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Simple Summary: The Rhabdoviridae is a family of viruses that includes some important pathogens
of fish and marine mammals. Aspects of the taxonomic classification of fish viruses assigned to this
family have recently been reviewed by the International Committee on Taxonomy of Viruses (ICTV).
This paper describes the newly approved taxonomy, including the assignment of new subfamilies
and new virus species. The paper also considers a taxonomic conundrum presented by viruses
assigned to one group of fish rhabdoviruses (genus Novirhabdovirus) for which assignment to the
family Rhabdoviridae may not be appropriate.

Abstract: The Rhabdoviridae is a large family of negative-sense (-) RNA viruses that includes important
pathogens of ray-finned fish and marine mammals. As for all viruses, the taxonomic assignment of
rhabdoviruses occurs through a process implemented by the International Committee on Taxonomy
of Viruses (ICTV). A recent revision of taxonomy conducted in conjunction with the ICTV Rhab-
doviridae Study Group has resulted in the establishment of three new subfamilies (Alpharhabdovirinae,
Betarhabdovirinae, and Gammarhabdovirinae) within the Rhabdoviridae, as well as three new genera
(Cetarhavirus, Siniperhavirus, and Scophrhavirus) and seven new species for viruses infecting fish or
marine mammals. All rhabdovirus species have also now been named or renamed to comply with
the binomial format adopted by the ICTV in 2021, comprising the genus name followed by a species
epithet. Phylogenetic analyses of L protein (RNA-dependent RNA polymerase) sequences of (-) RNA
viruses indicate that members of the genus Novirhabdovirus (subfamily Gammarhabdovirinae) do not
cluster within the Rhabdoviridae, suggesting the need for a review of their current classification.

Keywords: (-) RNA virus; fish rhabdovirus; taxonomy; phylogeny

1. Introduction

The Rhabdoviridae is a large and ecologically diverse family of viruses, members of
which infect plants, vertebrates, and/or invertebrates; many rhabdoviruses are transmitted
by arthropod vectors in which they replicate [1-3]. The negative-sense, single-stranded
RNA ([-] ssRNA) genome of rhabdoviruses typically features five structural protein genes
(N, P, M, G, and L) but commonly contains additional genes encoding nonstructural acces-
sory proteins. For animal rhabdoviruses, the enveloped virions are typically bullet-shaped
with prominent surface projections and contain a rigidly assembled tubular nucleocap-
sid with helical symmetry. Rhabdoviruses infecting fish and marine mammals include
important pathogens that can have significant economic impacts on fish farming and
environmental impacts on wild fish populations [4,5].
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2. Virus Classification and the Virus Species Concept

The taxonomic classification of viruses is the responsibility of the International Com-
mittee on Taxonomy of Viruses (ICTV) through the authority conferred by the International
Union of Microbiological Societies (IUMS) [6]. Viruses are classified into hierarchical tax-
onomic ranks based primarily on their evolutionary relationships with a demarcation of
ranks reflecting distinguishable genetic and phenotypic characteristics. To accommodate
the rapidly growing and highly diverse nature of the known virosphere, the ICTV has
recently expanded the scope of virus classification to include 15 taxonomic ranks extending
from realms at the highest level to the lowest level of virus species [7]. There are minimum
requirements that a virus species must be assigned to a genus and that all RNA viruses
employing an RNA-directed RNA polymerase (RARP) must be assigned to the realm Ri-
boviria; the assignment of viruses to intermediate taxonomic levels varies according to the
availability of data on the relevant evolutionary relationships [8].

Central (but often poorly understood) aspects of virus classification are the concept
of virus species and the difference between a virus and a virus species [9]. Viruses are the
concrete entities that virologists study and work with daily. They are named according to
common practice in the scientific literature, usually following the lead of the first report of
the virus. Viruses can be isolated and purified, and their genomes can be sequenced and
can infect a host in which they may cause disease. A virus species, on the other hand, is an
abstract taxonomic category. One cannot isolate, purify, or sequence a virus species as they
do not physically exist. Therefore, one can have an isolate or strain of a virus but not of a
virus species. Virus species are named according to the rules set recently by the ICTV; the
species name now must be binomial, the first word being the genus name and the second
word (the species epithet) being a unique freeform identifier [10]. Unlike virus names that
should never include italics (even when adopting the host species name) and are commonly
abbreviated, virus species names are always italicized and should not be abbreviated. A
common misconception is that the virus species name is the formal or scientific name of a
virus. Unlike the practice used in other branches of biology, a virus species name is not a
formal substitute for a virus name. A virus is not assigned as a species; a virus is assigned
taxonomically to the rank of species.

The ICTV has also now abandoned the concept of the “type species” that was used
previously to identify a virus representing a typical member of a genus [10]. The require-
ment for a type species was largely historical; however, it is now evident that, although
viruses selected to represent the type species may have been either the first discovered
or most studied member of a genus, they were quite often not necessarily typical of all
members of the genus. With the increasing importance of phylogenetic relationships in
defining genera, it is the relationship between the sequences of the member viruses, and
not the sequence of any particular member, that defines a genus. Consequently, rather
than a “type species”, the ICTV now requires the identification of at least one “exemplar”
virus sample for each virus species and a GenBank nucleotide sequence deposition for each
exemplar virus. Typically, a complete or near-complete coding sequence is required for
classification of a virus.

3. The Taxonomic Structure of the Family Rhabdoviridae

Rhabdoviruses were named originally for the apparently unique and characteristic
morphology of the virions (rhabdos [Greek] = rod). Animal rhabdoviruses were described
as bullet- or cone-shaped, and plant rhabdoviruses as rod-shaped with two rounded ends.
The family Rhabdoviridae was established by the ICTV in 1976 comprising only two formally
approved genera (Vesiculovirus and Lyssavirus) and 15 viruses assigned to species [11].
Following ratification by the ICTV membership in February 2022, the family Rhabdoviri-
dae currently comprises some 45 genera and 265 species approved for viruses infecting
or detected in plants, invertebrates (arthropods, nematodes), or vertebrates (mammals,
amphibians, reptiles, birds, fish) [12]. Within the Rhabdoviridae, there are now three sub-
families (Alpharhabdovirinae, Betarhabdovirinae, Gammarhabdovirinae), two of which contain
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viruses of fish and marine mammals as detailed below. The family is also now assigned to
higher taxonomic ranks: realm Riboviria, kingdom Orthornavirae, phylum Negarnaviricota,
subphylum Haploviricotina, class Monojiviricetes, order Mononegavirales [13].

The taxonomic structure within the Rhabdoviridae is based primarily on evolutionary
relationships determined by phylogenetic analysis of rhabdovirus L protein (RdRP) amino
acid sequences [12]. The L protein is the most highly conserved of the rhabdovirus proteins,
allowing relationships to be determined across the extent of this diverse family, and indeed
beyond to include other [-] ssSRNA viruses. The use of a single genetic marker for the
identification of evolutionary relationships is justified by the absence or extremely rare
occurrence of genetic recombination in rhabdoviruses [1].

The demarcation of taxa within the family generally reflects the ecological context
of rhabdovirus evolution through which clusters of closely related viruses usually share
similar categories of host and/or arthropod vector. The inherently dynamic nature of
rhabdovirus genome evolution is also a consideration in the demarcation of genera [1].
Although core structural protein genes (particularly N, P, M, and L) are invariably retained,
accessory genes may be gained de novo and subsequently lost during rhabdovirus genome
evolution and, as a consequence, viruses clustering at the genus level usually share similar
genome architectures [1,14]. Ultimately, viruses assigned to each subfamily or genus
must be monophyletic based on L protein sequences but the points of demarcation can be
somewhat arbitrary, depending on whether the chosen approach is based on “lumping”
or ”splitting”.

The demarcation of rhabdovirus species requires consideration of several criteria typi-
cally based on amino acid sequence identities of structural proteins, natural host/vector
associations, and, when available, the virus neutralization phenotype. Pathogenicity is
considered to be too much dependent on environmental and host factors, and too easily
modified by mutation, to be a useful consideration in species demarcation. Nevertheless,
despite the variable nature of this approach as applied to viruses assigned to different
genera, it can be argued that clusters of viruses representing the species taxon do occur
naturally and can be identified by clear discontinuities in the amino acid or nucleotide
sequence identity profiles of virus isolates. Although potentially influenced by the varia-
tion in the rates of evolution across the family, isolates of viruses assigned to individual
rhabdovirus species typically display the protein amino acid sequence divergence of <10%
in the L and N proteins, and <15% in the G protein.

4. The Subfamily Alpharhabdovirinae

The Alpharhabdoviridae is the largest subfamily currently assigned within the Rhab-
doviridae, comprising 31 genera and 189 approved species for viruses infecting mammals,
amphibians, reptiles, birds, fish, insects, ticks, or nematodes [12]. Viruses assigned to
the Alpharhabdovirinae have sometimes been referred to informally as dimarhabdoviruses
(dipteran-mammalian rhabdoviruses), but this term does not correctly capture the extent
of ecological diversity within the clade [15]. The subfamily now includes five genera
for viruses infecting teleost fish and marine mammals (Table 1). Each genus forms a
monophyletic clade of viruses based on the alignment of L protein sequences (Figure 1).
Demarcation of the genera is based on considerations of the different ecological contexts
in which the viruses have evolved and the genetic distances between the clades. The
assignment of genera may potentially change in the future as more viruses are discovered
and evolutionary relationships are more clearly delineated.
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Table 1. Taxonomic classification of rhabdoviruses infecting fish or marine mammals (2022).

Intra-Species Divergence (%) *

Inter-Species Divergence (%) *

Subfamily Genus Species Exe{nplar Abbrev. Sample § GenBa‘nk
Virus Accession L N G L N G
o Sprivivirus cyprinus spring viremia of SVCV VR-1390 U18101 <27 <34 <87
Sprivivirus carp virus >11.8 >8.2 >254
Sprivivirus esox pike fry rhabdovirus PFRV F4 F]872827 <6.7 <5.6 <16.7
Perhabdovirus perca perch rhabdovirus PRV Dorson JX679246 <45 <27 <3.3
Perhabdovirus trutta }llalgzt“’.“t LTRV 903/87 AF434991 <52 <61 <116
Perhabdovirus rhabdovirus >13.1 >159 >16.7
Perhabdovirus anguilla eel virus European X EVEX CV1153311 FN557213 <22 <1.7 <4.1
Perhabdovirus leman Leman virus LEMV 18/193 MN963996 n.a. n.a. n.a.
Alpharhabdovirinae Cetarhavirus lagenorhynchus dolphin rhabdovirus DRV pxV1 KF958252 na n.a n.a
Cetarhavi i 31.3 31.8 56.1
CHTHAETILS Cetarhavirus phocoena harbour porpoise HPRV WVL17017A MN103537 n.a n.a n.a
rhabdovirus
Siniperhavirus zoarces eelpout rhabdovirus EPRV FSK0523 KR612230 n.a n.a n.a
Siniperhavirus ini i >28.8 >33.7 >50.0
P Siniperhavirus chuatsi Siniperca chuatsi SCRV na. DQ399789 <3.6 <6.8 <10.6 = = =
rhabdovirus
Scophthalmus
Scophrhavirus maximus maximus SMRV n.a HQO003891 n.a n.a n.a
Scophrhavirus rhabdovirus 465 62.6 71.0
Scophrhavirus chanodichthys Wl.lhan redfin c.ulter WhRCDRV DSYS6218 MG600013 n.a n.a n.a
dimarhabdovirus
infectious
Novirhabdovirus salmonid haematopoietic ITHNV WRAC 140883 <24 <12.6 <10.2
necrosis virus
. . . viral haemorrhagic .
Gammarhabdovirinae Novirhabdovirus Novirhabdovirus piscine septicaemia virus VHSV Fil3 Y18263 <71 <111 <115 >15.1 >35.8 >22.9
Novirhabdovirus hirame hirame rhabdovirus HIRRV CA9703 AF104985 0.4 0.8 <1.2
Novirhabdovirus snakehead snakehgad SHRV n.a. AF147498 n.a. n.a. n.a
rhabdovirus

§ Samples of exemplar viruses listed by ICTV (https://talk.ictvonline.org/taxonomy/vmr/m/vmr-file-repository /13181 (accessed on 18 October 2021)). # p-distances estimated in

MEGA 6.0 using all available full-length amino acid sequences. n.a. = not applicable (only one complete sequence currently available).
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Figure 1. The evolutionary history was inferred from a Clustal Omega alignment of 191 complete
L protein sequences of animal rhabdoviruses currently assigned to species in the subfamily Al-
pharhabdovirinae. Phylogenetically informative sites were selected from the alignment using Gblocks
resulting in 1029 positions in the final dataset. The tree was inferred in MEGA?7 by using the maxi-
mum likelihood method based on the WAG + I" amino acid substitution model. The tree with the
highest log likelihood (—151,963.70) is shown. The percentage of trees in which the associated taxa
clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained
automatically by applying Neighbor-Joining and BioN] algorithms to a matrix of pairwise distances
estimated using a JTT model, and then selecting the topology with the superior log likelihood value.
The tree is drawn to scale, with branch lengths measured in the number of substitutions per site.
Bootstrap values (100 iterations) are shown for each node. Newly assigned genera and species are
shown in blue font.
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The genus Sprivivirus currently includes two species: Sprivivirus cyprinus and Spriv-
ivirus esox. The species Sprivivirus cyprinus is assigned for spring viraemia of carp virus
(SVCV). SVCV causes a lethal hemorrhagic disease in cyprinids, particularly common carp
(Cyprinus carpio). The exemplar sample (VR-1390; GenBank U18101) was isolated from
diseased common carp in former Yugoslavia more than 50 years ago [16]. Various genetic
lineages of SVCV have since been reported from Europe, Asia, and the Americas [17]. The
species Sprivivirus esox is assigned for pike fry rhabdovirus (PFRV). The exemplar sample
(F4; Genbank FJ872827) was isolated in 1972 during an outbreak of hemorrhagic disease (red
disease) in cultured northern pike (Esox lucius) in the Netherlands [18]. Two other viruses
are classified as members of the species Sprivivirus esox. Grass carp rhabdovirus (GCRV
V76; GenBank KC113518) and tench rhabdovirus (TRV S64; GenBank KC113517) were
each isolated in Germany in 1982 from cyprinids of two species (Ctenopharyngodon idella
and Tinca tinca, respectively).The amino acid sequence divergence (p-distance) amongst
48 SVCV isolates sampled from fish of different species in Europe, Asia, and North America
over a period of more than 50 years is <2.7% in the L protein, <3.4% in the N protein, and
<8.7% in the G protein (Table 1). In contrast, the amino acid sequence divergence between
all SVCV isolates and the three isolates assigned to the species Sprivivirus esox (PFRV, GCRY,
and TRV) is >11.8% in L, >8.2% in N, and >25.4% in G (Table 1). The amino acid sequence
divergence amongst the three viruses assigned to the species Sprivivirus esox is <6.7% in
L, <5.6% in N, and <16.7% in G (Table 1). Although this range is greater than observed
for SVCV isolates, it falls below the sequence divergence threshold separating viruses
representing the two different species, justifying the assignment of all three isolates to the
same sprivivirus species. Although virus neutralization and host range/susceptibility data
are not available, the limited sequence divergence suggests that PFRV, GCRV, and TRV may
be considered to be isolates of the same virus. Divergence data for all available sprivivirus
L, N, and G amino acid sequences are shown in Supplementary Data File S1.

The genus Perhabdovirus currently includes four species: Perhabdovirus perca, Perhab-
dovirus trutta, Perhabdovirus anguilla, and Perhabdovirus leman. The species Perhabdovirus perca
is assigned perch rhabdovirus (PRV). The exemplar sample (Dorson; GenBank JX679246)
was isolated in 1981 from European perch (Perca fluviatilis) in France [19]. PRV has also
been isolated from pikeperch (Sander lucioperca) in Belgium [20]. The species Perhabdovirus
trutta is assigned for lake trout rhabdovirus (LTRV). The exemplar sample (903/87; Gen-
Bank AF434991) was isolated in 1987 from moribund brown trout (Salmo trutta) fingerlings
from Finland [21]. Several other isolates of this virus, but sometimes named sea trout
rhabdovirus, have been reported from France and Switzerland. The species Perhabdovirus
anguilla is assigned for eel virus European X (EVEX), which was first isolated in 1976
in Japan from a shipment of European eels (Anguilla anguilla) from France [22,23]. The
exemplar sample of EVEX (CV1153311; GenBank FN557213) was isolated from farmed
European eel in the Netherlands in 1992. In 1974, a rhabdovirus was isolated from young
American eel (Anguilla rostrata) imported from Cuba to Japan and named eel virus Ameri-
can (EVA) [23,24]. EVA and EVEX are morphologically, serologically, and genetically highly
similar and are considered to be strains of the same virus [23,25]. Multiple isolates of EVEX
from European eel in Europe and Japan have been sequenced. The new species Perhab-
dovirus leman is assigned for Leman virus (LEMV). The exemplar sample (LEMV 18/193;
GenBank MIN963996) was isolated in 1999 from symptomatic wild young perch collected
from Lake Leman in France [26]. The amino acid sequence divergence amongst viruses
assigned to the same perhabdovirus species is <5.2% in L, <6.1% in N, and <11.6% in G.
The amino acid sequence divergence between viruses assigned to different perhabdovirus
species is >13.1% in L, >15.9% in N, and >16.7% in G (Table 1; Tables S1-53).

The new genus Cetarhavirus includes two species for viruses infecting aquatic mam-
mals (Cetacea): Cetarhavirus lagenorhynchus and Cetarhavirus phocoena. The new species
Cetarhavirus lagenorhynchus is assigned for dolphin rhabdovirus (DRV). The exemplar sam-
ple (pxV1; GenBank KF958252) was isolated from a white-beaked dolphin (Lagenorhynchus
albirostris) stranded on the Dutch island of Schiermonnikoog in 1992 [27]. A neutralizing



Animals 2022, 12,1363

7 of 16

antibody to DRV has been detected in various cetaceans (dolphins, porpoises, whales)
and pinnipeds (seals) sampled from the coast of northwest Europe or the Mediterranean
Sea [27,28]. The new species Cetarhavirus phocoena is assigned for harbor porpoise rhab-
dovirus (HPRV). The exemplar sample (WVL17017A; GenBank MN103537) was isolated
from a harbor porpoise (Phocoena phocoena) stranded off the coast of Alaska in 2013 [29].
These are the only reported samples of the viruses at this time. The amino acid sequence
divergence between the exemplar samples of DRV and HPRV is 31.3% in L, 31.8% in N,
and 56.1% in G (Table 1; Tables S1-S3).

The new genus Siniperhavirus currently includes two species: Siniperhavirus zoarces
and Siniperhavirus chuatsi. The new species Siniperhavirus zoarces is assigned for eelpout
rhabdovirus (EPRV). The exemplar sample (FSK0523; GenBank KR612230) was detected
by high-throughput sequencing in samples of eelpout (Zoarces viviparous) collected during
mass fish mortalities near Stockholm, Sweden, in 2014 [30]. This is the only virus currently
assigned to this species. The new species Siniperhavirus chuatsi is assigned for Siniperca
chuatsi rhabdovirus (SCRV). The exemplar sample (GenBank DQ399789) was isolated in
1997 from mandarin fish (Siniperca chuatsi) collected in Guangdong Province, China [31,32].
Several other viruses have been assigned as members of the species Siniperhavirus chuatsi.
Hybrid snakehead rhabdovirus (C1207; GenBank KC519324) was isolated in 2012 from
a moribund hybrid snakehead fish (Channa maculata x Channa argus cross) collected in
Guangdong Province, China [33]. HSRV (Xingtan; GenBank KP876483) was subsequently
isolated from hybrid snakehead fish from the same province of China in 2014 and shown
to infect mandarin fish [34]. A third HSRV isolate (SHVV-02019; GenBank MW291462)
was obtained from snakehead fish (Channa argus) in China in 2019. Chinese rice-field eel
rhabdovirus (CrERV) (GenBank MH319839) was isolated from diseased Asian swamp
eels (Monopterus albus) collected from Hubei Province, China, in 2017 [35]. Micropterus
salmoides rhabdovirus (MSRV) was first discovered in juvenile mandarin fish collected in
Guangdong Province, China, in 2011 [36]. A second sample (YHO01; GenBank MK397811)
was isolated from moribund largemouth bass (Micropterus salmoides) collected in Zhejiang
Province, China, in 2017 [37]. A third isolate of the virus (FJ985; GenBank MT818233) was
obtained from China in 2019. The amino acid sequence divergence amongst all of these
isolates (SCRV, HSHYV, CrERV, MSRYV) is low (<3.6% in L, <6.8% in N, and <10.6% in G)
and they should all be considered to be variants of the same virus. The amino acid sequence
divergence between viruses assigned to the two different siniperhavirus species is >28.8%
inL, >33.7% in N, and >50.0% in G (Table 1; Tables S1-S3).

The new genus Scophrhavirus currently includes two species: Scophrhavirus maximus
and Scophrhavirus chanodichthys. The new species Scophrhavirus maximus is assigned for
Scophthalmus maximus rhabdovirus (SMRV). The exemplar sample (GenBank HQ003891)
was isolated from turbot fish (Scophthalmus maximus) with signs of hemorrhagic disease
collected from Shandong Province, China [38]. The new species Scophrhavirus chanodichthys
is assigned for Wuhan redfin culter dimarhabdovirus (WhRCDRYV). The exemplar sample
(DSYS6218; GenBank MG600013) was detected by high-throughput sequencing in redfin
culter (Chanodichthys erythropterus) collected in Hubei Province, China [39]. These are the
only reported samples of the viruses at this time. The amino acid sequence divergence
between the exemplar samples of SMRV and WhRCDRYV is 46.5% in L, 62.6% in N, and
71.0% in G (Table 1; Tables S1-53).

5. Subfamily Gammarhabdovirinae

The Gammarhabdovirinae is the smallest subfamily in the Rhabdoviridae, currently com-
prising only a single genus for viruses infecting teleost fish. The genus Novirhabdovirus
currently includes four species: Novirhabdovirus salmonid, Novirhabdovirus piscine, Novirhab-
dovirus hirame, and Novirhabdovirus snakehead.

The species Novirhabdovirus salmonid is assigned for infectious hematopoietic necrosis
virus IHNV). The exemplar sample (WRAC; GenBank 1.40883) was isolated in 1982 from
diseased rainbow trout (Oncorhynchus mykiss) in Idaho, USA [40]. IHNV causes economi-
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cally important disease in a wide variety of salmonid fish species. The virus is enzootic in
coastal areas and river systems throughout western North America but has spread to Asia
and Europe through translocation of infected stock [41]. IHNV is resolved globally into
five major genogroups (U, M, L, ], and E) and several subgroups that vary in geography
and host specificity [42]. The amino acid sequence divergence across all available IHNV
isolates of all genotypes is <2.4% in L, <12.6% in N, and <10.2% in G (Table 1).

The species Novirhabdovirus piscine is assigned for viral hemorrhagic septicaemia virus
(VHSV). The exemplar sample (Fil3; GenBank Y18263) was isolated in 1962 from diseased
rainbow trout (Oncorhynchus mykiss) in Denmark [43]. VHSV is considered to be a pathogen
of major economic and environmental importance. It has been isolated from or detected
in a wide range of teleost fish in Europe, Asia, and North America [44]. VHSV falls into
four major genotypes (I-IV) and various sub-types with naturally confined geographic
distributions [45-47]. The amino acid sequence divergence across all available VHSV
isolates of all genotypes is <7.1% in L, <11.1% in N, and <11.5% in G (Table 1).

The species Novirhabdovirus hirame is assigned for hirame rhabdovirus (HIRRV). First
detected in Japan in 1984, HIRRV causes a hemorrhagic disease characterized by congestion
of the gonads and the accumulation of ascitic fluid [48]. The exemplar sample (CA9703;
GenBank AF104985) was isolated in 1997 from Japanese flounder (Paralichthys olivaceus)
cultured in the Republic of Korea [49,50]. HIRRV occurs in a wide range of marine fish in
several countries in East Asia [49,51,52]. HIRRV has also caused mortalities in freshwater
fish in Europe, possibly as a result of translocation from East Asia [53]. The amino acid
sequence divergence across the small number of available HIRRV isolates is 0.4% in L, 0.8%
in N, and <1.2% in G (Table 1).

The species Novirhabdovirus snakehead is assigned for snakehead rhabdovirus (SHRV).
The exemplar sample (GenBank AF147498) was isolated in 1986 from snakehead fish (Ophi-
cephalus struatus) in Thailand [54,55] with a disease characterized by necrotic ulcerations.
The disease was reported in wild and cultured snakehead fish in several countries of South-
east Asia and various other organisms (viruses, bacteria, fungi, and parasites) have been
found in association with diseased fish [55,56]. Sequences are currently available only for
the exemplar sample of SHRV.

The amino acid sequence divergence between viruses assigned to different novirhab-
dovirus species is >15.1% in L, >35.8% in N, and >22.9% in G (Table 1). Divergence
data for all available novirhabdovirus L, N, and G amino acid sequences are shown in
Supplementary Data File S2 and S3.

Classification of the genus Novirhabdovirus presents somewhat of a taxonomic conun-
drum. Historically, the novirhabdoviruses have been placed taxonomically within the
Rhabdoviridae as they share many of the characteristics of classical rhabdoviruses. Viri-
ons are enveloped, bullet-shaped particles with clear surface projections and a helical
nucleocapsid [57-59]. The novirhabdovirus genome comprises homologs of the five rhab-
dovirus structural protein genes (N, P, M, G, and L) as well as an additional gene (NV)
encoding a unique nonstructural protein that has been shown to be involved in pathogen-
esis and evasion of host immune responses [60-62]. Conserved transcription initiation
and transcription termination sequences flank each gene and, as occurs typically in all
alpharhabdoviruses, the transcription termination sequences feature a conserved run of
seven uridine residues [40,63]. Importantly, novirhabdoviruses encode a single type I trans-
membrane glycoprotein (G) that is structurally homologous with the G proteins of other
animal rhabdoviruses, featuring a unique set of cysteine residues that stabilize the pre- and
post-fusion-folded structures of the protein [64—67]. Nevertheless, phylogenetically, the
novirhabdoviruses sit separately from all other members of the Rhabdoviridae.

Evolutionary analysis using the complete L protein (RARP) sequences of viruses rep-
resenting families in the order Mononegavirales indicates that novirhabdoviruses do not
cluster monophyletically with other rhabdoviruses but tend to cluster with members of
the families Paramyxoviridae, Pneumoviridae, and Filoviridae (Figures 2 and S1) [68]. The
RdRP is considered to be the most useful marker for mapping viral evolutionary history
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as it the most highly conserved sequence element and is indicative of the core replicating
lineage. Indeed, there is evidence that all viral RdRPs and reverse transcriptases are mono-
phyletic [69,70], leading to the creation by the ICTV of the realm Riboviria to accommodate
all viruses with RNA genomes, the phylum Negarnaviricota for all [-] ssSRNA viruses, and
various other intermediate and subsidiary taxonomic ranks [7]. Evolutionary analyses
based on the phylogeny of mononegavirus L proteins cannot, therefore, be disregarded.

Alpharhabdovirinae

Rhabdoviridae

Betarhabdovirinae

no subfamily

! ——=mill Pneumoviridae
! ——mumil]l Filoviridae
———msSEll Paramyxoviridae

1 hirame rhabdovirus AF104985
|: infectious hematopietic necrosis virus L40883

genus Novirhabdovirus

snakehead rhabdovirus AF147498
—‘: viral hemorrhagic septicemia virus Y18263
Artoviridae

e Nyamiviridae

1 ———ssm@lll Bornaviridae

—1< Chuviridae

Figure 2. Maximum clade credibility (MCC) tree inferred from MAFFT alignments of full-length
rhabdovirus L sequences of viruses representing all four members of the genus Novirhabdovirus, as
well as all other genera in the Rhabdoviridae (85 sequences), and members of the families Paramyxoviri-
dae (4 sequences), Pneumoviridae (4 sequences), Filoviridae (4 sequences), Bornaviridae (4 sequences),
Nyamiviridae (3 sequences), Atroviridae (2 sequences), and Chuviridae (6 sequences). Ambiguously
aligned regions were removed from the alignment using TrimAl [71], resulting in a final alignment
length of 916 amino acids. The MCC tree was inferred in BEAST.v1.10.4 by using the Whelan and
Goldman (WAG) model of amino acid substitutions, the gamma + invariant sites model of site hetero-
geneity, and a strict molecular clock (coalescent: constant size) with a random starting tree to perform
10 million MCMC runs. The analysis was sampled at every 10000 states. Tree Annotator v1.10.4 was
used to output the results of the MCC tree model and calculate posterior probabilities with a burn-in
of 1 million states. FigTree was then used to plot the MCC phylogenetic tree. The tree is drawn
to scale, with branch lengths measured in the number of substitutions per site and rooted on the
chuvirus clade. Posterior probability values are shown for each branch. Maximume-likelihood trees
inferred from the same amino acid sequence alignment are shown in Figure S1. Family, subfamily
and genus level taxonomic assignments are shown in bold.
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A possible explanation for the apparent dichotomy between the novirhabdovirus
virion structure and RdRP-based phylogeny is that paramyxovirus, pneumovirus, and
filovirus glycoprotein genes were introduced into an ancestral [-] ssSRNA virus by recom-
bination or lateral gene transfer after the novirhabdovirus lineage had diverged from
that of other rhabdoviruses. Indeed, this appears to be supported by alignments of the
type I transmembrane glycoprotein sequences of members of the family Chuviridae with
the vesicular stomatitis Indiana virus (VSIV) and novirhabdovirus G proteins (Figure 3),
which all share subsets of the same conserved set of cysteine residues. Although genetic
recombination occurs very rarely in mononegaviruses, several other possible recombination
events have been reported previously [72-76]. Indeed, the structural homology between
the VSIV G protein and herpes simplex virus 1 glycoprotein gB indicates that they also have
a common evolutionary origin involving an ancient recombination event [77]. Whatever
the exact mechanism, it appears that some form of either recombination or lateral gene
transfer would be required to arrive at the phylogenetic relationships determined using
RdRP-based sequence alignments.

Nevertheless, we suggest that removal of the novirhabdoviruses from the Rhabdoviridae
requires careful consideration. For example, do we know that alignments used to generate
phylogenetic trees from such distantly related RARP sequences are sufficiently reliable
to be confident of the deep nodes? Certainly, alignments do vary according to the algo-
rithms employed and parameters selected, and the reliability of sequence alignments used
to infer deeply rooted phylogenies linking all RNA viruses has been questioned [69,78].
Moreover, it has been recognized that “even a correct and informative alignment does
not guarantee correct phylogenetic reconstruction due to the technical limitations of the
software, systematic biases of the available evolutionary models, and the fundamentally
random nature of sequence divergence” [79] and that evolutionary relationships inferred
from phylogenetic analysis need to take account of associated biological data [79]. The
structural homology of hallmark genes such as capsid proteins has been used to define
taxonomic relationships for higher taxonomic ranks of some DNA viruses for which there
are no common genes displaying evident sequence homology [80,81]. In the absence
of confidently reliable sequence alignments, should virion structural homology also be
a consideration in the demarcation of some lower taxa? A global view of the molec-
ular and structural properties of novirhabdoviruses may provide a more informative
and useful guide to their taxonomic classification than an analysis based only on RdRP
sequence alignments.
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Figure 3. Clustal Omega alignment of the G proteins of vesicular stomatitis Indiana virus (VSIV),

hirame rhabdovirus (HIRV), infectious hematopoietic necrosis virus (IHNV), snakehead rhabdovirus

(SHRYV), viral hemorrhagic septicemia virus (VHSV), and the chuvirus Wuhan mosquito virus 8

(WhMV-8). The signal domain and transmembrane domains of these class I transmembrane gly-

coproteins are indicated. Twelve cysteine residues in VSIV (CI-CXII) form six disulfide bridges
(CI-CXII, CII-CIV, CIII-CV, CVI-CVII, CVIII-CX, and CIX-CXI), one of which (CII-CIV) is absent in the
novirhabdovirus G proteins [64,67,82]. The WhMV-8 G protein lacks the CIX-CXI disulfide bridge,
shares two additional cysteine residues with the novirhabdoviruses (shaded green), and has two

unique cysteine residues (shaded red) in the ectodomain that may also form a disulfide bridge.
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6. Conclusions

As the result of proposals approved by the ICTV in February 2022, all currently known
rhabdoviruses infecting fish or marine mammals for which complete or near-complete
genome sequences are available have now been assigned taxonomically to the ranks of
genus and species. This is a significant advance as many of these viruses and their complete
coding sequences have been known for years but they were not accommodated in the
previous taxonomic structures. All rhabdovirus species, including those infecting fish
or marine mammals, have also been named or renamed to comply with the binomial
format approved by the ICTV in 2021. Importantly, these taxonomic assignments and the
renaming of species have no bearing on the names of the viruses themselves, which will
continue to follow the long-standing practice of reflecting the common usage adopted in
the scientific literature.

In a practical sense, changes to virus taxonomy can be very disruptive to governments
and industry as the taxonomic classification is often embedded in regulations and legislation
that are intended to ensure timely reporting of detected pathogens and limit the spread of
viral diseases. Nevertheless, virus taxonomy is by nature a complex tapestry that develops
and evolves as knowledge of the virosphere expands. To remain useful and relevant,
taxonomic classifications must adapt as new viruses are discovered and the evolutionary
and ecological relationships between viruses are better understood. This is particularly so
in the age of metagenomic sampling and high-throughput sequencing that has seen very
rapid growth in the number of viral genome sequences and concomitant expansion in the
number of newly assigned taxa. It is hoped that this review will assist by promulgating
the current taxonomic assignments and by explaining some underlying principles of virus
taxonomy that are often misunderstood by members of the scientific community.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ani12111363/s1, Figure S1: Maximum-likelihood (ML) trees
inferred from the same trimmed L protein sequence alignment (916 amino acids) as that used
in Figure 2 but using different methods to evaluate branch support; Table S1: Percentage amino
acid sequence divergence (p-distances) estimated from a CLUSTAL W alignment of perhabdovirus,
cetarhavirus, siniperhavirus, and scophrhavirus L proteins; Table S2: Percentage amino acid sequence
divergence (p-distances) estimated from a CLUSTAL W alignment of perhabdovirus, cetarhavirus,
siniperhavirus, and scophrhavirus N proteins; Table S3: Percentage amino acid sequence divergence
(p-distances) estimated from a CLUSTAL W alignment of perhabdovirus, cetarhavirus, siniperhavirus,
and scophrhavirus G proteins; Supplementary data file S1: Percentage amino acid sequence diver-
gence (p-distances) estimated from CLUSTAL W alignments of sprivivirus L, N, and G proteins;
Supplementary data file S2: Percentage amino acid sequence divergence (p-distances) estimated
from CLUSTAL W alignments of novirhabdovirus L and N proteins; Supplementary data file S3:
Percentage amino acid sequence divergence (p-distances) estimated from CLUSTAL W alignments of
novirhabdovirus G proteins.
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