Next Article in Journal
Synthesis and Characterization of Photo-Responsive Carbosilane Dendrimers
Next Article in Special Issue
Rhodanineacetic Acid Derivatives as Potential Drugs: Preparation, Hydrophobic Properties and Antifungal Activity of (5-Arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic Acids
Previous Article in Journal
Phenolics: From Chemistry to Biology
Article Menu

Article Versions

Export Article

Open AccessArticle
Molecules 2009, 14(6), 2212-2225; doi:10.3390/molecules14062212

Examination of Imprinting Process with Molsidomine as a Template

Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
Author to whom correspondence should be addressed.
Received: 7 May 2009 / Revised: 4 June 2009 / Accepted: 11 June 2009 / Published: 17 June 2009
(This article belongs to the Special Issue ECSOC-12)
Download PDF [252 KB, uploaded 18 June 2014]


Eight different functional monomers were used with ethylene glycol dimethacrylate as a cross-linker and molsidomine as a template to obtain molecularly imprinted polymers (MIPs). Non-covalent interactions between molsidomine and each functional monomer in DMSO prior to thermal bulk polymerization were utilized. On the basis of calculated imprinting factors, MIP prepared with N,N’-diallyltartaramide was chosen for further investigations. Examination of interactions in the prepolymerization complex between molsidomine and N,N’-diallyltartaramide was performed using the Job method. The absorbance of isomolar solutions reaching a maximum for the molar ratio of template to monomer equal to 1:4. Scatchard analysis was used for estimation of the dissociation constants and the maximum amounts of binding sites. The polymer based on N,N’-diallyltartaramide has two classes of heterogeneous binding sites characterized by two values of Kd and two Bmax: Kd(1) = 1.17 mM-1 and Bmax(1) = 0.8 μmol/mg for the higher affinity binding sites, and Kd(2) = 200 μM-1 and Bmax(2) = 2.05 μmol/mg for the lower affinity binding sites. Furthermore, effects of pH and organic solvent on binding properties of MIP and NIP were investigated, together with release of molsidomine from both MIP and NIP.
Keywords: molsidomine; molecularly imprinted polymers; sustained release molsidomine; molecularly imprinted polymers; sustained release
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Luliński, P.; Maciejewska, D. Examination of Imprinting Process with Molsidomine as a Template. Molecules 2009, 14, 2212-2225.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top