Emerging and Re-emerging Fish and Shellfish Viruses - Special Issue Dedicated to Dr. James R. Winton

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Aquatic Animals".

Deadline for manuscript submissions: closed (31 May 2022) | Viewed by 36332

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine and Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
Interests: diseases of aquatic animals
School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI 49783, USA
Interests: fish diseases; innate and adaptive immunity; host-pathogen interaction; vaccine and immunostimulants development; diagnosis of diseases; epidemic survey; pathogenic mechanisms of infectious diseases; environmental impacts on fish health
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

It is an honor for us to be the Guest Editors of this Special Issue in the reputable journal Animals dedicated to James R. Winton of the United States Geological Service, Western Fisheries Research Center, Seattle, Washington. Dr. Winton has recently retired after five decades of distinguished service. We, his students, friends, colleagues, and collaborators, are assembling this Special Issue on emerging and re-emerging fish and shellfish viruses as a tribute to his outstanding career. Dr. Winton’s remarkable achievements that focused on fish viruses are summarized in his curriculum vitae click here. text
Emerging and re-emerging fish and shellfish viral infections present a substantial impediment to fishery conservation, sustainability, and farming. What led to the emergence of these serious pathogens? What is the extent of the losses they can cause to the environment and fishery recruitment? What is the best management strategy to control the spread of these viruses and mitigate their effects? These and more important and intriguing questions were tackled, and many successfully solved, through the novel research approach of Dr. Winton. Overwhelmed by the novel viruses, fishery managers and scientists from all over the world sought the expertise of Dr. Winton, who led them to deciphering the nature of these viruses, their reservoirs, and modes of transmission, as well as potential targets for drug discovery and vaccine development. Dr. Winton also paved the way to innovative paths of research in the field that motivated many students and junior colleagues to follow his footsteps.
Thanks and gratitude are due to all the authors who contributed their outstanding research papers to this Special Issue in recognition of the profound impact Dr. Winton has had on the field of fish health and management, one that shall be felt for generations to come.

Prof. Mohamed Faisal
Dr. Jun Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fish and shellfish viruses
  • host-pathogen intricacies
  • emerging viral infections
  • development of novel diagnostic assays
  • fish virus immunology
  • vaccine development.

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

26 pages, 8154 KiB  
Article
First Isolation of a Herpesvirus (Family Alloherpesviridae) from Great Lakes Lake Sturgeon (Acipenser fulvescens)
by Amber E. Johnston, Megan A. Shavalier, Kim T. Scribner, Esteban Soto, Matt J. Griffin, Geoffrey C. Waldbieser, Bradley M. Richardson, Andrew D. Winters, Susan Yun, Edward A. Baker, Douglas L. Larson, Matti Kiupel and Thomas P. Loch
Animals 2022, 12(23), 3230; https://doi.org/10.3390/ani12233230 - 22 Nov 2022
Cited by 4 | Viewed by 2378
Abstract
The lake sturgeon (Acipenser fulvescens; LST) is the only native sturgeon species in the Great Lakes (GL), but due to multiple factors, their current populations are estimated to be <1% of historical abundances. Little is known about infectious diseases affecting GL-LST [...] Read more.
The lake sturgeon (Acipenser fulvescens; LST) is the only native sturgeon species in the Great Lakes (GL), but due to multiple factors, their current populations are estimated to be <1% of historical abundances. Little is known about infectious diseases affecting GL-LST in hatchery and wild settings. Therefore, a two-year disease surveillance study was undertaken, resulting in the detection and first in vitro isolation of a herpesvirus from grossly apparent cutaneous lesions in wild adult LST inhabiting two GL watersheds (Erie and Huron). Histological and ultrastructural examination of lesions revealed proliferative epidermitis associated with herpesvirus-like virions. A virus with identical ultrastructural characteristics was recovered from cells inoculated with lesion tissues. Partial DNA polymerase gene sequencing placed the virus within the Family Alloherpesviridae, with high similarity to a lake sturgeon herpesvirus (LSHV) from Wisconsin, USA. Genomic comparisons revealed ~84% Average Nucleotide Identity between the two isolates, leading to the proposed classification of LSHV-1 (Wisconsin) and LSHV-2 (Michigan) for the two viruses. When naïve juvenile LST were immersion-exposed to LSHV-2, severe disease and ~33% mortality occurred, with virus re-isolated from representative skin lesions, fulfilling Rivers’ postulates. Results collectively show LSHV-2 is associated with epithelial changes in wild adult LST, disease and mortality in juvenile LST, and is a potential threat to GL-LST conservation. Full article
Show Figures

Figure 1

18 pages, 1253 KiB  
Article
Genetics Reveal Long-Distance Virus Transmission Links in Pacific Salmon
by Rachel B. Breyta, William N. Batts and Gael Kurath
Animals 2022, 12(16), 2120; https://doi.org/10.3390/ani12162120 - 18 Aug 2022
Viewed by 1209
Abstract
In the coastal region of Washington State, a major pathogen emergence event occurred between 2007 and 2011 in which steelhead trout (Oncorhynchus mykiss) experienced a high incidence of infection and disease outbreaks due to the rhabdovirus infectious hematopoietic necrosis virus (IHNV). [...] Read more.
In the coastal region of Washington State, a major pathogen emergence event occurred between 2007 and 2011 in which steelhead trout (Oncorhynchus mykiss) experienced a high incidence of infection and disease outbreaks due to the rhabdovirus infectious hematopoietic necrosis virus (IHNV). Genetic typing showed that the introduced viruses were in the steelhead-specific MD subgroup of IHNV and indicated the most likely source was a virus from the nearby Columbia River Basin. In the current study, full-length viral glycoprotein (G) gene sequences were determined for 55 IHNV isolates from both coastal and Columbia fish populations to identify specific source populations and infer mechanisms of transmission to coastal steelhead. We identified three transmission links based on exact fullG genotype matches between Columbia and coastal fish. In all cases, the likely source population was infected juvenile fish, and sink populations were adult fish returning to coastal rivers to spawn. The time intervals between detection in source and sink populations varied from 6 months to nearly 4 years, suggesting different transmission pathways. Surprisingly, distances between source and sink populations varied between 140 and 1000 km. These results confirm repeated introductions of virus from Columbia River Basin fish as the cause of emergence of MD virus on the Washington coast from 2007 to 2011. Full article
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
Shedding Kinetics of Infectious Hematopoietic Necrosis Virus (IHNV) in Juvenile Spring- and Fall-Run Chinook Salmon of the Columbia River Basin
by Daniel G. Hernandez and Gael Kurath
Animals 2022, 12(15), 1887; https://doi.org/10.3390/ani12151887 - 24 Jul 2022
Viewed by 1331
Abstract
This investigation sought to characterize the shedding of infectious hematopoietic necrosis virus (IHNV) in two populations of Columbia River Basin (CRB) Chinook salmon (Oncorhynchus tshawytscha). Juvenile spring- and fall-run Chinook salmon were exposed by immersion to each of three IHN virus [...] Read more.
This investigation sought to characterize the shedding of infectious hematopoietic necrosis virus (IHNV) in two populations of Columbia River Basin (CRB) Chinook salmon (Oncorhynchus tshawytscha). Juvenile spring- and fall-run Chinook salmon were exposed by immersion to each of three IHN virus strains from the UC, MD, and L subgroups, and then monitored for viral shedding from individual fish for 30 days. Detectable quantities of UC, MD and L IHN virus were shed by a subset of fish from each host population (1–9 out of 10 fish total in each treatment group). Viral shedding kinetics were consistent, with a rapid onset of shedding, peak shedding by 2–3 days, and then a rapid decline to below detectable levels by 7 days’ post-exposure to IHNV. Intraspecies variation was observed as spring Chinook salmon shed more UC virus than fall fish: spring Chinook salmon shed UC virus in greater numbers of fish, with 22-fold higher mean peak shedding magnitude, 33-fold higher mean total virus shed per fish, and 900-fold higher total virus shed per treatment group. The L and MD viruses had comparable shedding at intermediate levels in each host population. All viral shedding occurred well before host mortality began, and shedding magnitude did not correlate with virulence differences. Overall, the greater shedding of UC virus from spring Chinook salmon, combined with low virulence, indicates a uniquely high transmission potential that may explain the predominance of UC viruses in CRB Chinook salmon. This also suggests that spring-run fish may contribute more to the ecology of IHNV in the CRB than fall-run Chinook salmon. Full article
Show Figures

Figure 1

11 pages, 268 KiB  
Article
Rapid Diagnostic Test to Detect and Discriminate Infectious Hematopoietic Necrosis Virus (IHNV) Genogroups U and M to Aid Management of Pacific Northwest Salmonid Populations
by William N. Batts, Tony R. Capps, Lisa M. Crosson, Rachel L. Powers, Rachel Breyta and Maureen K. Purcell
Animals 2022, 12(14), 1761; https://doi.org/10.3390/ani12141761 - 09 Jul 2022
Cited by 1 | Viewed by 1294
Abstract
Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonids in North America, Europe, and Asia that is phylogenetically classified into five major virus genogroups (U, M, L, E, and J). The geographic range of the U and M genogroup isolates overlap [...] Read more.
Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonids in North America, Europe, and Asia that is phylogenetically classified into five major virus genogroups (U, M, L, E, and J). The geographic range of the U and M genogroup isolates overlap in the North American Columbia River Basin and Washington Coast region, where these genogroups pose different risks depending on the species of Pacific salmon (Oncorhynchus spp.). For certain management decisions, there is a need to both test for IHNV presence and rapidly determine the genogroup. Herein, we report the development and validation of a U/M multiplex reverse transcription, real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) protein gene. The new U/M RT-rPCR is a rapid, sensitive, and repeatable assay capable of specifically discriminating between North American U and M genogroup IHNV isolates. However, one M genogroup isolate obtained from commercially cultured Idaho rainbow trout (O. mykiss) showed reduced sensitivity with the RT-rPCR test, suggesting caution may be warranted before applying RT-rPCR as the sole surveillance test in areas associated with the Idaho trout industry. The new U/M assay had high diagnostic sensitivity (DSe > 94%) and specificity (DSp > 97%) in free-ranging adult Pacific salmon, when assessed relative to cell culture, the widely accepted reference standard, as well as the previously validated universal N RT-rPCR test. The high diagnostic performance of the new U/M assay indicates the test is suitable for surveillance, diagnosis, and confirmation of IHNV in Pacific salmon from the Pacific Northwest regions where the U and M genogroups overlap. Full article
16 pages, 794 KiB  
Article
Comparative Susceptibilities of Selected California Chinook Salmon and Steelhead Populations to Isolates of L Genogroup Infectious Hematopoietic Necrosis Virus (IHNV)
by Christin M. Bendorf, Susan C. Yun, Gael Kurath and Ronald P. Hedrick
Animals 2022, 12(13), 1733; https://doi.org/10.3390/ani12131733 - 05 Jul 2022
Cited by 3 | Viewed by 1542
Abstract
Salmonid species demonstrate varied susceptibility to the viral pathogen infectious hematopoietic necrosis virus (IHNV). In California conservation hatcheries, juvenile Chinook salmon (Oncorhynchus tshawytscha) have experienced disease outbreaks due to L genogroup IHNV since the 1940s, while indigenous steelhead (anadromous O. mykiss) appear [...] Read more.
Salmonid species demonstrate varied susceptibility to the viral pathogen infectious hematopoietic necrosis virus (IHNV). In California conservation hatcheries, juvenile Chinook salmon (Oncorhynchus tshawytscha) have experienced disease outbreaks due to L genogroup IHNV since the 1940s, while indigenous steelhead (anadromous O. mykiss) appear relatively resistant. To characterize factors contributing to the losses of California salmonid fish due to IHNV, three populations of Chinook salmon and two populations of steelhead native to California watersheds were compared in controlled waterborne challenges with California L genogroup IHNV isolates at viral doses of 104–106 pfu mL−1. Chinook salmon fry were moderately to highly susceptible (CPM = 47–87%) when exposed to subgroup LI and LII IHNV. Susceptibility to mortality decreased with increasing age and also with a higher temperature. Mortality for steelhead fry exposed to two IHNV isolates was low (CPM = 1.3–33%). There was little intraspecies variation in susceptibility among populations of Chinook salmon and no differences in virulence between viruses strains. Viral persistence was demonstrated by the isolation of low levels of infectious IHNV from the skin of two juvenile Chinook salmon at 215 d post exposure. The persistence of the virus among Chinook salmon used for stocking into Lake Oroville may be an explanation for the severe epidemics of IHN at the Feather River hatchery in 1998–2002. Full article
Show Figures

Figure 1

21 pages, 13647 KiB  
Article
Tissue Distribution of the Piscine Novirhabdovirus Genotype IVb in Muskellunge (Esox masquinongy)
by Robert K. Kim, Scott D. Fitzgerald, Matti Kiupel and Mohamed Faisal
Animals 2022, 12(13), 1624; https://doi.org/10.3390/ani12131624 - 24 Jun 2022
Cited by 1 | Viewed by 1692
Abstract
A novel sublineage of the piscine novirhabdovirus (synonym: viral hemorrhagic septicemia virus), genotype IVb, emerged in the Laurentian Great Lakes, causing serious losses in resident fish species as early as 2003. Experimentally infected juvenile muskellunge (Esox masquinongy) were challenged with VHSV-IVb [...] Read more.
A novel sublineage of the piscine novirhabdovirus (synonym: viral hemorrhagic septicemia virus), genotype IVb, emerged in the Laurentian Great Lakes, causing serious losses in resident fish species as early as 2003. Experimentally infected juvenile muskellunge (Esox masquinongy) were challenged with VHSV-IVb at high (1 × 105 PFU mL−1), medium (4 × 103 PFU mL−1), and low (100 PFU mL−1) doses. Samples from spleen, kidneys, heart, liver, gills, pectoral fin, large intestine, and skin/muscle were collected simultaneously from four fish at each predetermined time point and processed for VHSV-IVb reisolaton on Epitheliosum papulosum cyprini cell lines and quantification by plaque assay. The earliest reisolation of VHSV-IVb occurred in one fish from pectoral fin samples at 24 h post-infection. By 6 days post-infection (dpi), all tissue types were positive for VHSV-IVb. Statistical analysis suggested that virus levels were highest in liver, heart, and skin/muscle samples. In contrast, the kidneys and spleen exhibited reduced probability of virus recovery. Virus distribution was further confirmed by an in situ hybridization assay using a VHSV-IVb specific riboprobe. Heart muscle fibers, hepatocytes, endothelia, smooth muscle cells, and fibroblast-like cells of the pectoral fin demonstrated riboprobe labeling, thus highlighting the broad cellular tropism of VHSV-IVb. Histopathologic lesions were observed in areas where the virus was visualized. Full article
Show Figures

Figure 1

10 pages, 2533 KiB  
Article
Investigation on Natural Infection of Covert Mortality Nodavirus in Farmed Giant Freshwater Prawn (Macrobrachium rosenbergii)
by Jitao Xia, Chong Wang, Liang Yao, Wei Wang, Wenxiu Zhao, Tianchang Jia, Xingtong Yu, Guoliang Yang and Qingli Zhang
Animals 2022, 12(11), 1370; https://doi.org/10.3390/ani12111370 - 27 May 2022
Cited by 4 | Viewed by 1849
Abstract
Covert mortality nodavirus (CMNV), from the Nodaviridae family, is characterized by its unique cross-species transmission and wide epidemic distribution features. In this study, Macrobrachium rosenbergii was proved to be infected naturally by CMNV, which further expand the known host range of CMNV. Here, [...] Read more.
Covert mortality nodavirus (CMNV), from the Nodaviridae family, is characterized by its unique cross-species transmission and wide epidemic distribution features. In this study, Macrobrachium rosenbergii was proved to be infected naturally by CMNV, which further expand the known host range of CMNV. Here, 61.9% (70/113) of the M. rosenbergii samples collected from Jiangsu Province were CMNV positive in the TaqMan RT-qPCR assay, which indicated the high prevalence of CMNV in M. rosenbergii. Meanwhile, the sequences of CMNV RdRp gene cloned from M. rosenbergii were highly identical to that of the original CMNV isolate from Penaeus vannamei. In situ hybridization (ISH) and histology analysis indicated that the intestine, gill, hepatopancreas and ovary were the targeted organs of CMNV infection in M. rosenbergii, and obvious histopathological damage including vacuolation and karyopyknosis were occurred in the above organs. Notably, the presence of CMNV in gonad alerted its potential risk of vertical transmission in M. rosenbergii. Additionally, numerous CMNV-like particles could be observed in tissues of hepatopancreas and gill under transmission electron microscopy. Collectively, our results call for concern of the potential negative impact of the spread and prevalence of CMNV in M. rosenbergii on its aquaculture, as well as providing a renewed orientation for further investigation and exploration of the diverse pathogenic factors causing M. rosenbergii diseases. Full article
Show Figures

Figure 1

7 pages, 988 KiB  
Communication
Complete Genome Sequence of Macrobrachium rosenbergii Golda Virus (MrGV) from China
by Fanzeng Meng, Yiting Wang, Guohao Wang, Tao Hu, La Xu, Kathy F. J. Tang, Weifeng Shi, Fan Zhang, Xuan Dong and Jie Huang
Animals 2022, 12(1), 27; https://doi.org/10.3390/ani12010027 - 23 Dec 2021
Cited by 1 | Viewed by 3410
Abstract
In a meta-transcriptome study of the giant freshwater prawn Macrobrachium rosenbergii sampled in 2018 from a hatchery, we identified a variant of Macrobrachium rosenbergii golda virus (MrGV) in postlarvae without clinical signs. The virus belongs to the family Roniviridae, and the genome [...] Read more.
In a meta-transcriptome study of the giant freshwater prawn Macrobrachium rosenbergii sampled in 2018 from a hatchery, we identified a variant of Macrobrachium rosenbergii golda virus (MrGV) in postlarvae without clinical signs. The virus belongs to the family Roniviridae, and the genome of this MrGV variant, Mr-18, consisted of 28,957 nucleotides, including 4 open reading frames (ORFs): (1) ORF1a, encoding a 3C-like protein (3CLP) (4933 aa); (2) ORF1b, encoding a replicase polyprotein (2877 aa); (3) ORF2, encoding a hypothetical nucleocapsid protein (125 aa); and (4) ORF3, encoding a glycoprotein (1503 aa). ORF1a overlaps with ORF1b with 40 nucleotides, where a −1 ribosomal frameshift with slippage sequence 5′-G14925GGUUUU14931-3′ produces the pp1ab polyprotein. The genomic sequence of Mr-18 shared 97.80% identity with MrGV LH1-2018 discovered in Bangladesh. The amino acid sequence identities between them were 99.30% (ORF1a), 99.60% (ORF1b), 100.00% (ORF2), and 99.80% (ORF3), respectively. Phylogenetic analysis of the RNA-dependent RNA polymerase (RdRp) proteins revealed that they clustered together and formed a separate cluster from the genus Okavirus. The finding of MrGV in China warrants further studies to determine its pathogenicity and prevalence within the region. Full article
Show Figures

Figure 1

23 pages, 3344 KiB  
Article
Investigation of Cyprinid Herpesvirus 3 (CyHV-3) Disease Periods and Factors Influencing CyHV-3 Transmission in A Low Stocking Density Infection Trial
by Isaiah E. Tolo, Przemyslaw G. Bajer, Tiffany M. Wolf, Sunil K. Mor and Nicholas B. D. Phelps
Animals 2022, 12(1), 2; https://doi.org/10.3390/ani12010002 - 21 Dec 2021
Cited by 2 | Viewed by 3423
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the etiological agent of koi herpesvirus disease (KHVD) and important pathogen of aquaculture and wild populations of common carp worldwide. Understanding the relative contributions of direct and indirect transmission of CyHV-3 as well as the factors that drive [...] Read more.
Cyprinid herpesvirus 3 (CyHV-3) is the etiological agent of koi herpesvirus disease (KHVD) and important pathogen of aquaculture and wild populations of common carp worldwide. Understanding the relative contributions of direct and indirect transmission of CyHV-3 as well as the factors that drive CyHV-3 transmission can clarify the importance of environmental disease vectors and is valuable for informing disease modeling efforts. To study the mechanisms and factors driving CyHV-3 transmission we conducted infection trials that determined the kinetics of KHVD and the contributions of direct and indirect forms of CyHV-3 transmission, as well as the contributions of contact rate, viral load, pathogenicity and contact type. The incubation period of KHVD was 5.88 + 1.75 days and the symptomatic period was 5.31 + 0.87 days. Direct transmission was determined to be the primary mechanism of CyHV-3 transmission (OR = 25.08, 95%CI = 10.73–99.99, p = 4.29 × 1018) and transmission primarily occurred during the incubation period of KHVD. Direct transmission decreased in the symptomatic period of disease. Transmissibility of CyHV-3 and indirect transmission increased during the symptomatic period of disease, correlating with increased viral loads. Additionally, potential virulence-transmission tradeoffs and disease avoidance behaviors relevant to CyHV-3 transmission were identified. Full article
Show Figures

Figure 1

14 pages, 39872 KiB  
Article
Isolation, Identification and Characterization of a Novel Megalocytivirus from Cultured Tilapia (Oreochromis spp.) from Southern California, USA
by Khalid Shahin, Kuttichantran Subramaniam, Alvin C. Camus, Zeinab Yazdi, Susan Yun, Samantha A. Koda, Thomas B. Waltzek, Felipe Pierezan, Ruixue Hu and Esteban Soto
Animals 2021, 11(12), 3524; https://doi.org/10.3390/ani11123524 - 10 Dec 2021
Cited by 4 | Viewed by 3117
Abstract
In spring 2019, diseased four-month-old tilapia (Oreochromis spp.) from an aquaculture farm in Southern California, USA were received for diagnostic evaluation with signs of lethargy, anorexia, abnormal swimming, and low-level mortalities. At necropsy, non-specific external lesions were noted including fin erosion, cutaneous [...] Read more.
In spring 2019, diseased four-month-old tilapia (Oreochromis spp.) from an aquaculture farm in Southern California, USA were received for diagnostic evaluation with signs of lethargy, anorexia, abnormal swimming, and low-level mortalities. At necropsy, non-specific external lesions were noted including fin erosion, cutaneous melanosis, gill pallor, and coelomic distension. Internal changes included ascites, hepatomegaly, renomegaly, splenomegaly, and multifocal yellow-white nodules in the spleen and kidney. Cultures of spleen and kidney produced bacterial colonies identified as Francisella orientalis. Homogenized samples of gill, brain, liver, spleen, and kidney inoculated onto Mozambique tilapia brain cells (OmB) developed cytopathic effects, characterized by rounding of cells and detaching from the monolayer 6–10 days post-inoculation at 25 °C. Transmission electron microscopy revealed 115.4 ± 5.8 nm icosahedral virions with dense central cores in the cytoplasm of OmB cells. A consensus PCR, targeting the DNA polymerase gene of large double-stranded DNA viruses, performed on cell culture supernatant yielded a sequence consistent with an iridovirus. Phylogenetic analyses based on the concatenated full length major capsid protein and DNA polymerase gene sequences supported the tilapia virus as a novel species within the genus Megalocytivirus, most closely related to scale drop disease virus and European chub iridovirus. An intracoelomic injection challenge in Nile tilapia (O. niloticus) fingerlings resulted in 39% mortality after 16 days. Histopathology revealed necrosis of head kidney and splenic hematopoietic tissues. Full article
Show Figures

Figure 1

13 pages, 2357 KiB  
Article
Chitosan Treatment of E-11 Cells Modulates Transcription of Nonspecific Immune Genes and Reduces Nodavirus Capsid Protein Gene Expression
by Nadia Chérif, Fatma Amdouni, Boutheina Bessadok, Ghada Tagorti and Saloua Sadok
Animals 2021, 11(11), 3097; https://doi.org/10.3390/ani11113097 - 29 Oct 2021
Viewed by 1458
Abstract
This study explores whether crustacean products inhibit viral infections in aquaculture. Chitosan (CHT) was extracted from waste products of Parapenaeus longirostris. Biochemical composition, viscosity measurement, molecular weight, structure and cytotoxicity tests were used to characterize the extracted chitosan. Cultures of E-11 cells [...] Read more.
This study explores whether crustacean products inhibit viral infections in aquaculture. Chitosan (CHT) was extracted from waste products of Parapenaeus longirostris. Biochemical composition, viscosity measurement, molecular weight, structure and cytotoxicity tests were used to characterize the extracted chitosan. Cultures of E-11 cells derived from snakehead Ophicephalus striatus were inoculated with 106.74 TCID50 of an isolate of betanodavirus genotype RGNNV (redspotted grouper nervous necrosis virus) after being treated with solutions of 0.3% CHT for 1 h at room temperature. The antiviral effect of CHT was assessed by comparing the ability of RGNVV to replicate and produce cytopathic effects on CHT-treated cell cultures. The change in RNA expression levels of the nodavirus capsid protein gene and three mediator genes in infected cells with or without CHT treatment was evaluated by qPCR. Changes in gene expression compared to control groups were monitored at 6, 24, 48 and 71 h post treatment in all target gene transcripts. The CCR3 expression in CHT treated cells showed a significant increase (p < 0.05) until day 3. On the other hand, the expression of TNF-α decreased significantly (p < 0.05) in CHT treated cells throughout the experimental period. Likewise, the expression of the IL-10 gene showed a significant downregulation in CHT treated cells at all time points (p ≤ 0.05). As further evidence of an antiviral effect, CHT treatment of cells produced a reduction in virus load as measured by a reduced expression of the viral capsid gene and the increase in RQ values from 406 ± 1.9 at hour 1 to 695 ± 3.27 at 72 h post inoculation. Statistical analysis showed that the expression of the viral capsid gene was significantly lower in cells treated with chitosan (p ≤ 0.05). These results improve our knowledge about the antiviral activity of this bioactive molecule and highlight its potential use in fish feed industry. Full article
Show Figures

Figure 1

15 pages, 3759 KiB  
Article
Initial Evidence That Gilthead Seabream (Sparus aurata L.) Is a Host for Lymphocystis Disease Virus Genotype I
by Mohamed Shawky, Engy Taha, Basem Ahmed, Mahmoud Aly Mahmoud, Mohamed Abdelaziz, Mohamed Faisal and Ausama Yousif
Animals 2021, 11(11), 3032; https://doi.org/10.3390/ani11113032 - 22 Oct 2021
Cited by 4 | Viewed by 2002
Abstract
Marine and brackish water aquacultures are rapidly expanding in the Mediterranean basin. In this context, Egypt recently received a shipment of a 1.5 million juvenile gilthead seabream (Sparus aurata L.) from European Mediterranean facility. Within a few weeks of their arrival, 95% [...] Read more.
Marine and brackish water aquacultures are rapidly expanding in the Mediterranean basin. In this context, Egypt recently received a shipment of a 1.5 million juvenile gilthead seabream (Sparus aurata L.) from European Mediterranean facility. Within a few weeks of their arrival, 95% of the imported fish developed nodules on their skin and fins that lasted for several months. This study was undertaken to describe the clinical disease course, to identify the causative agent, and to investigate its origin. Preliminary diagnosis based on gross lesions and postmortem examination suggested lymphocystis disease (LCD), caused by the lymphocystis disease virus (LCDV; genus Lymphocystivirus, family Iridoviridae). Histopathological and ultrastructural features were typical of LCDV infections. PCR followed by sequencing and phylogenetic analysis of a 306-bp fragment of the major capsid protein (MCP) gene demonstrated the presence of LCDV genotype I, originally associated with LCD in Northern European countries, with 99.7% and 100% nucleotide and deduced amino acid identity values, respectively. LCDV genotype I has neither been reported in this species nor in the region. Regardless of the source of infection, findings of this study add to existing knowledge about the ecology of LCDV genotype I and its host range. Full article
Show Figures

Figure 1

13 pages, 1502 KiB  
Communication
Annual Recurrences of Viral Hemorrhagic Septicemia Epizootics in Age 0 Pacific Herring Clupea pallasii Valenciennes, 1847
by Paul K. Hershberger, Theodore R. Meyers, Jacob L. Gregg, Maya L. Groner, Sophie A. Hall, Hiruni T. Jayasekera, Ashley H. MacKenzie, Abigail S. Neat, Ella N. Piatt and Kyle A. Garver
Animals 2021, 11(8), 2426; https://doi.org/10.3390/ani11082426 - 18 Aug 2021
Cited by 1 | Viewed by 2592
Abstract
Throughout a 20 year biosurveillance period, viral hemorrhagic septicemia virus was isolated in low titers from only 6/7355 opportunistically sampled adult Pacific herring, reflecting the typical endemic phase of the disease when the virus persists covertly. However, more focused surveillance efforts identified the [...] Read more.
Throughout a 20 year biosurveillance period, viral hemorrhagic septicemia virus was isolated in low titers from only 6/7355 opportunistically sampled adult Pacific herring, reflecting the typical endemic phase of the disease when the virus persists covertly. However, more focused surveillance efforts identified the presence of disease hot spots occurring among juvenile life history stages from certain nearshore habitats. These outbreaks sometimes recurred annually in the same temporal and spatial patterns and were characterized by infection prevalence as high as 96%. Longitudinal sampling indicated that some epizootics were relatively transient, represented by positive samples on a single sampling date, and others were more protracted, with positive samples occurring throughout the first 10 weeks of the juvenile life history phase. These results indicate that viral hemorrhagic septicemia (VHS) epizootics in free-ranging Pacific herring C. pallasii are more common than previously appreciated; however, they are easily overlooked if biosurveillance efforts are not designed around times and locations with high disease potential. Full article
Show Figures

Figure 1

15 pages, 4024 KiB  
Article
Different Immune Responses of the Lymphoid Organ in Shrimp at Early Challenge Stage of Vibrio parahaemolyticus and WSSV
by Fuxuan Wang, Shihao Li and Fuhua Li
Animals 2021, 11(8), 2160; https://doi.org/10.3390/ani11082160 - 21 Jul 2021
Cited by 12 | Viewed by 3893
Abstract
The lymphoid organ is an essential part of the immune system involved in cellular and humoral immune responses in shrimp. However, its roles in the immune responses against different pathogens are still largely unclear. In the present study, transcriptomic analysis was applied to [...] Read more.
The lymphoid organ is an essential part of the immune system involved in cellular and humoral immune responses in shrimp. However, its roles in the immune responses against different pathogens are still largely unclear. In the present study, transcriptomic analysis was applied to compare the differentially expressed genes (DEGs) in the lymphoid organ of shrimp after Vibrio or WSSV challenge. In total, 2127 DEGs were screened in the lymphoid organ of shrimp at 6 h post Vibrio parahaemolyticus injection, and 1569 DEGs were obtained at the same time after WSSV challenge. KEGG pathway enrichment analysis of these DEGs revealed that two significantly enriched pathways including “neuroactive ligand–receptor interaction” and “protein digestion and absorption” were responsive to both pathogens. In contrast, “lysosome” was the significantly enriched pathway only in Vibrio challenge whereas carbohydrate metabolism related pathways were the significantly enriched pathways only in WSSV challenge. Further analysis on immune-related DEGs showed that Vibrio challenge induced broad immune responses in the lymphoid organ including activation of several pattern recognition receptors, the proPO activating system, phagocytosis related genes, and immune effectors. In contrast, the immune responses seemed to be inhibited after WSSV infection. The data suggest that the shrimp lymphoid organ plays different functions in response to the infection of distinct pathogens at the early stage, which provides new insights into the immune functions of lymphoid organ in shrimp. Full article
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 3912 KiB  
Review
Revised Taxonomy of Rhabdoviruses Infecting Fish and Marine Mammals
by Peter J. Walker, Laurent Bigarré, Gael Kurath, Laurent Dacheux and Laurane Pallandre
Animals 2022, 12(11), 1363; https://doi.org/10.3390/ani12111363 - 26 May 2022
Cited by 14 | Viewed by 2172
Abstract
The Rhabdoviridae is a large family of negative-sense (-) RNA viruses that includes important pathogens of ray-finned fish and marine mammals. As for all viruses, the taxonomic assignment of rhabdoviruses occurs through a process implemented by the International Committee on Taxonomy of Viruses [...] Read more.
The Rhabdoviridae is a large family of negative-sense (-) RNA viruses that includes important pathogens of ray-finned fish and marine mammals. As for all viruses, the taxonomic assignment of rhabdoviruses occurs through a process implemented by the International Committee on Taxonomy of Viruses (ICTV). A recent revision of taxonomy conducted in conjunction with the ICTV Rhabdoviridae Study Group has resulted in the establishment of three new subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae) within the Rhabdoviridae, as well as three new genera (Cetarhavirus, Siniperhavirus, and Scophrhavirus) and seven new species for viruses infecting fish or marine mammals. All rhabdovirus species have also now been named or renamed to comply with the binomial format adopted by the ICTV in 2021, comprising the genus name followed by a species epithet. Phylogenetic analyses of L protein (RNA-dependent RNA polymerase) sequences of (-) RNA viruses indicate that members of the genus Novirhabdovirus (subfamily Gammarhabdovirinae) do not cluster within the Rhabdoviridae, suggesting the need for a review of their current classification. Full article
Show Figures

Figure 1

Back to TopTop