Special Issue "Antibacterial Activity of Nanomaterials"

A special issue of Nanomaterials (ISSN 2079-4991).

Deadline for manuscript submissions: 28 February 2018

Special Issue Editor

Guest Editor
Prof. Dr. Ana María Díez-Pascual

Analytical Chemistry, Physical Chemistry and Chemical Engineering Department, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, Alcalá de Henares, Spain
Website | E-Mail
Interests: nanomaterials; polymers; nanocomposites; inorganic nanoparticles; antibacterial agents; surfactants; interphases

Special Issue Information

Dear Colleagues,

Bacterial adhesion and proliferation is a serious and increasing concern in everyday life, and is responsible for significant damage in several industries, including textile, water treatment, marine transport, medicine and food packaging. Notwithstanding the enormous efforts by academic researchers and industry, a general solution for restricting bacterial colonization has not been found yet. Therefore, new strategies for controlling bacteria activity are urgently needed and nanomaterials constitute a very promising approach. This Special Issue plans to give an overview of the most recent advances in the field of antibacterial nanomaterials and their applications in diverse areas. The Special Issue is aimed at providing selected contributions on advances in the synthesis, characterization, and applications of nanomaterials with antibacterial activity.

Potential topics include, but are not limited to:
• Antimicrobial nanoparticles
• Antibacterial nanocoatings and nanocomposites
• Mechanisms of action
• Antimicrobial food packaging
• Adverse effects of nanomaterials
• Future perspectives for antimicrobial nanomaterials
• Role of antimicrobial nanomaterials in medicine

Prof. Dr. Ana María Díez-Pascual
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Antibacterial activity
  • Nanocomposites
  • Bacterial infection
  • Nanotoxicology
  • Antibiotic resistance

Published Papers (5 papers)

View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:

Research

Jump to: Other

Open AccessArticle Poly-L-arginine Coated Silver Nanoprisms and Their Anti-Bacterial Properties
Nanomaterials 2017, 7(10), 296; doi:10.3390/nano7100296
Received: 26 July 2017 / Revised: 13 September 2017 / Accepted: 22 September 2017 / Published: 27 September 2017
PDF Full-text (4177 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this study was to test the effect of two different morphologies of silver nanoparticles, spheres, and prisms, on their antibacterial properties when coated with poly-L-arginine (poly-Arg) to enhance the interactions with cells. Silver nanoparticle solutions were characterized by
[...] Read more.
The aim of this study was to test the effect of two different morphologies of silver nanoparticles, spheres, and prisms, on their antibacterial properties when coated with poly-L-arginine (poly-Arg) to enhance the interactions with cells. Silver nanoparticle solutions were characterized by UV–visible spectroscopy, transmission electron microscopy, dynamic light scattering, zeta potential, as well as antimicrobial tests. These ultimately showed that a prismatic morphology exhibited stronger antimicrobial effects against Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica. The minimum bactericidal concentration was found to be 0.65 μg/mL in the case of a prismatic AgNP-poly-Arg-PVP (silver nanoparticle-poly-L-arginine-polyvinylpyrrolidone) nanocomposite. The anticancer cell activity of the silver nanoparticles was also studied, where the maximum effect against a HeLa cell line was 80% mortality with a prismatic AgNP-poly-Arg-PVP nanocomposite at a concentration of 11 μg/mL. The antimicrobial activity of these silver nanocomposites demonstrates the potential of such coated silver nanoparticles in the area of nano-medicine. Full article
(This article belongs to the Special Issue Antibacterial Activity of Nanomaterials)
Figures

Figure 1

Open AccessArticle Nanosilver–Silica Composite: Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressings
Nanomaterials 2017, 7(9), 261; doi:10.3390/nano7090261
Received: 24 July 2017 / Revised: 22 August 2017 / Accepted: 3 September 2017 / Published: 6 September 2017
PDF Full-text (6915 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (~5 nm) silver nanoparticles on
[...] Read more.
Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (~5 nm) silver nanoparticles on silica matrix to form a nanosilver–silica (Ag–SiO2) composite and shows the prolonged antibacterial effects of the composite in vitro. The composite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effective against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). Ultraviolet (UV)-irradiation was superior to filter-sterilization in retaining the antibacterial effects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag–SiO2 composite, showed higher antibacterial effects against MRSA and E. coli than a commercial Ag-containing dressing, indicating a potential for the management and infection control of superficial wounds. Transmission and scanning transmission electron microscope analyses of the composite-treated MRSA revealed an interaction of the released silver ions with the bacterial cytoplasmic constituents, causing ultimately the loss of bacterial membranes. The present results indicate that the Ag–SiO2 composite, with prolonged antibacterial effects, is a promising candidate for wound dressing applications. Full article
(This article belongs to the Special Issue Antibacterial Activity of Nanomaterials)
Figures

Open AccessArticle Antimicrobial Properties of Silver Cations Substituted to Faujasite Mineral
Nanomaterials 2017, 7(9), 240; doi:10.3390/nano7090240
Received: 10 July 2017 / Revised: 7 August 2017 / Accepted: 25 August 2017 / Published: 27 August 2017
PDF Full-text (2269 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A goal of our study was to find an alternative to nano-silver-based antimicrobial materials which would contain active silver immobilized in a solid matrix that prevents its migration into the surrounding environment. In this study, we investigated whether silver cations dispersed in an
[...] Read more.
A goal of our study was to find an alternative to nano-silver-based antimicrobial materials which would contain active silver immobilized in a solid matrix that prevents its migration into the surrounding environment. In this study, we investigated whether silver cations dispersed in an atomic form and trapped in an ion-exchanged zeolite show comparable antimicrobial activity to silver nanoparticles (NPs). The biocidal active material was prepared from the sodium form of faujasite type zeolite in two steps: (1) exchange with silver cations, (2) removal of the external silver oxide NPs by elution with Na2EDTA solution. The modified biocidal zeolite was then added to paper pulp to obtain sheets. The zeolite paper samples and reference samples containing silver NPs were tested in terms of biocidal activity against an array of fungi and bacteria strains, including Escherichia coli, Serratia marcescens, Bacillus subtilis, Bacillus megaterium, Trichoderma viride, Chaetomium globosum, Aspergillus niger, Cladosporium cladosporioides, and Mortierella alpina. The paper with the modified faujasite additive showed higher or similar antibacterial and antifungal activities towards the majority of tested microbes in comparison with the silver NP-filled paper. A reverse effect was observed for the Mortierella alpina strain. Full article
(This article belongs to the Special Issue Antibacterial Activity of Nanomaterials)
Figures

Open AccessArticle Eco-Friendly Acaricidal Effects of Nylon 66 Nanofibers via Grafted Clove Bud Oil-Loaded Capsules on House Dust Mites
Nanomaterials 2017, 7(7), 179; doi:10.3390/nano7070179
Received: 23 June 2017 / Revised: 4 July 2017 / Accepted: 6 July 2017 / Published: 10 July 2017
PDF Full-text (6912 KB) | HTML Full-text | XML Full-text
Abstract
Acaricidal nylon 66 fabrics (AN66Fs) grafted with clove oil-loaded microcapsules (COMCs) were developed against Dermatophagoides farina (D. gallinae). The average diameter was about 2.9 µm with a range of 100 nm–8.5 µm. COMCs carried clove oil loading of about 65 vol
[...] Read more.
Acaricidal nylon 66 fabrics (AN66Fs) grafted with clove oil-loaded microcapsules (COMCs) were developed against Dermatophagoides farina (D. gallinae). The average diameter was about 2.9 µm with a range of 100 nm–8.5 µm. COMCs carried clove oil loading of about 65 vol %. COMCs were chemically grafted to electrospun nylon nanofibers by the chemical reactions between –OH groups of COMCs and –COOH end groups of nylon fabrics to form ester linkages. AN66Fs had an effect on D. farinae depending on COMCs loadings. The increase in COMCs loading of AN66Fs from 5 to 15 wt % increased from 22% to 93% mortality against D. farinae within 72 h. However, AN66Fs containing over 20 wt % COMCs were more effective, showing up to 100% mortality within 24 h because the large amount of monoterpene alcohol, eugenol. This research suggests the use of clove oil and its major constituent eugenol as eco-friendly bioactive agents that can serve as a replacement for synthetic acaricides in controlling the population of D. farinae. Full article
(This article belongs to the Special Issue Antibacterial Activity of Nanomaterials)
Figures

Figure 1

Other

Jump to: Research

Open AccessCommentary Antimicrobial Nanomaterials: Why Evolution Matters
Nanomaterials 2017, 7(10), 283; doi:10.3390/nano7100283
Received: 29 August 2017 / Revised: 14 September 2017 / Accepted: 18 September 2017 / Published: 21 September 2017
PDF Full-text (247 KB) | HTML Full-text | XML Full-text
Abstract
Due to the widespread occurrence of multidrug resistant microbes there is increasing interest in the use of novel nanostructured materials as antimicrobials. Specifically, metallic nanoparticles such as silver, copper, and gold have been deployed due to the multiple impacts they have on bacterial
[...] Read more.
Due to the widespread occurrence of multidrug resistant microbes there is increasing interest in the use of novel nanostructured materials as antimicrobials. Specifically, metallic nanoparticles such as silver, copper, and gold have been deployed due to the multiple impacts they have on bacterial physiology. From this, many have concluded that such nanomaterials represent steep obstacles against the evolution of resistance. However, we have already shown that this view is fallacious. For this reason, the significance of our initial experiments are beginning to be recognized in the antimicrobial effects of nanomaterials literature. This recognition is not yet fully understood and here we further explain why nanomaterials research requires a more nuanced understanding of core microbial evolution principles. Full article
(This article belongs to the Special Issue Antibacterial Activity of Nanomaterials)

Journal Contact

MDPI AG
Nanomaterials Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Special Issue Edit a special issue Review for Nanomaterials
logo
loading...
Back to Top