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Babeş”, Timişoara 300041, Romania; camelia.sass5@gmail.com

6 Functional Sciences Department, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babeş”,
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Abstract: New Cu(II), Pd(II) and Pt(II) complexes, (Cu(L)(H2O)2(OAc)) (1), (Cu(HL)(H2O)2(SO4)) (2),
(Cu(L)(H2O)2(NO3)) (3), (Cu(L)(H2O)2(ClO4)) (4), (Cu(L)2(H2O)2) (5), (Pd(L)(OAc))H2O (6),
and (Pt(L)2) (7) were synthesized from 8-ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-13-one
thiosemicarbazone (HL). The ligand and its metal complexes were characterized by IR, 1H-NMR,
13C-NMR, UV-Vis, FAB, EPR, mass spectroscopy, elemental and thermal analysis, magnetic
susceptibility measurements and molar electric conductivity. The free ligand and the metal complexes
have been tested for their antimicrobial activity against E. coli, S. enteritidis, S. aureus, E. faecalis,
C. albicans and cytotoxicity against the NCI-H1573 lung adenocarcinoma, SKBR-3 human breast,
MCF-7 human breast, A375 human melanoma and HL-60 human promyelocytic leukemia cell
lines. Copper complex 2 exhibited the best antiproliferative activities against MCF-7 human breast
cancer cells. A significant inhibition of malignant HL-60 cell growth was observed for copper
complex 2, palladium complex 6 and platinum complex 7, with IC50 values of 1.6 µM, 6.5 µM
and 6.4 µM, respectively.
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1. Introduction

Thiosemicarbazones represents a class of N,S-donor ligands important in coordination chemistry.
These ligands have great versatility, manifested by the existence of two forms (thione-thiol), and
the ability to bind metal ions in the neutral or anionic form, acting as monodentate or bidentate
ligands [1–6]. Metal thiosemicarbazone complexes are of interest due their bioinorganic applications.
Research in recent years has demonstrated the ability of thiosemicarbazones and their complexes to
be antifungal, antibacterial, antiviral, anti-inflammatory and chemotherapeutic agents, potentially
useful for inhibiting the activities of cancer cells [7–17]. The cytotoxicity of these ligands is enhanced
by coordination to metal ions such as copper, zinc, platinum and palladium. This activity is explained
not only by the metals’ ability to influence lipophilicity but also the mechanism of action within the
cell [18–26]. Substitution on the C2 position can also affect the coordination and biological properties.
The introduction of different groups at the C2 position was made to vary the hydrophilic-lipophilic
character of the compounds in order to increase the cell absorption [27].

In a previous paper [28] we presented the synthesis of Cu(II) and Pd(II) complexes with 8-propyl-
2-hydroxytricyclo(7.3.1.02,7)tridecan-13-one-thiosemicarbazone and 8-furyl-2-hydroxytricyclo(7.3.1.02,7)
tridecan-13-one-thiosemicarbazone. This paper is a continuation of our previous research and it
presents the synthesis and characterization of complexes of Cu(II), Pd(II) and Pt(II) with the new
ligand 8-ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-13-one-thiosemicarbazone, a less voluminous
substituent. The anti-proliferative activity of the ligand and its synthesized complexes in NCI-H1573
lung adenocarcinoma, SKBR-3 human breast, MCF-7 human breast, A375 human melanoma cancer
cells and human HL-60 promyelocytic leukemia cells were investigated. The complexes and ligand
were also tested for their in vitro antibacterial activity against Escherichia coli, Salmonella enteritidis,
Staphylococcus aureus, Enterococcus faecalis and Candida albicans strains using the paper disc diffusion
method [29] (for the qualitative determination) and the serial dilutions in liquid broth method [30] (for
determination of MIC).

2. Results and Discussion

2.1. Chemistry

The tiosemicarbazone HL was synthesized by refluxing equimolar amounts of thiosemicarbazide
and β-cyclocetol in methanol according to the experimental protocol described in [28] (Scheme 1). The
structure of the ligand was established by IR, 1H-NMR, 13C-NMR and mass spectroscopy data.
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Scheme 1. Synthesis of the ligand 8-ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-13-one-thio-semicarbazone (HL).



Molecules 2016, 21, 674 3 of 18

For the preparation of complexes 1–7 were used the metal salts Cu(OAc)2¨ (H2O), CuSO4¨ 5H2O,
Cu(NO3)2¨ 3 H2O, Cu(ClO4)2¨ 6 H2O, CuCl2¨ 2H2O, Pd(OAc)2 and K2(PtCl4) which were refluxed with
stirring in a hot clear solution of the ligand in methanol (1:1 and 1:2 metal–ligand ratio). All complexes
are microcrystalline solids, which are stable in air. The melting point values are greater than 220 ˝C.
The complexes are insoluble in organic solvents such as methanol, ethanol, chloroform and acetone,
but soluble in DMF and DMSO.

The proposed molecular formulas for thiosemicarbazone HL and complexes 1–7 (Figure 1) are
in agreement with the stoichiometries obtained based on analytical data (see Experimental). The
molar conductance values of the soluble complexes in DMF (8–15 ohm´1¨cm2¨mol´1) showed that all
complexes are non-electrolytes [31].
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Figure 1. Proposed structures of the newly obtained metal complexes 1–7.

2.1.1. 1H-NMR and 13C-NMR Spectra

The 1H-NMR (DMSO-d6) spectra of diamagnetic Pd(II) and Pt(II) complexes showed the
disappearance of the signal due to the =N-NH proton, indicating the deprotonation of this group,
while the signals of the other NH (NH2) protons were observed at 10.42 and 10.44 ppm, respectively.
The signal due to the OH proton remained unchanged as observed in the free ligand. In the 13C-NMR
(DMSO-d6) spectra of the two complexes was observed that imine C=N carbon atoms signal is shifted
downfield and appeared at 173.274 and 175.208 ppm, respectively. This information indicates the
coordination of the metal center to the azomethine nitrogen and the sulfur in the thiol form and the
NH2 group is not coordinated to the metal ion [32].

2.1.2. Infrared Spectra and Coordination Mode

The thiosemicarbazone group can exhibit thione-thiol tautomerism, because it contains a
thioamide functional group. The presence of the band υ(N21-H) at 3214 cm´1 and the absence of
the one from 2570 cm´1 specific to υ(SH), indicates the ligand’s existence in thione form in a solid
state [33]. In all IR spectra of the complexes the band at 3214 cm´1 is shifted to lower wavenumbers
by 38 cm´1 and the presence of new band at 1617–1631 cm´1 (except for 2), due to the υ(N21

=C) group,
indicates the C=S thioenolisation followed by deprotonation and complexation with the metal ions.
The band at 3360 attributed to the υ(N41

-H) stretching mode in the spectra of the ligand did not present
any considerable change in the complexes and thus ruled out the possibility of metal ion bonding
in this area [34]. Also, in the spectrum of ligand HL two bands appear at 1276, 815 cm´1 assigned
to the υ(C=S) + υ(C=N) frequencies, respectively, and the υ(C=S) (tioamide IV) frequency. In the
complexes’ spectra these bands are shifted towards lower frequencies indicating the coordination of
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the thione/thiol sulphur [35,36]. On the other hand, in the spectra of all complexes (except 2) the
emergence of a new band in the 581–628 cm´1 range, due to υ(C-S) vibration is also a sign of sulphur
coordination in the thiol form.

The presence of υas(COO´) and υs(COO´) absorption bands at 1648, 1533 cm´1 and 1565,
1473 cm´1, respectively, in the IR spectra of complexes 1 and 6 suggests that bidentate behavior of the
acetate group [37].

Three bands, which appeared at 1211, 1118, 1089 cm´1 in the IR spectrum of complex 2 are
assignable to υ3 of the bidentate coordinated sulfato group. Further, the presence of the medium bands
(υ1) at 931 cm´1 confirm the bidentate behaviour of the sulfato group [38].

The nitrate complex 3 has two bands at 1404 and 1210 cm´1 corresponding to υ5 and υ1, with
a separation of 194 cm´1, and a medium band at 934 cm´1 assigned to υ2 of the nitrate group. The
separation υ5–υ1 can be used as a criterion to distinguish between the degree of covalence of the nitrate
coordination. These values indicate the presence of a terminal monodentate nitrate group [39].

The perchlorate complex 4 shows a band at 1089 cm´1 split into three components and a strong
band at 628 cm´1. Splitting of this band indicates a bidentate coordination of the perchlorate group [38].

The frequency at 3436 cm´1 in HL, is assigned to the stretching vibration of the OH group of
the thiosemicarbazone nucleus. All the complexes (except 7) exhibit υ(OH) and γ(H2O) bands in the
3445–3453 and 1132–1143 cm´1 regions, which are indicative of coordinated water [40].

2.1.3. Electronic Spectra and Magnetic Studies

The electronic spectrum in the polycrystalline state of ligand HL showed the maximum intraligand
absorption: 34,820 and 30,900 cm´1, assigned to πÑπ* and nÑπ* transitions, corresponding to
azomethine and thioamide groups of the ligand [41]. These bands are shifted after complexation
and new bands appeared in the 28,250–27,340 cm´1 region and were attributed to SÑCu(II) charge
transfer bands.

The electronic spectra for complexes 1, 2, 4 and 5 show d–d bands in the regions 12,550–13,570
and at 20,000 cm´1 (Figure S1) which may be assigned to dx2´y2Ñdxy and dx2´y2Ñdxz,yz transitions,
respectively, due to the distorted octahedral geometry (D4h) around Cu(II) [42].

Likewise, the electronic spectra of the Cu(II) complex 3 suggests the typical axial behavior for a
square-pyramidal geometry with a dx2´y2 ground state [43].

The electronic spectra of the complexes 6 and 7 showed a square-planar geometry for the palladium
and platinum ions. The very intense bands at about 22,220 cm´1 and 23,250 cm´1, respectively, are
assignable to a combination of metal–ligand charge transfer and d–d bands (Table 1) [44].

Table 1. Electronic spectra (cm´1) and magnetic moment (BM) of the complexes 1–7.

Metal Complex Molecular
Formula

Transitions d–d
(cm´1) µeff (BM) Geometry

(Cu(L)(H2O)2(OAc)) (1) 2B1gÑ
2A1g - 2B1gÑ

2B2g 13,570
2B1gÑ

2Eg
20,000 1.99 Octahedral distorted

(Cu(HL)(H2O)2(SO4)) (2) 2B1gÑ
2A1g - 2B1gÑ

2B2g 13,570
2B1gÑ

2Eg
20,000 1.83 Octahedral distorted

(Cu(L)(H2O)2(NO3)) (3) 2B1gÑ
2A1g - 2B1gÑ

2B2g 12,690
2B1gÑ

2Eg
20,000 1.69 Square-pyramidal

(Cu(L)(H2O)2(ClO4)) (4) 2B1gÑ
2A1g - 2B1gÑ

2B2g 13,570
2B1gÑ

2Eg
20,100 1.88 Octahedral distorted

(Cu(L)2(H2O)2) (5) 2B1gÑ
2A1g - 2B1gÑ

2B2g 12,550
2B1gÑ

2Eg
20,000 1.97 Octahedral distorted

(Pd(L)(OAc))(H2O) (6) 1A1gÑ
1B1g - 1A1gÑ

1A2g 22,220
1A1gÑ

1Eg
- * Square-planar

(Pt(L)2) (7) 1A1gÑ
1B1g - 1A1gÑ

1A2g 23,250
1A1gÑ

1Eg
- * Square-planar

* diamagnetic.
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The values of µeff, for complexes 1–5 suggest the presence of an unpaired electron. They also
indicate the existence of monomeric species.

2.1.4. Mass Spectra

The FAB mass spectra of the Cu(II) complexes with thiosemicarbazone HL have been recorded
(Table S1). The molecular ion [M]+ peaks obtained from complexes are as follow: m/z = 372.5 (1),
m/z = 374.2 (2), m/z = 371.5 (3), m/z = 372.5 (4), m/z = 681.3 (5), m/z = 474.5 (6), m/z = 794.1 (7).
The data obtained are in good agreement with the proposed molecular formulae for complexes 1–7.
The FAB mass spectra of these complexes show peaks assignable to various fragments arising from the
thermal cleavage of the complexes.

2.1.5. Thermal Decomposition

The thermal decompositions of the complexes 1–7 were studied by thermogravimetry (TG).
For complexes 1–6 the thermogravimetric analysis show a weight loss in the range 138.89–170.03 ˝C.
This mass loss corresponds to the elimination of two water molecules (in 1–5) and one molecule of
water for complex 6, respectively. The second weight loss steps correspond to the release of small
coordinated anions: OAc´, SO4

2´, NO3
´ (complexes 1–3 and 6). The other weight loss refers to

the decomposition of the ligand. The final residue for complexes 1–3 and 5 was analyzed by IR
spectroscopy, which confirmed the formation of CuO (Figure S2).

2.1.6. EPR Spectra

To elucidate the structure of the copper complexes, EPR spectra were recorded in the
polycrystalline state and in frozen DMSO solution. The EPR spectral assignments of the copper
complexes 1–5 and orbital reduction parameters in the polycrystalline state at 298 K and in DMSO
solution at 298 K and 77 K are presented in Table 2. The EPR spectra of the complexes recorded in the
polycrystalline and solution state provide information about the coordination environment around
Cu(II). The spectrum of the complex 1 in the polycrystalline state at 298 K shows a signal consisting of
a single slightly asymmetrical broad line, with ∆H = 160G (Figure 2).
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Table 2. EPR spectral parameters of the Cu(II) complexes 1–5.

1 2 3 4 5

Polycrystalline (298 K)

g// 2.404 2.371 2.208 2.409 (g3) 2.237
gK 2.087 2.103 2.041 2.193 (g2) 2.065

2.011 (g1)

DMSO (77K)

g// 2.394 2.400 2.399 2.399 2.400
gK 2.082 2.088 2.076 2.078 2.098

A// 117.4 118.0 119.2 118.0 119.0
α2 0.789 0.838 0.802 0.792 0.831
β2 0.989 0.998 0.890 0.996 0.978
δ2 0.992 0.879 0.973 0.969 0.952

K// 0.780 0.841 0.717 0.769 0.787
KK 0.791 0.569 0.785 0.758 0.753

The EPR spectrum of complex 2 shows a signal with a breadth of approximate 260 G and
parameters A// = 135 G, g// = 2.371 and gK = 2.103.

The spectra of the complexes 3 and 5 show axial symmetry with well-defined g// and gK values,
respectively g// = 2.208; gK = 2.041 (for 3) and g// = 2.237; gK = 2.065 (for 5). In these Cu(II) complexes,
tensor values of g// > gK > 2.0023 are consistent with a dx

2
´y

2 ground state [45]. The EPR spectrum of
complex 4 (Figure 3) both at room temperature (298 K) as well as at 77 K, is typical for an orthorhombic
symmetry center, for which the evaluated parameters are: g1 = 2.011; g2 = 2.193; g3 = 2.409.
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To assess the exchange interaction between the copper centers in the polycrystalline compound
is calculated geometric parameter G using the equation G = (g// ´ 2.0023)/(gK ´ 2.0023) for axial
spectra [46]. If G is higher than 4, then the exchange interaction is negligible (compounds 1–3, 5), but if
G is less than 4, considerable exchange interaction is indicated in the solid complex (for complex 4).

The EPR spectrum of complex 5 recorded in DMSO solution at 298 K and its second derivative,
which shows five nitrogen superhyperfine lines in the high field component are given in Figure 4a,b.
For complexes 1–4, three nitrogen superhyperfine lines in the high field component are observed.
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The EPR parameters g//, gK, A// and the energies of the d–d transition were used to evaluate
the bonding parameters α2, β2 and δ2, which may be regarded as measures of the covalency of the
in-plane σ bonds, in-plane π bonds and out-of-plane π bonds [48]. The orbital reduction factors
K// = α2β2 and KK = α2δ2, were calculated using expressions reported elsewhere [49]. Hathaway has
pointed out that for pure σ bonding, K// « KK « 0.77 and for in-plane π-bonding, K// < KK, while for
out-of-plane π-bonding, K// > KK [46].

The empirical factor f = g// /A// cm´1 is an index of tetragonal distortion. The values of this
factor may vary from 105 to 135 for small to extreme distortions in square planar complexes and
depends on the nature of the coordinated atoms [39,50]. The f values of complexes 1–5 are higher
than 135, indicating significant distortion from planarity.

2.2. Antibacterial and Antifungal Activity

All synthesized complexes and ligand were tested for their in vitro antibacterial activity against
Gram-positive bacteria (S. aureus, E. faecalis), Gram-negative bacteria (E. coli, S. enteritidis) and
anti-fungal activity (C. albicans) strains using paper disc diffusion technique (for the qualitative
determination) and the serial dilutions in liquid broth method (for determination of MIC). Furacillinum
and nystatin were used as standard drugs.

The results of the antimicrobial activity study of the synthesized compounds are shown in Table 3.
It shows that the ligand HL type thiosemicarbazones show only bacteriostatic activity against the
microorganisms named above, concentration limits 0.5–10 mg/mL, and coordination compounds of
copper with this ligand have both bacteriostatic and bactericidal activity in the concentration range
0.12–10 mg/mL for the Gram-positive bacteria and 0.25–10 mg/mL against Gram-negative bacteria.

These experimental data shows that copper ion coordination of the thiosemicarbazone favors an
increased antimicrobial activity. In many cases, the minimum inhibitory concentrations (MIC) of the
synthesized compounds are close to or coincide with the minimum bactericidal concentrations, which
confirms the bactericidal antimicrobial activity of these coordination compounds. The experimental
data show that the highest sensitivity to the investigated compounds corresponds to
Gram-positive (MIC = 0.12–0.5 mg/mL, MBC = 0.12–10 mg/mL) bacteria and Candida albicans
(MIC = 0.12–10 mg/mL, CMB = 0.12–10 mg/mL), and the highest resistance is manifest in
Gram-negative (MIC = 0.25–10 mg/mL, MBC > 10 mg/mL) strains. It may be observed that the
antibacterial and antifungal activity of the coordination compounds is directly increased by the
amount of thiosemicarbazone HL, the internal area and the nature of the acid to ligand bond. The
detected properties of the synthesized compounds are of interest in terms of extending antibacterial
and antifungal arsenal of existing drugs.
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Table 3. Antibacterial and antifungal activities of ligand (HL) and complexes 1–7 as MIC a/MBC b values (mg/mL).

Compounds E. coli (G´) S. enteritidis (G´) S. aureus (G+) E. faecalis (G+) C. albicans

MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

C16H27N3OS (HL) 0.5 >10.0 >10.0 >10.0 0.5 >10.0 >10.0 >10.0 0.5 >10.0
(Cu(L)(H2O)2(OAc)) (1) >10.0 >10.0 0.5 >10.0 >10.0 >10.0 >10.0 >10.0 >10.0 >10.0

(Cu(HL)(H2O)2(SO4)) (2) 0.25 >10.0 0.25 0.12 0.12 0.12 0.12 0.12 0.12 0.12
(Cu(L)(H2O)2(NO3)) (3) >10.0 >10.0 >10.0 >10.0 0.12 0.25 0.12 0.12 0.5 0.5
(Cu(L)(H2O)2(ClO4)) (4) 0.5 >10.0 0.5 >10.0 0.12 >10.0 0.12 >10.0 0.12 0.12

(Cu(L)2(H2O)2) (5) >10.0 >10.0 0.5 >10.0 0.12 >10.0 0.12 >10.0 0.12 0.12
(Pd(L)(OAc))(H2O) (6) >10.0 >10.0 0.5 >10.0 0.5 >10.0 >10.0 >10.0 >0.5 >0.5

(Pt(L)2) (7) >10.0 >10.0 0.5 >10.0 >10.0 >10.0 0.12 >10.0 >10.0 >10.0
Cu(OAc)2¨H2O 0.5 - 1.024 - 1.024 - 0.5 - - -
CuSO4¨ 5H2O 0.5 - 1.024 - 0.5 - 0.5 - 1.024 -

Cu(NO3)2¨ 3 H2O 1.024 - 1.024 - 1.024 - 1.024 - - -
Cu(ClO4)2¨ 6 H2O 1.024 - 1.024 - 1.024 - 0.5 - -

CuCl2¨ 2H2O 1.024 - 0.5 - 0.5 - 0.5 - - -
Pd(OAc)2 1.024 - 1.024 - 1.024 - 0.5 - -
K2(PtCl4) 1.024 - 1.024 - 1.024 - 0.5 - -

Furacillinum 0.018 0.037 0.009 0.009 0.009 0.009 0.037 0.037 - -
Nystatine - - - - - - - - 0.08 0.08

E. coli (Escherichia coli, ATCC 25922); S. enteritidis (Salmonella enteritidis); S. aureus (Staphylococcus aureus, ATCC 25923); E. faecalis (Enterococcus faecalis); C. albicans (Candida albicans).
a MIC–minimum inhibitory concentration. b MBC—minimum bactericide concentration. G(´): Gram-negative bacteria; G(+): Gram-positive bacteria.
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2.3. Antiproliferative Activity

Using the Alamar blue or MTS antiproliferative assays, the antiproliferative activity of HL and
complexes on several primary cancer cell lines (A375, SKBR-3, MCF-7 and NCI-H1573) and on HL-60
leukemia cells was tested. Figure 6 show the percent inhibition of the compounds on the tested cell
lines after 48 h of exposure.
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Figure 6. The effects of ligand HL and complexes 1–7 on SKBR-3, MCF-7, A375, NCI-H1573 and
HL-60 cell proliferation. (a) Inhibition of cell proliferation on SKBR-3 human breast cancer cell
line; (b) Inhibition of cell proliferation on MCF-7 human breast cancer cell line; (c) Inhibition of cell
proliferation on A375 melanoma cell line; (d) Inhibition of cell proliferation on NCI-H1573 lung
adenocarcinoma cell line; (e) Inhibition of cell proliferation on human leukemia HL-60 cells after
exposure to 10 µM of tested compounds.

In the case of primary cancer cell lines, one can notice (Table S2) that for all the compounds the
highest antiproliferative activity was for the NCI-H1573 lung adenocarcinoma cell line, while the
SKBR-3 breast cancer cell line seems to be the most resistant to treatment. The ligand HL proved
to exert a moderate antiproliferative activity on breast cancer, with an inhibition index of 28.57%
and 24.87% for MCF-7 and SKBR-3 cells, respectively.

A lack of HL activity was detected for A375 cells. In the case of NCI-H157 cells, the inhibition
was 12.37%. A different behavior was observed after exposure to the complexes 1-7. In term of
MCF-7 cells, except for 6, HL complexation increased the antiproliferative activity of the compound,
decreasing the proliferation of MCF-7 cells to 89.97%. The highest antiproliferative effect was observed
for complexation with CuSO4 (complex 2). In contrast, the HL complexation proved to be ineffective
for SKBR-3 cells. Only complexation with CuSO4 (complex 2) and Cu(ClO4)2 (complex 4) produced a
poor increase in HL’s antiproliferative activity. In term of A375 cells, HL complexation decreased cell
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proliferation, the best antiproliferative effect being detected for the complex 2 (64.32%). Regarding the
proliferation of NCI-H1573 cells, HL complexation proved to have a beneficial effect, decreasing cell
proliferation. Except for complexes 5 and 7, all derivatives decreased the proliferation of NCI-H1573
cells by more than 50%, the best result being obtained for 4, with an inhibition index of 73.58%.
Complex 5 decreased cell proliferation with 41.45%, while complex 7 decreased cell proliferation
only with 16.46%. In conclusion, the efficiency of complexes depends on the cancer cell line, with
NCI-H1573 being the most sensitive.

In case of human leukemia HL-60 cells, the ligand (8-ethyl-2-hydroxytricyclo(7.3.1.02,7)
tridecan-13-one-thiosemicarbazone) and its metal complexes (Table 4) were tested as inhibitors of cell
proliferation using three concentrations: 0.1, 1.0 and 10 µM.

Table 4. Antiproliferative activity of ligand and metal complexes on human leukemia HL-60 cells at
three concentrations a.

Compound Inhibition of Cell Proliferation %
IC50 (µM) b

10 µM 1 µM 0.1 µM

C16H27N3OS (HL) ´2.90 ´5.72 0.31 -
(Cu(L)(H2O)2(OAc)) (1) 21.97 ´2.11 ´2.58 ě10

(Cu(HL)(H2O)2(SO4)) (2) 100.00 5.14 -5.25 1.6 ˘ 3
(Cu(L)(H2O)2(NO3)) (3) 63.91 8.12 1.35 6.4 ˘ 5
(Cu(L)(H2O)2(ClO4)) (4) 48.94 6.48 1.13 6.5 ˘ 4

(Cu(L)2(H2O)2) (5) 43.43 8.73 7.20 14.2 ˘ 3
(Pd(L)(OAc))(H2O) (6) 100.00 ´22.99 ´3.85 6.5 ˘ 4

(Pt(L)2) (7) 100.00 ´10.32 ´8.13 6.4 ˘ 2
DOXO c 91.94 94.55 77.00 ď0.1

a SEM < ˘ 4% of a single experiment in triplicate. b The IC50 value was defined as the concentration at which
50% survival of cells was observed. c DOXO (doxorubicin) used as a positive control.

No effect on HL-60 cell proliferation was noted for the free ligand or salts (data not shown) used
in the synthesis of complexes, but as observed, the antiproliferative activity increases by complexation.
Compounds 1–7 proved to have antiproliferative effects for concentrations higher than 1 µM. This fact
is confirmed, especially for copper complex 2, palladium complex 6 and platinum complex 7. The
antiproliferative activity of the complexes 2, 6 and 7 at 10 µM is of the same significance as that of
doxorubicin, which is utilized in medicinal practice as an antileukemia drug. At this concentration the
complexes totally inhibited HL-60 cell proliferation.

The copper complexes 2, including the bidentate NS ligand and sulfato group, demonstrate an
important antiproliferative activity for HL-60 leukemia cells compared to those containing other inner
sphere anions. The antiproliferative activity is the highest and the concentration dependence changes
from 5.14% to 100%. A similar effect was observed in the case of complexes 6 and 7. The structures of
the tested compounds seemed to be the principal factor influencing the biological activity.

3. Experimental Section

3.1. General Information

All commercially available reagents and chemicals were of analytical- or reagent-grade purity
and used as received. The chemical elemental analysis for the determination of C, H, N was done on a
LA-118 microdosimeter (Carlo-Erba, Lakewood, CO, USA). The Cu(II) content has been determined by
atomic absorption spectroscopy with a AAS 1N spectrometer (Carl Zeiss Jena, Überlingen, Germany);
palladium was determined following the method described by Fries and Getrost [51]. IR spectra
were recorded on a Specord-M80 spectrophotometer (Leipzig, Germany) in the 4000–400 cm´1 region
using KBr pellets. 1H-NMR and 13C-NMR spectra were recorded at room temperature on a DRX 400
spectrometer (Bruker, Billerica, MA, USA) in DMSO-d6, using TMS as the internal standard. The



Molecules 2016, 21, 674 12 of 18

complexes were studied by thermogravimetry (TG) in a static air atmosphere, with a sample heating
rate of 10 ˝C/min using a STA 6000 instrument (Perkin Elmer, Waltham, MD, USA). Electronic
spectra were recorded using a V-670 spectrophotometer (Jasco, Tokyo, Japan), in diffuse reflectance
mode, using MgO dilution matrices. The FAB mass spectra were recorded on a JMS-AX-500 mass
spectrometer (JEOL, Tokyo, Japan). GCMS analysis was performed on a GCMS-QP5050A instrument
(Shimadzu, Duisburg, Germany). EPR spectra were recorded on polycrystalline powders and DMSO
solutions at room temperature and 77 K with a MiniScope MS200 X-band spectrometer (9.3–9.6 GHz)
(Magnetech Ltd., Berlin, Germany), connected to a PC equipped with a 100 KHz field modulation
unit. The molar conductance of the complexes in dimethylforamide solutions (10´3 M), at room
temperature, were measured using a Consort type C-533 conductivity instrument (Turnhout, Belgium).
The magnetic susceptibility measurements were done at room temperature in the polycrystalline state
on a homemade Faraday magnetic balance.

3.2. Synthesis

3.2.1. Synthesis of 8-Ethyl-2-hydroxytricyclo[7.3.1.02,7]tridecan-13-one

A flask was flushed with nitrogen and then charged with cyclohexanone (10 mL, 0.947 g,
9.66 mmol). The cyclohexanone was stirred and heated to 70–75 ˝C under nitrogen. A solution
of potassium hydroxide (0.9 g, 16 mmol) in absolute ethanol (15 mL) was added in one portion, and
then a solution of propanal (10 mL, 13.6 g, 0.23 mol) in absolute ethanol (14 mL) was added dropwise
over a 5 h period while maintaining the reaction mixture at 70–75 ˝C. The reaction mixture was stirred
for an additional 12 h and then cooled to room temperature. The reaction flask was immersed in an
ice bath and the mixture was kept at 0 ˝C for 4 h to complete the crystallization. The colorless crude
product was collected by vacuum filtration and washed with cold ether (100 mL). The product was
recrystalized from methanol to give 8-ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-13-one (1.82 g, 80%),
m.p. 167–169 ˝C, Rf = 0.3 (DCM-petroleum ether = 1:2, silica gel, visualization with KMnO4). HRMS
[ESI, (+), OrbiTrap] m/z Calc. for C15H24O2Na [M + Na]+ 259.18; Found: 259.1686 [M + Na]+.

3.2.2. Synthesis of the 8-Ethyl-2-hydroxytricyclo[7.3.1.02,7]tridecane-13-one-thiosemicarbazone (HL)

The ketone 8-ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-13-one (0.5 g, 2.12 mmol) was dissolved
in ethanol (10 mL). A solution of thiosemicarbazide (0.285 g, 3.13 mmol) in ethanol (7 mL) and
water (2.5 mL) was then added. The reaction mixture was refluxed for 24 h and left to cool to room
temperature. The resulting precipitate was collected by vacuum filtration. The crude product was
recrystallized from a mixture alcohol–water 1:1, to give 0.55 g of the title compound as white crystals,
m.p. 201–203 ˝C, Rf = 0.5 (EtOAc-petroleum ether = 1:2, silica gel). Yield 85%; Anal. Calc. for
C16H27N3OS: C, 62.13; H, 8.73; N, 13.59%. Found: C, 62.37; H, 8.52; N, 13.33%. IR (KBr, cm´1):
υ(N41-H) 3361; υ(N21-H) 3214; υ(C=N1’) 1588; υ(C=S + C=N, C=S) 1276, 815; υ(N11

–N21
) 920. HRMS

[ESI, (+)] m/z Calcd. for C16H27N3OS: 310.1948 [M + H]+, 322.1767 [M + Na]+, 348.1506 [M + K]+;
Found: 310.1968 [M + H]+, 322.1788 [M + Na]+, 348.1529 [M + K]+ (Figure S3). 1H-NMR (DMSO-d6, δ,
ppm, J, Hz): 0.80 (t, 6.9, 3H, H-β); 1.00–2.90 (m, 20H, aliphatic hydrogen); 7.50 (s, 1H, OH,); 9.80 (s, 2H,
NH2); 10.41 (s, NH); 13C-NMR (DMSO-d6, δ, ppm): 11.89 (C-β); 20.19 (C-6); 20.88(C-11); 20.06 (C-b);
21.42 (C-12); 24.58 (C-4); 26.88 (C-5); 28.35(C-10); 32.67 (C-α); 35.85(C-9); 36.02 (C-3); 42.04 (C-8); 45.07
(C-1); 51.93 (C-7); 75.19 (C-2); 163.88 (C-13); 178.27(C-31) (Figure S4).

3.2.3. General Procedure for the Preparation of the Metal Complexes

To a solution of 8-ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-13-one-thiosemicarbazone (HL,
0.620 g, 1 mmol) in methanol (20 mL) was added a solution of the corresponding metal salt in
methanol (10 mL). The molar ratio used was 1:2 (M:L) for the copper(II) complexes and 1:1(M:L) for
the palladium(II) and platinum(II) complexes. The following metal salts were used: Cu(OAc)2¨ (H2O)
for complex 1, CuSO4¨ 5H2O for complex 2, Cu(NO3)2¨ 3H2O for complex 3, Cu(ClO4)2¨ 6H2O for
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complex 4, CuCl2¨ 2H2O for complex 5, Pd(OAc)2 for complex 6, K2(PtCl4) for complex 7. The mixture
was stirred for 7 h at 50 ˝C. The precipitate obtained was filtered, washed with methanol followed by
ether and dried in vacuo.

(Cu(L)(H2O)2(OAc)) (1). Green solid. Yield: 90%; m.p. 230–233 ˝C; M. wt.: 466.5; Anal. Calc. for
C18H33CuN3O5S: C, 46.30; H, 7.07; Cu, 13.61; N, 9.00%. Found: C, 46.53; H, 6.93; Cu, 13.42; N, 8.81%.
IR (KBr, cm´1): υ(N4’-H) 3358; υ(N2’-H) 3176; υ(C=N1’) 1533; υ(C=S+C=N, C=S) 1267, 802; υ(N1’–N2’)
934; υ(N2’=C) 1617; υ(C-S)600.

(Cu(HL)(H2O)2(SO4)) (2). Green solid. Yield: 81%; m.p. 219-221 ˝C; M. wt.: 505.5; Anal. Calc. for
C16H31CuN3O7S2: C, 38.05; H, 6.14; Cu, 12.58; N, 8.32%. Found: C, 38.27; H, 5.93; Cu, 12.36; N,
8.18%. IR (KBr, cm´1): υ(N41

-H) 3360; υ(N21
-H) 3212; υ(C=N11

) 1570; υ(C=S+C=N, C=S) 1265, 803;
υ(N11

–N21
) 927.

(Cu(L)(H2O)2(NO3)) (3). Brown solid. Yield: 78%; m.p. 240 ˝C; M. wt.: 469.5; Anal. Calc. for
C16H30CuN4O6S: C, 40.89; H, 6.38; Cu, 13.52; N, 11.92%. Found: C, 41.13; H, 6.12; Cu, 13.32; N, 11.72%.
IR (KBr, cm’1): υ(N4’-H) 3362; υ(N2’-H) 3184; υ(C=N1’) 1543; υ(C=S+C=N, C=S)1251, -; υ (N1’–N2’) 933;
υ(N2’=C) 1631; υ(C-S)616.

(Cu(L)(H2O)2(ClO4)) (4). Green solid. Yield: 84%; m.p. = 220-222 ˝C; M. wt.: 507; Anal. Calc. for
C16H30CuN3O7SCl: C, 37.86; H, 5.91; Cu, 12.52; N, 8.28%. Found: C, 38.21; H, 5.63; Cu, 12. 32; N,
8.18%. IR (KBr, cm´1): υ(N41

-H) 3357; υ(N21
-H) 3198; υ(C=N11

) 1570; υ(C=S+C=N, C=S) 1252, 802;
υ(N11

–N21
) 928; υ(N21

=C) 1625; υ(C-S) 600.

(Cu(L)2(H2O)2) (5). Green solid. Yield: 75%; m.p. 235-237 ˝C; M. wt.: 715.5; Anal. Calc. for
C32H56CuN6O4S2: C, 53.66; H, 7.82; Cu, 8.87; N, 11.74%. Found: C, 54.03; H, 7.63; Cu, 8.62; N, 11.58%.
IR (KBr, cm´1): υ(N41

-H) 3359; υ(N21
-H) 3185; υ(C=N11

) 1570; υ(C=S+C=N, C=S) 1256, 804; υ(N11
–N21

)
931; υ(N21

=C) 1626; υ(C-S) 581.

(Pd(L) (OAc)).H2O (6). Brown solid. Yield: 76 %; m.p. = 264 ˝C; M. wt.: 491.4; Anal. Calc. for
C18H31PdN3O4S: C, 43.95; H, 6.30; Pd, 21.65; N, 8.54%. Found: C, 44.13; H, 6.18; Pd, 21.51; N, 8.38%.
IR (KBr, cm´1): υ(N41

-H) 3362; υ(N21
-H) 3192; υ(C=N11

) 1575; υ(C=S+C=N, C=S) 1247, 804; υ(N11
–N21

)
929; υ(N21

=C) 1613; υ(C-S) 618.

(Pt(L)2) (7). Yellow solid. Yield: 84 %; m.p. > 300 ˝C; M. wt.: 811; Anal. Calc. for C32H52PtN6O2S2: C,
47.34; H, 6.41; N, 10.35%. Found: C, 47.52; H, 6.23; N, 10.20%. IR (KBr, cm´1): υ(N41

-H) 3358; υ(N21
-H)

3190; υ(C=N11
) 1578; υ(C=S+C=N, C=S) 1254, 804; υ(N11

–N21
) 928; υ(N21

=C) 1618; υ(C-S) 624.

3.3. Antibacterial Activity

The antibacterial activity of complexes and also of their prototype furaciline has been determined
in liquid nutritive medium (2% of peptonate broth, pH 7.0), using the successive dilutions
method. Escherichia coli, Salmonella enteritidis, Staphylococcus aureus, Enterococcus faecalis stems were
used as reference culture for in vitro experiment. The dissolution of the studied substances in
dimethylformamide, microorganisms cultivation, suspension obtaining, determination of minimal
inhibition concentration (MIC) and minimal bactericide concentration (MBC) have been carried out
according to the method previously reported.

3.4. Antifungal Bioassay

Antimycotic properties of the complexes were investigated in vitro on laboratory stem
Candida albicans. The activity has been determined in liquid Sabouroud nutritive environment (pH 6.8).
The innoculates were prepared from fungi stems which were harvested during 3–7 days. Their
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concentration in suspension is (2–4) ˆ 106 colonies forming unities in milliliter. Sowings for yeasts and
micelles were incubated at 37 ˝C during 7 and 14 days, respectively.

3.5. Antiproliferative Activity

3.5.1. Preparation of Tested Substances Solutions

Compounds 1–7 were dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich, Ayrshire, UK) and
stored at 2–8 ˝C. For all experiments, final concentrations of the tested compounds were prepared by
diluting the stock solution (10 mM) with culture medium. The final concentration for in vitro analysis
was 10 µM in case of primary cancer cell lines, while in case of human leukemia HL-60 cells three
concentrations (0.1, 1.0 and 10 µM) were used.

3.5.2. Cell Culture

SKBR-3 human breast cancer cell line was cultured in McCoy’s 5a Medium Modified (Sigma
Aldrich, Darmstadt, Germany) supplemented with 10% FCS (fetal bovine serum, PromoCell,
Heidelberg, Germany), 1% penicillin-streptomycin (Pen/Strep, 10,000 IU/mL; PromoCell). MCF-7
human breast cancer cell line (ATCC, Rockville, MD, USA) was cultured in EMEM (Sigma Aldrich)
supplemented with 10% FCS (fetal bovine serum, PromoCell), 1% penicillin-streptomycin (Pen/Strep,
10,000 IU/mL; PromoCell), 1% non-essential amino acids and 1% glutamine (PromoCell). A375 human
melanoma cell line was cultured in DMEM containing 15% FCS (fetal bovine serum, PromoCell)
and 1% penicillin-streptomycin (Pen/Strep, 10,000 IU/mL; PromoCell). Cells were maintained
at an atmosphere of 5% CO2 at 37 ˝C. NCI-H1573 lung adenocarcinoma cell line was cultured
in RPMI-1640 Medium (ATCC) supplemented with 10% FCS (fetal bovine serum, PromoCell), 1%
penicillin-streptomycin (Pen/Strep, 10,000 IU/mL; PromoCell).

Human promyelocytic leukemia cells HL-60 (ATCC) were routinely grown in suspension
in 90% RPMI-1640 (Sigma, St. Louis, MD, USA) containing L-glutamine (2 nM), antibiotics (100 IU
penicillin/mL, 100 µg streptomycin/mL) and supplemented with 10% (v/v) foetal bovine serum (FBS),
in a 5% CO2 humidified atmosphere at 37 ˝C. Cells were currently maintained twice a week by diluting
the cells in RPMI 1640 medium containing 10% FBS.

3.5.3. Cell Proliferation Assays

Alamar Blue in Vitro Analysis

Human breast cancer cell lines (SKBR-3 and MCF-7), lung adenocarcinoma cell line (NCI-H1573)
and human melanoma cell line (A375) were seeded onto a 96-well microplate (5000 cells/plate) and let
overnight to attach to the bottom of the well. Next day, a volume of 150 µL of the tested substances
dissolved into the culture medium were added. After an incubation of 48 h, 15 µL of the Alamar blue
(BioSource, Camarillo, CA, USA) solution was added and the cells were incubated at 37 ˝C. After
another 10 h, a microplate reader was used to spectrophotometrically analyze the samples. The wave
lengths used were 570 nm, 600 nm respectively. Wells with untreated cells were used as controls. The
highest concentration of DMSO (0.1%) used to prepare stock solutions of the tested substances did not
have any significant effect on cell proliferation.

Cells viability was calculated using the formula:

100´tppεOXqλ2 Aλ1´pεOXqλ1 Aλ2 of test agent dilutionq{ppεOXqλ2 A˝λ1´pεOXqλ1 A˝λ2

of untreated positive growth controlquˆ 100
(1)

where εOX = molar extinction coefficient of Alamar blue oxidized form (BLUE); A = absorbance
of test wells; A˝ = absorbance of positive growth control well ( cells without tested compounds);
λ1 = 570 nm, λ2 = 600 nm. All measurements were performed in triplicate and data were presented as
mean ˘ standard deviation.
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MTS Cell Proliferation Assay

The cell proliferation assay was performed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)2-(4-sulfophenyl)-2H-tetrazolium (MTS) (Cell Titer 96 Aqueous, Promega,
Madison, WI, USA), which allowed us to measure the number of viable cells. In brief, triplicate
cultures of 1 ˆ 104 cells in a total of 100 µL medium in 96-well microtiter plates (Becton Dickinson
and Company, Lincoln Park, NJ, USA) were incubated at 37 ˝C, 5% CO2. Final concentrations of the
tested compounds and doxorubicin (Novapharm, Toronto, ON, Canada) were added to each well and
incubated for 3 days. Following each treatment, 12 µL MTS was added to each well and incubated
for 4 h. MTS is converted to water-soluble colored formazan by a dehydrogenase enzyme present in
metabolically active cells. Subsequently, the plates were read at 490 nm using a microplate reader
(Molecular Devices, Sunnyvale, CA, Canada).

4. Conclusions

The coordination ability of the thiosemicarbazone 8-ethyl-2-hydroxytricyclo(7.3.1.02,7)tridecan-
13-one-thiosemicarbazone (HL) has been proved in complexation reactions with Cu(II), Pd(II) and
Pt(II) ions. The physico-chemical analyses confirmed the composition and the structures of the newly
obtained complexes. Independent of the metal salt anion used, the ligand acts as a mononegative
bidentate species through the thioenolic sulphur and the azomethinic nitrogen, except for in complex 2,
in which the ligand acts as neutral bidentate.

The EPR spectra of the copper (II) complexes 1–5 in DMSO solution confirmed the new structures.
The EPR parameters g//, gK, A// and the energies of d–d transitions were used to evaluate the
bonding parameters. The orbital reduction factors indicate the presence of out-of-plane π-bonding for
complexes 2, 4, 5 and of some in-plane π-bonding for the complexes 1 and 3.

The ligand and the metal complexes 1–7 have been screened for their in vitro antiproliferative
activity against NCI-H1573 lung adenocarcinoma, SKBR-3 human breast, MCF-7 human breast,
A375 human melanoma cancer cells and HL-60 human promyelocytic leukemia cells and for their
in vitro antimicrobial activity against Escherichia coli, Salmonella enteritidis, Staphylococcus aureus,
Enterococcus faecalis and Candida albicans.

The highest antiproliferative activity of all compounds was for the NCI-H1573 lung
adenocarcinoma and MCF-7 breast cancer cell lines, while SKBR-3 breast cancer cells seems to be more
resistant to treatment. Results of antiproliferative activity towards HL-60 cells indicated that the ligand
alone has no cytotoxic effects at the three tested concentrations. The complexes 2, 6 and 7 significantly
reduced the malignant HL-60 cell growth.

The quantitative antimicrobial activity test results proved that both the ligand and complex
combinations have specific antimicrobial activity, depending on the microbial species tested.

We believe that the antiproliferative activity is influenced by the type of chemical bond
existing in-plane and out-of-plane of the molecule. Good results were recorded for compounds
showing K// > KK. These promising results are encouraging for further research in this field. Our
continued, detailed studies of the toxicity of these compounds, as well as mechanism of action are in
process, which could be helpful in designing more potent antitumor agents for therapeutic use.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
5/674/s1.
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