properties and repeatable self-adhesiveness, demonstrating promising application effects.
Li et al. [24] introduced gold nanoparticles (AuNPs) functionalized with polydopamine
(PDA) into polyacrylamide (Pam) hydrogels through the self-polymerization of dopamine
(DA). Due to the excellent conductivity of AuNPs and the good dispersibility of PDA@Au
NP, this hydrogel sensor demonstrated repeatable and stable electrical resistance signal
responses to various magnitudes of human motion (Figure 2). Wang et al. [52] introduced
silver nanoparticles (AgNPs) decorated with polydopamine (PDA)/cellulose nanofibers
(CNF) into a polyacrylamide (PAm) network, creating a sensing material that features
both tensile and compressive functions. Due to the strong conductivity of AgNPs, the
hydrogel sensor exhibited high sensitivity to deformation, with a maximum gauge fac-
tor (GF) reaching 0.34. During 1000 cycles of stretching, the sensor showed stable and
repeatable electrical signals. Additionally, the hydrogel with added AgNPs also possessed
long-lasting antibacterial properties, beneficial for the extended use of a hydrogel sensor.
However, it is important to note that the high cost associated with noble metal nanofillers
leads to elevated research expenses. Additionally, certain metal nanomaterials are prone to
corrosion in humid environments, which hinders their long-term utilization in extremely
responsive environments.

While metallic nanomaterials can provide good conductivity to hydrogels, the in-
herent rigidity of metal materials might cause friction with the hydrogel matrix, leading
to damage due to internal stress concentration. Recently, liquid metals (LM), such as
eutectic gallium-based alloys, have been used as soft fillers in hydrogels to avoid dam-
age to the hydrogel matrix, generating significant interest. For example, Yuan et al. [35]
used a freeze–thaw method to prepare a composite flexible hydrogel sensor consisting of
polyvinyl alcohol (PVA), tannic acid (TA), eutectic gallium–indium (EGaIn), and NaCl. The
hydrogel exhibited good electrical conductivity, thermal conductivity, flexibility, and adhe-
siveness. Ultrasonic uniformly dispersed liquid metal EGaIn into the hydrogel network,
greatly enhancing the hydrogel’s electrical conductivity (3.63 S m−1) and strain sensitivity
(GF = 2.59). The sensor could stably monitor and distinguish various movements, such
as joint bending, vocal cord vibration, and signals. Majidi et al. [53] reported a composite
conductive hydrogel prepared by embedding a percolation network of Ag micro-flakes,
eutectic gallium–indium (EGaIn), gallium–indium–tin (Galinstan), and other gallium-based
liquid metal alloy droplets into polyvinyl alcohol–sodium borate (PVA–borax) gel. This
hydrogel exhibits excellent self-healing and conductive properties. Due to its high liquid
content, the composite material also demonstrates ideal mechanical properties, such as a
low Young’s modulus (~20 kPa) and high stretchability (>400% strain).
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2.1.2. Carbon Nanomaterial-Based Composite Hydrogels

Carbon nanomaterials such as graphene (GE) [54], carbon nanoparticles [55], carbon
nanotubes (CNT) [56], graphene oxide (GO) [57], and carbon fibers (CF) [58] are ideal
candidates for conductive hydrogel fillers due to their high specific surface area, excellent
conductivity, and stability. The natural hydrophobicity of carbon-based materials like
graphene and carbon nanotubes leads to their aggregation in aqueous media, hindering
uniform and stable conductive systems within the hydrogel network. Based on previ-
ous studies, this issue can be effectively addressed using graphene oxide (GO) derived
from graphite and reduced graphene oxide (rGO) [59], or by introducing hydrophilic com-
pounds such as cellulose nanofibers (CNF) [60], and hydrophilic polymers [61]. For instance,
Ni et al. [62] prepared a conductive hydrogel (TA-CNT-glycerol-PVA) by incorporating
tannic acid–carbon nanotubes (TA-CNTs) into a polyvinyl alcohol (PVA) matrix containing
a water–glycerol dispersion medium. This hydrogel exhibits excellent anti-freezing proper-
ties (−30 ◦C), long-term moisturization (10 d), and outstanding sensitivity (Figure 3). It can
be used as a strain sensor for detecting various human movements and as an electrode for
detecting electrophysiological signals, even in relatively harsh environments. Inspired by
the multifunctionality of human skin, Fu et al. [25] incorporated carbon nanotubes (CNTs)
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into a chelate of calcium ions (Ca2+) with polyacrylic acid (PAA) and sodium alginate
(SA), producing a conductive hydrogel with remarkable rheological properties, includ-
ing stretchability, self-healing, and 3D printability. This hydrogel can be fabricated into
integrated strain sensors with both piezoresistive and capacitive properties, responding
sensitively to minute pressure changes of the human body, showing great potential in the
field of flexible sensors. Xu et al. [63] developed a novel self-adhesive conductive organic
hydrogel without catechol adhesion components by covalently crosslinking acrylamide,
N-isopropylacrylamide, and reduced graphene oxide, followed by immersion in an ethy-
lene glycol–water mixture. This hydrogel exhibits long-lasting moisturization (~30 days),
extreme temperature resistance (−20–60 ◦C), stable conductivity, excellent stretchability
(~1700%), high compressive stress (~5 MPa), and high strain sensitivity (gauge coefficient
of 3.12), making it suitable for the long-term, continuous monitoring of human movements
and electrocardiograms. Nevertheless, it is challenging to ensure the uniform dispersion
of carbon-based nanomaterials within a system, and these limitations significantly restrict
their potential applications in areas such as bioelectronics and electronic skin.
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2.1.3. MXene Composite Hydrogels

MXene, a two-dimensional nanomaterial based on transition metal carbides, nitrides,
and carbonitrides, is obtained through the selective etching of MAX phases (like Ti3AlC2)
with LiF/HCl and their subsequent ultrasonic dispersion [64,65]. With its unique layered
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structure, excellent metallic conductivity, abundant surface functional groups (-OH, -O, and
-F) and hydrophilicity [66], MXene significantly enhances its interaction with the hydrogel
network, forming stable conductive pathways and improving the hydrogel’s conductivity
and sensing sensitivity [43,67]. In addition, the larger specific surface area and hydrogen
bonding result in stronger interfacial interactions between MXene and the polymer ma-
trix, which imparts higher mechanical strength to the hydrogel [68]. Therefore, MXene
holds great potential in enhancing the electromechanical performance and sensitivity of
hydrogels, showing promising applications in the field of flexible wearable sensors. To
improve the performance of MXene-filled composite hydrogels, Liu et al. [69] proposed an
oxidation method in an alkaline environment to customize the nanostructure of MXene,
enhancing its dispersibility in the hydrogel and, consequently, the composite hydrogel’s
conductivity, transparency, mechanical properties, and sensitivity. Ran et al. [70] used
MXene nanosheets as conductive fillers and combined hydrophobically associated poly-
acrylamide (HAPAM) with temperature-sensitive poly(N-isopropyl acrylamide) (PNIPAM)
to create a nanocomposite double-network hydrogel (NCDN) with dual sensing abilities
for temperature and stress (Figure 4). The addition of MXene endowed the hydrogel with
excellent mechanical properties and compressive strain conductivity. When combining
compression and temperature sensing, the electrical signals of the hydrogel showed a
significant numerical difference compared to pure compression, making it a candidate
material for multifunctional sensors. Wang et al. [36] designed and synthesized a con-
ductive hydrogel by in situ copolymerizing conductive surface-functionalized MXene (K-
MXene)/Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) ink with
a thermos-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel. In this system, the
PNIPAM matrix provides mechanical flexibility, while the K-MXene/PEDOT:PSS ink acts as
a conductive filler, mechanical enhancer, and photothermal agent. The hydrogel exhibited
high electrical conductivity (11.76 S m−1), strain sensitivity (GF of 9.93), a wide operational
strain range (≈560% strain), and high stability after more than 300 loading–unloading
cycles at 100% strain. Chen et al. [26] introduced tannic acid-modified cellulose nanofibers
(TA@CNF) and conductive MXene nanosheets into a covalently cross-linked polyacry-
lamide (PAAm) network permeated with a glycerol (Gly)–water binary solvent, creating a
conductive nanocomposite organic hydrogel. This hydrogel exhibited excellent environ-
mental stability, super-stretchability, self-adhesiveness, and self-repairing properties. Due
to the abundant hydrogen bonding between water and Gly, the resultant organic hydrogel
also exhibited significant low-temperature tolerance (down to −36 ◦C) and a long-term
moisturizing ability (>7 d). These outstanding characteristics make it a promising candidate
for wearable electronic sensors. Although MXene, as a two-dimensional nanofiller, exhibits
excellent properties that can enhance the mechanical strength, electrical conductivity, and
sensitivity of sensors, as well as provide unique features such as electromagnetic shield-
ing, it is highly susceptible to oxidation in aqueous solutions, leading to the instability
and even failure of the sensors. Therefore, the issue of oxidation failure of MXene in
aqueous solutions is a critical challenge that needs to be addressed for its application in
wearable sensors.
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2.2. Conductive Polymer-Based Composite Hydrogels

Conductive polymers, primarily composed of carbon atoms and a conjugated π-
electron system, transition from a semi-conductive or insulating state to a conductive state
through p-type (hole) or n-type (electron) doping, endowing the polymers with a conductiv-
ity comparable to metals and other beneficial properties derived from polymer characteris-
tics (e.g., mechanical strength, stability, and biocompatibility) [71–73]. Common conductive
polymers include Polyaniline (PANI) [74,75], Polypyrrole (PPy) [71,76], Polythiophene,
and Poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate (PEDOT:PSS) [77–79]. Due to
the controllability achieved through the commonly employed doping methods, conduc-
tive polymers exhibit tunable electrical properties. Taking advantage of their adjustable
conductivity and straightforward fabrication processes, conductive polymers are often
introduced as conductive fillers into hydrogel networks for applications in wearable and
implantable electronic devices. Ren et al. [27] embedded polypyrrole particles in a hydrogel
composed of iron ions (Fe3+), cross-linked acrylic acid, and chitosan polymer, developing a
conductive hydrogel with high electrical conductivity (2.61 S m–1) and good mechanical
properties (tensile strength of 628%, stress of 0.33 MPa, elastic modulus of 0.146 MPa,
and toughness of 1.14 MJ m–3). Moreover, this hydrogel demonstrated a 93% self-healing
efficiency within 9 h in air, without any external stimuli, showing promise for a wide
range of new soft material applications. Luo et al. [28] mixed a pyrrole monomer with
a PEDOT:PSS dispersion and then performed in situ chemical oxidative polymerization
to form PPy. The electrostatic interaction between negatively charged PSS and positively
charged conjugated PPy facilitated the formation of a PPy-PEDOT:PSS hybrid hydrogel
(Figure 5). This hydrogel exhibited an electrical conductivity of 867 S m−1 and excellent
biocompatibility. Its multi-porous structure was beneficial for 3D cell culturing within the
hydrogel, and its outstanding in situ biomolecule detection and real-time cell proliferation
monitoring properties indicate its great potential in high-sensitivity electrochemical biosen-
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sors. Chen et al. [38] developed a flexible hydrogel sensor based on a dual synergistic
network composed of poly(acrylic acid) (PAA) and conductive PANI chemically doped
with phytic acid (PA). Due to the physical entanglement, hydrogen bonding, and ionic
interactions between the conductive PANI network and PAA, the resulting hydrogel sensor
exhibited high tensile strength (0.3 MPa), excellent elongation at break (1160%), and good
fatigue resistance. Furthermore, with the addition of conductive PANI, the hydrogel sensor
exhibited controllable electrical conductivity (0.03~5.12 S m−1), good sensing sensitivity
(GF = 1.05), and a wide strain sensing range (0~1130%).
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2.3. Ionic Conductive Hydrogels

Hydrogels, with their three-dimensional network structures, allow carriers to freely
migrate within them. The introduction of ions such as Li+, Na+, Fe3+, and Al3+ into
hydrogels [80–83] can provide hydrogels with stable electrical conductivity, which is a
unique advantage. Unlike adding conductive polymers or nanomaterials, ionic conduc-
tive hydrogels are typically transparent, which is beneficial for visualizing the interiors
of electronic devices [49,84]. Xu et al. [31] dissolved cellulose directly in an ion solution
containing Zn2+ and Al3+ and then cross-linked it with an acrylic acid (AA) and acrylamide
(AAm) copolymer to form multiple hydrogen bonds, creating an Ion-C-P (AA-co-AAm)
conductive hydrogel. This hydrogel exhibited excellent swelling resistance (88.03%) and
compression properties (24.11 MPa), and, due to the abundance of Zn2+ and Al3+, it also
possessed remarkable conductivity (48.39 mS cm−1) and freezing resistance, offering new
perspectives for expanding hydrogel applications in flexible electronics. Ma et al. [32] de-
veloped a novel dual-network ionic conductive hydrogel by introducing polyvinylpyrroli-
done (PVP)/tannic acid (TA)/Fe3+ (Figure 6). In this hydrogel, PVP/TA/Fe3+ formed a
crosslinked network through hydrogen bonding and metal coordination, and it interlocked
with the P(NIPAAm-co-AM) network, enhancing the flexibility, strength, and conductiv-
ity of the hydrogel. This hydrogel has good stretchability (720%), a rapid response time
(265 ms), excellent conductivity (0.79 S m−1), temperature sensitivity, transparency, and
viscosity. These characteristics highlight its potential as a wearable dual strain and tem-
perature sensor. Wang et al. [29] added trehalose and LiCl to a P(AM-co-AA) polymer
network, creating a multifunctional ionic conductive hydrogel. The covalent hydrogen
bonding interactions and strong hydration of LiCl significantly improved the mechanical
properties of the hydrogel, achieving a maximum elongation at a break of 4529% under
tensile strain. LiCl endowed the hydrogel with excellent ionic conductivity. The P(AM-co-
AA)/trehalose/LiCl ionic hydrogel exhibited good self-adhesiveness to various substrates,
along with outstanding anti-freezing and moisture retention properties, maintaining high
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stretchability and conductivity at −20 ◦C. The assembled hydrogel strain sensor exhibited
excellent sensitivity (GF = 3.59% in the strain range of 2200–4200%). This strain sensor
could sensitively and accurately detect joint bending, facial expressions, and swallowing
behaviors, showing broad application prospects. Although ionic conductive hydrogels,
which incorporate free moving ions, have conclusive advantages in their electrochemical
performance, mechanical properties, and even unique high transparency, providing a cru-
cial foundation for their development in flexible wearable sensors, current ionic conductive
hydrogels still suffer from the drawback of ion leakage. This places them at a disadvan-
tage in terms of electrochemical stability. Therefore, the development of ion-conductive
hydrogels with an excellent ion retention capability will play a critical role in shaping their
future advancements.
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Ma et al. [32], ACS Applied Materials & Interfaces, 2022.

3. Applications in Flexible Wearable Sensors

Due to their excellent biocompatibility and unique network structure, hydrogels are
considered the ideal choice for fabricating flexible sensors. Flexible sensors based on con-
ductive hydrogels not only require outstanding conductivity and sensitivity but also high
mechanical strength to ensure that they do not easily break under substantial mechanical
loads [85,86]. Their self-repairing ability [87–89] is a crucial characteristic which ensures
that sensors can still stably transmit electrical signals after experiencing mechanical damage,
thereby extending the sensor’s lifespan and reducing electronic waste. Additionally, hydro-
gel sensors should possess adhesiveness [90,91], and establish a stable and reliable contact
interface with human tissues to capture small physiological signals without the use of
adhesive tape. More importantly, hydrogel sensors using water as a dispersion medium can
experience water evaporation and low-temperature freezing hardening, severely affecting
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the sensor’s long-term stability. Therefore, anti-freezing and moisture retention proper-
ties [92] are also essential characteristics to consider when developing flexible conductive
hydrogel-based sensors. In recent years, a series of conductive hydrogels with unique
advantages such as good stretchability, stable conductivity, biocompatibility, mechanical ro-
bustness, anti-freezing moisture retention, and antibacterial properties have been prepared
using different synthesis methods and materials. These have been extensively researched
and applied in areas such as motion detection, medical diagnostics, electronic skin, and
human–machine interactions [93], as shown in Table 2.

Table 2. Different applications and properties of conductive hydrogels in flexible wearable sensors.

Applications Synthesis Processes Working Components Characteristics References

Motion detection One-step thermal
initiation Cardanol/acrylic acid Superelastic/anti-

freezing/antidrying [94]

Motion detection Solvent-replacement
strategy

Ethylene glycol
(Eg)/glycerol (Gl)–water Anti-freezing/self-healing [95]

Motion detection UV crosslinking/freeze–
thaw cycles

Zwitterionic
[2-(methacryloyloxy)

ethyl]dimethyl-(3-
sulfopropyl) ammonium

hydroxide

Adhesive/stretchable/antibacterial [96]

Motion detection
Oxidative autopolymer-

ization/metal bond
coordination

Fe3+/catechol-modified
chitosan

Adjustable
adhesion/toughness/self-healing [97]

Motion detection “One-pot” crosslinking
procedure

Glycerol–water mixed
solvent containing potassium

chloride

Adhesiveness/anti-
freezing/moisture retention [98]

Medical diagnostics Boric acid ester bond PVA/borax, silk fibroin/TA Self-healing/self-adhesive [99]
Medical diagnostics In situ polymerization Polyacrylamide Adhesive/tough [100]

Medical diagnostics In situ UV
polymerization

Carboxymethyl
cellulose/poly

acrylic-acrylamide
Elasticity/flexibility [80]

Medical diagnostics In situ polymerization Cellulose Self-healing/strain/thermal
sensitive [101]

Medical diagnostics Boric acid ester bond AgNPs/MXene Self-
healing/injectable/antibacterial [102]

Electronic skin Polymerization Acrylamide Stretchable/transparent [103]

Electronic skin Polymerization

Polymerization of
N-isopropylacrylamide/a

dopamine-modified
polypeptide

Biocompatibility/stable drug
release behavior [104]

Human–machine
interactions Polymerization ethylene glycol (EG)–water Anti-freezing [105]

Human–machine
interactions Polymerization Poly(sodium

acrylate)/MXene Self-adaptive [106]

3.1. Motion Detection

In recent years, conductive hydrogels have been endowed with rapid responses and
high strain/pressure sensitivity, enabling the real-time monitoring of various human move-
ments [107]. Han et al. [108] developed a novel conductive organic hydrogel for strain sens-
ing, mainly composed of tannic acid (TA)-coated cellulose nanocrystals, graphene, borax,
and polyacrylamide (PAm), and partially replaced the water in the network with ethylene
glycol (EG) through a simple solvent substitution strategy. This hydrogel sensor exhibits
an excellent surface adhesion performance (220 KPa on pigskin surface) and mechanical
properties (elongation at break of 3734%, breaking strength of 0.47 MPa). It also shows a
sensitive and stable sensing performance, excellent reliability, and a wide sensing range
(5–1500%), accurately monitoring human joint movements, wrist pulse, micro-expressions,
and vocal signals. These capabilities demonstrate its vast potential in intelligent motion
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recognition for posture correction and rehabilitation. Gao et al. [20] used ionic liquids
as raw materials to construct a multifunctional polyvinyl alcohol (PVA)/carboxymethyl
cellulose (CMC)/poly(acrylamide-co-1-vinyl-3-butylimidazolium bromide) (P(AAm-co-
VBIMBr)) (PCPAV) ionic conductive hydrogel. The prepared ionic conductive hydrogels
have multiple crosslinked network structures, multiple hydrogen bonding interactions, and
electrostatic interactions, demonstrating excellent tensile properties (810.6%), significant
tensile stress (360.6 kPa), good toughness, and fatigue resistance. The introduction of
VBIMBr endowed the PCPAV hydrogel with high ionic conductivity (15.2 mS cm−1), excep-
tional transparency (~92%), and frost resistance (−45.5 ◦C). The flexible sensors assembled
using this hydrogel exhibited high strain sensitivity (GF = 3.75), fast responses, long-term
stability, and durability, capable of monitoring various large-scale human joint movements
and detecting minute muscle movements. Zhai et al. [109] prepared a robust conductive
multi-structured PEDOT:PSS/PVA organic hydrogel (PPS organic hydrogel) through a
simple strategy combining self-assembly and stretching training. The PPS organic hydrogel
had a PVA/PEDOT:PSS layered structure and aligned PVA/PEDOT:PSS nanofibers, PVA,
and PEDOT:PSS nanocrystalline domains, and a semi-interpenetrating network structure,
displaying excellent mechanical properties (strength: 54.8 MPa, toughness: 153.97 MJ m−3).
Moreover, due to its orderly multi-layered structure and DMSO organic liquid phase com-
position, the PPS organic hydrogel also exhibited strong sensing properties (GF: 983). The
PPS organic hydrogel was applied to an electronic wristband to monitor movement signals
in soccer activities (Figure 7), including walking, running, shooting, and dribbling. The
results showed the outstanding mechanical and sensing performance of the PPS organic
hydrogel and its tremendous potential in detecting signals from intense movements. The
compatibility issues between the conductive hydrogel matrices and their swelling behavior
in humid environments significantly affect the mechanical and electrical performance of
conductive hydrogels, limiting their applications in wearable electronic devices. There-
fore, Li et al. [37] developed a polyacrylamide-alginate-polypyrrole (PAM-ALG-PPy) CPH
with high strength and rigidity and excellent anti-swelling properties by combining the
supramolecular interactions between hard conductive polymers (PPy) and soft materials
(PAM-ALG), including hydrogen, coordinate bonds, and cation–π interactions. Benefiting
from the effective interactions between the polymer networks, the resulting supramolecular
hydrogel exhibited uniform structural integrity, significant tensile strength (1.63 MPa),
outstanding elongation at break (453%), and remarkable toughness (5.5 MJ m−3). As a
strain sensor, the hydrogel has high conductivity (2.16 S m−1), a wide linear strain detection
range (0–400%), and excellent sensitivity (gauge factor = 4.1), capable of the real-time
monitoring of human movements under both large and small strains, showing significant
broad sensing capabilities.

3.2. Medical Diagnostics

With an increasing focus on personal health, using hydrogel sensors for the real-time
monitoring of physiological activities (such as pulse, respiration, and heartbeat) has be-
come a hot topic, and the data collected can be used for the early diagnosis of diseases.
Wu et al. [110] developed a polyaspartic acid-modified dopamine/ethyl ionic liquid hydro-
gel (PDEH). By further embedding a silver liquid metal (SLM) conductive layer to create
PDEH-SLM patches, they could capture electromyographic signals for diagnosing periph-
eral neuropathies. Through a one-step electrical field treatment, the hydrogel achieved
rapid and extensive adhesion regulation and greatly enhanced mechanical properties.
Moreover, the hydrogel patch assembled with the silver liquid metal (SLM) layer exhibited
excellent charge injection and low contact impedance, capable of capturing high-fidelity
electromyographic signals. This work further validates the feasibility of conductive hydro-
gel devices for the accurate diagnosis of sensory, motor, and mixed peripheral neuropathies.
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Figure 7. Monitoring signals for intense movements. (a) Application in soccer activities. (b) Sensor
device structure. (c) Electronic wristband for detecting thigh signals. (d) Flowchart for monitoring
soccer activities. The PPS organic hydrogel senses and collects motion data, transmitting digital
signals to external devices controlled by a Bluetooth chip. (e) Recording of movement signals such as
walking, running, and shooting during soccer training. Copyright permission from Zhai et al. [109],
Advanced Materials, 2023.

Various flexible epidermal sensors based on conductive hydrogels have made great
progress in human health monitoring. However, the development of integrated health
devices that combine reliable, sensitive diagnostic properties and timely treatment remains
a great challenge in the wearable sensor field. Wan et al. [102] developed a healable, in-
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jectable, and antibacterial MXene-based hydrogel by incorporating MXene nanosheets
modified with antibacterial silver nanoparticles (AgNPs/MXene) into a polymer network
of guar gum (GG) and phenylboronic acid-grafted sodium alginate (Alg-PBA). This MX-
ene hydrogel (AgNPs/MXene/GG/Alg-PBA) is suitable for wearable human–machine
interactions and high-performance human health monitoring applications (Figure 8). The
introduction of antibacterial AgNPs/MXene nanosheets into the hydrogel resulted in en-
hanced mechanical strength, improved conductivity, and strong antibacterial properties.
The MXene hydrogel was fabricated into a multifunctional skin sensor, capable of sen-
sitively monitoring human activities and detecting minute electrophysiological signals
such as electrocardiograms (ECG) and electromyograms (EMG), thereby providing crucial
clinical information for rehabilitation training as well as cardiovascular and muscular
diseases. Additionally, its excellent self-healing ability, powerful injectability, and reliable
antibacterial performance allow the MXene hydrogel to be directly injected into wound
sites for further antibacterial action and wound healing, effectively accelerating wound
recovery and showing great potential in wearable electronics, health diagnostics, and smart
medicine. Similarly, Yang et al. [21] designed a multifunctional PAAm/PEG/hydrolyzed
keratin/MXene conductive hydrogel (PPHM hydrogel) as a high-performance therapeutic
integrated epidermal sensor. This sensor exhibits high-sensitivity sensing properties (thick-
ness factor at high strain = 4.82), strong mechanical tensile properties (up to 600% maximum
elongation at break), a rapid self-healing ability, stable self-adhesiveness, biocompatibility,
−20 ◦C frost resistance, and an adjustable photothermal conversion capability. The PPHM
hydrogel can sensitively monitor human movements and detect minute electrophysiologi-
cal signals to diagnose related activities and diseases. It can also serve as an effective wound
dressing to accelerate the healing process, providing valuable insights for developing inte-
grated diagnostic and therapeutic smart wearable devices. Hou et al. [111] reported a new
synthesis strategy for an ionic conductive hydrogel enhanced with core–shell structured
curcumin nanoparticle composites for simultaneous cardiac electrophysiological signal
monitoring and myocardial infarction repair. Zhang et al. [112] developed a conductive
hydrogel with a pNIPAm and poly(Cu-arylacetylide) interpenetrating polymer network, ex-
hibiting exceptional anti-swelling properties, good electronic conductivity, good adhesion,
and excellent antibacterial performance. This hydrogel is capable of recording electrocar-
diograms (ECG), electromyograms, implantable epicardial ECGs, and transmitting neural
signals. Moreover, the Cu(I) in the polymer chains can be replaced by other metal ions such
as Au(I), creating more high-performance new materials. This research not only opens up
new areas of study for hydrogels but also proposes the concept of designing implantable
electrodes for the recording of bioelectronics.
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3.3. Electronic Skin

Electronic skin (e-skin) is a type of flexible electronic device that can adhere to the
surfaces of various objects, mimicking the tactile sensing function of human skin. It con-
verts physical, chemical, and physiological signals such as strain, pressure, temperature,
humidity, and bodily fluids into electrical signals. E-skin has advantages like stretchability,
lightweight, and good biocompatibility [113]. The pliability and high sensitivity of conduc-
tive hydrogels make them prime candidates for e-skin applications [93]. Inspired by the
structure of human skin, Guan et al. [114] constructed an e-skin with a sandwich structure
for health monitoring purposes. The sensor, comprising a first network of polyacrylamide-
co-acrylic acid and a second network of PVA, achieved high strain-sensitive conductivity
and adhesiveness. The hydrogel, obtained through traditional one-pot methods, exhibited
good mechanical tunability due to its glycerol content and DN structure. The mixture
of graphene oxide (GO) and carbon nanotubes (CNTs) was coated onto the hydrogel by
spraying. The crack mechanism of the CNTs/GO in the cracking process endowed the
sensor with excellent sensing performance, such as ultra-high sensitivity (GF = 20) and
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remarkable durability and stability over a wide strain range (0–300%). Additionally, the
adhesive layer, serving as an interface layer between the sensing element and human skin,
contains multiple functional groups that can interact with different materials. The adhesive
layer enables the sensor to adhere to the skin, detecting minute strains such as throat vibra-
tions and heart rates, providing a viable solution for improving wearable electronic devices
for healthcare monitoring. Wang et al. [115] proposed a method for fabricating conductive
hydrogel microfibers using a one-step microfluidic-based method, aimed at constructing
super-stretchable electronic skin. The microfibers consist of a conductive MXene core and a
hydrogel shell. The core is solidified through the covalent cross-linking of sodium alginate
and calcium chloride, while the shell is mechanically reinforced by a complexation reaction
between polyvinyl alcohol and sodium hydroxide (Figure 9). By adjusting the flow rates
and concentrations of the core and shell liquids, the conductivity of the microfibers can be
customized. Due to the significant advantages of the superfine fiber in terms of mechanical
and electrical properties, the resulting electronic skin exhibits impressive stretchability
and sensitivity, which also shows attractive application value in motion monitoring and
gesture recognition. Liu et al. [116] employed a one-pot method, using natural collagen
fibers as a 3D network framework, and introduced a mixture of betaine, AgNPs, sodium
chloride (NaCl), and a glycerol–water binary solvent to design a new multifunctional
natural-skin-based organic hydrogel electronic skin (NSD-Gel e-skin). The NSD-Gel e-skin
has excellent transparency, tensile strength (7.33 MPa), puncture resistance, moisturizing
properties, and antibacterial properties. Additionally, the NSD-Gel e-skin exhibits excellent
cold/heat resistance and stimulus-responsive properties, effectively sensing changes in en-
vironmental temperature or humidity, as well as monitoring human physiological/motion
signals. In vitro and in vivo experiments have shown that the NSD-Gel e-skin has ideal
biocompatibility and can protect tissues even in harsh environments (−196 ◦C to 100 ◦C).
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3.4. Human–Machine Interactions

Human–machine interfaces (HMIs) are vital mediums for the interactions between
humans and computers, virtual reality systems, intelligent devices, etc. With the advent of
the intelligent era and the increasing requirement for more intuitive, natural, and enriching
interaction experiences, research and innovation in HMIs have become crucial. The main
challenge of HCIs comes from the materials, and hydrogels’ unique similarity to biological
tissues and their multifunctionality, softness, and malleability in terms of customizing prop-
erties make them continually evolving and potent in human–machine interface research and
applications [34,117]. Tan et al. [118] developed and prepared a series of conductive hydro-
gels (CxPy) based on chitosan, water-soluble polypyrrole, and cucurbituril [7]. These CxPy
hydrogels exhibit good mechanical strength (215.48 kPa, strain at break 2149.17%), excellent
adhesion strength (~51.54 kPa), remarkable conductivity (0.534 S m−1), and biocompat-
ibility (cell viability of NIH3T3 is 98.25%). As strain sensors, C10P5 hydrogels showed
excellent stability over 1000 cycles, suitable for epidermal sensors monitoring body move-
ment and physiological signals. These conductive hydrogels demonstrate broad potential
in intelligent health monitoring and human–machine interfaces. Zhao et al. [119] employed
a free radical polymerization strategy to prepare a MXene/polyacrylic acid (PAA) hydrogel,
constructing a flexible strain sensor that features high sensitivity (gauge factor ≈ 4.94), a
wide detection range (0–1081%), and photo-thermal conversion properties. This sensor can
rapidly detect human motion, accurately capture small-strain physiological activities such
as frowning, smiling, and throat movement, and remotely control manipulators to perform
simple open–close actions. It can also sense minute deformations, achieving continuous
hovering and following motions. As a proof of concept, this work has inspired the further
development and application of multifunctional MXene/PAA hydrogels in the field of
human–machine interactions. The HMI is a bridge for human–computer communication.
To achieve more flexible and comfortable interactions, Wu et al. [120] developed a wearable
integrated human–machine interface, consisting of multimodal sensing modules and a
flexible printed circuit board (FPCB). The multimodal sensing module integrates epidermal
electrodes and pressure sensors, made, respectively, of TA-modified (NaCl-TA-PAM) and
macroporous structured PAM hydrogels (Foam-PAM) (Figure 10). Due to the individual
modulation and coupling of the components and the structure of the epidermal electrode
hydrogel, it exhibits excellent adhesiveness, conductivity, and biocompatibility, enabling
the stable and reliable monitoring of epidermal electrophysiological signals. The pressure
sensor, prepared by a simple gas foaming method, shows high sensitivity to weak pressure
(0.95 kPa−1 in the range of 16 to 448 Pa) and can be used to monitor minute FMG signals,
significantly enhancing the efficiency of human–machine interactions and offering broad
application prospects.
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machine interface based on hydrogel electromyography and pressure sensors, and the corresponding
AI-assisted intelligent active rehabilitation robotic system, showing wide application prospects in
human–machine applications. (b) Schematic of the self-designed multi-layer structure of the FPCB.
(c) Photographs showing the FPCB in contact with and conforming to human skin curvature (i); the
front view of the HMI (ii); and the distribution of sensors on the HMI (iii). (d) Schematic of the
fabrication strategies for NaCl-TA-PAM hydrogel and (e) Foam-PAM hydrogel. Copyright permission
from Wu et al. [120], Advanced Materials, 2023.
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4. Conclusions and Future Perspectives

In recent years, wearable sensors have seen rapid development. As ideal materials for
the fabrication of flexible wearable sensors, conductive hydrogels have attracted increasing
attention, achieving significant progress in their research and applications. Conductive
hydrogels based on different conductive materials (conductive nanocomposite hydrogels,
conductive polymer hydrogels, and ionic conductive hydrogels) possess excellent biocom-
patibility, high conductivity, mechanically tunable properties, and customizable self-healing,
self-adhesion, frost resistance, and moisturizing properties, and antibacterial advantages.
These qualities have sparked great interest in their applications in motion detection, medi-
cal diagnostics, electronic skin, and human–machine interactions, offering vast possibilities
for their future development in human–machine interfaces and wearable devices.

Despite the widespread application of conductive hydrogels in flexible wearable sen-
sors, their future practical applications still face several challenges: (1) The long-term
stability of conductive hydrogels needs further improvement to cope with the effects of
prolonged use and environmental changes on the material properties. Although there
are some strategies to enhance the mechanical properties of the conductive hydrogel to
improve the mechanical stability of the conductive hydrogel, the evaporation of water in
the hydrogel will still lead to performance degradation as the use time increases. Therefore,
maintaining the long-term stability of conductive hydrogels remains a key challenge. (2) In
the development of conductive hydrogels for flexible wearable sensors, sensitivity and se-
lectivity are two very important factors. They determine whether the sensor can accurately
detect and respond to specific biological or physical signals. As the requirements for the
multifunctionality and integration of flexible wearable devices increase, enhancing the sen-
sitivity of conductive hydrogels and optimizing their selectivity for specific physiological
signals remains a challenging and ongoing task. (3) Finally, although conductive hydrogels
typically exhibit good biocompatibility, the biosafety, degradability, and recyclability of
flexible sensors based on the conductive hydrogels in practical use still require in-depth
exploration to ensure their effective and safe application. This notwithstanding, the future
development prospects of conductive hydrogels in flexible wearable sensors are highly
promising. First of all, to improve the stability and water resistance of conductive hydrogels
it is necessary to actively explore new synthesis methods. For example, the introduction
of crosslinking agents or the modification of the material structure can enhance the water
resistance of conductive hydrogels, reducing the risk of performance degradation in humid
environments. Additionally, it is also possible to consider introducing multifunctional
components such as optical, thermal, or bioactive substances into conductive hydrogels
to achieve their broader application in flexible wearable sensors. Furthermore, with the
increasing emphasis on sustainability and environmental concerns, researchers should ex-
plore the development of renewable materials or biodegradable alternatives to conductive
hydrogels. These materials can reduce our dependence on finite resources and minimize
our environmental impact.

In summary, the research on and application of conductive hydrogels in flexible
wearable sensors is progressing rapidly, offering new possibilities for realizing comfortable,
highly sensitive, and multifunctional sensors. The ongoing development and innovation in
this field are expected to generate more applications and opportunities for hydrogels in
human health monitoring, intelligent medicine, and human–machine interactions.
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