Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Toxins, Volume 10, Issue 6 (June 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-40
Export citation of selected articles as:
Open AccessFeature PaperReview Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases
Toxins 2018, 10(6), 252; https://doi.org/10.3390/toxins10060252 (registering DOI)
Received: 30 April 2018 / Revised: 14 June 2018 / Accepted: 15 June 2018 / Published: 19 June 2018
PDF Full-text (1575 KB) | HTML Full-text | XML Full-text
Abstract
Staphylococcus aureus is a microorganism resident in the skin and nasal membranes with a dreadful pathogenic potential to cause a variety of community and hospital-acquired infections. The frequency of these infections is increasing and their treatment is becoming more difficult. The ability of
[...] Read more.
Staphylococcus aureus is a microorganism resident in the skin and nasal membranes with a dreadful pathogenic potential to cause a variety of community and hospital-acquired infections. The frequency of these infections is increasing and their treatment is becoming more difficult. The ability of S. aureus to form biofilms and the emergence of multidrug-resistant strains are the main reasons determining the challenge in dealing with these infections. S. aureus' infectious capacity and its success as a pathogen is related to the expression of virulence factors, among which the production of a wide variety of toxins is highlighted. For this reason, a better understanding of S. aureus toxins is needed to enable the development of new strategies to reduce their production and consequently improve therapeutic approaches. This review focuses on understanding the toxin-based pathogenesis of S. aureus and their role on infectious diseases. Full article
(This article belongs to the collection Staphylococcus aureus Toxins)
Figures

Figure 1

Open AccessReview Classes, Databases, and Prediction Methods of Pharmaceutically and Commercially Important Cystine-Stabilized Peptides
Toxins 2018, 10(6), 251; https://doi.org/10.3390/toxins10060251 (registering DOI)
Received: 16 May 2018 / Revised: 12 June 2018 / Accepted: 14 June 2018 / Published: 19 June 2018
PDF Full-text (1433 KB) | HTML Full-text | XML Full-text
Abstract
Cystine-stabilized peptides represent a large family of peptides characterized by high structural stability and bactericidal, fungicidal, or insecticidal properties. Found throughout a wide range of taxa, this broad and functionally important family can be subclassified into distinct groups dependent upon their number and
[...] Read more.
Cystine-stabilized peptides represent a large family of peptides characterized by high structural stability and bactericidal, fungicidal, or insecticidal properties. Found throughout a wide range of taxa, this broad and functionally important family can be subclassified into distinct groups dependent upon their number and type of cystine bonding patters, tertiary structures, and/or their species of origin. Furthermore, the annotation of proteins related to the cystine-stabilized family are under-represented in the literature due to their difficulty of isolation and identification. As a result, there are several recent attempts to collate them into data resources and build analytic tools for their dynamic prediction. Ultimately, the identification and delivery of new members of this family will lead to their growing inclusion into the repertoire of commercial viable alternatives to antibiotics and environmentally safe insecticides. This review of the literature and current state of cystine-stabilized peptide biology is aimed to better describe peptide subfamilies, identify databases and analytics resources associated with specific cystine-stabilized peptides, and highlight their current commercial success. Full article
Figures

Figure 1

Open AccessArticle Tb II-I, a Fraction Isolated from Tityus bahiensis Scorpion Venom, Alters Cytokines’: Level and Induces Seizures When Intrahippocampally Injected in Rats
Toxins 2018, 10(6), 250; https://doi.org/10.3390/toxins10060250 (registering DOI)
Received: 27 April 2018 / Revised: 12 June 2018 / Accepted: 15 June 2018 / Published: 19 June 2018
PDF Full-text (1504 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Scorpion venoms are composed of several substances with different pharmacological activities. Neurotoxins exert their effects by targeting ion channels resulting in toxic effects to mammals, insects and crustaceans. Tb II-I, a fraction isolated from Tityus bahiensis scorpion venom, was investigated for its ability
[...] Read more.
Scorpion venoms are composed of several substances with different pharmacological activities. Neurotoxins exert their effects by targeting ion channels resulting in toxic effects to mammals, insects and crustaceans. Tb II-I, a fraction isolated from Tityus bahiensis scorpion venom, was investigated for its ability to induce neurological and immune-inflammatory effects. Two putative β-sodium channel toxins were identified in this fraction, Tb2 II and Tb 4, the latter having been completely sequenced by mass spectrometry. Male Wistar rats, stereotaxically implanted with intrahippocampal cannulas and electrodes, were injected with Tb II-I (2 µg/2 µL) via the intrahippocampal route. The behavior, electrographic activity and cellular integrity of the animals were analyzed and the intracerebral level of cytokines determined. Tb II-I injection induced seizures and damage in the hippocampus. These alterations were correlated with the changes in the level of the cytokines tumoral necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Therefore, the binding of Tb II-I to its target in the central nervous system may induce inflammation resulting in neuropathological and behavioral alterations. Full article
(This article belongs to the Special Issue Scorpion Toxins)
Figures

Figure 1

Open AccessArticle Evaluating the Performance of De Novo Assembly Methods for Venom-Gland Transcriptomics
Toxins 2018, 10(6), 249; https://doi.org/10.3390/toxins10060249 (registering DOI)
Received: 27 April 2018 / Revised: 14 June 2018 / Accepted: 15 June 2018 / Published: 19 June 2018
PDF Full-text (1104 KB) | HTML Full-text | XML Full-text
Abstract
Venom-gland transcriptomics is a key tool in the study of the evolution, ecology, function, and pharmacology of animal venoms. In particular, gene-expression variation and coding sequences gained through transcriptomics provide key information for explaining functional venom variation over both ecological and evolutionary timescales.
[...] Read more.
Venom-gland transcriptomics is a key tool in the study of the evolution, ecology, function, and pharmacology of animal venoms. In particular, gene-expression variation and coding sequences gained through transcriptomics provide key information for explaining functional venom variation over both ecological and evolutionary timescales. The accuracy and usefulness of inferences made through transcriptomics, however, is limited by the accuracy of the transcriptome assembly, which is a bioinformatic problem with several possible solutions. Several methods have been employed to assemble venom-gland transcriptomes, with the Trinity assembler being the most commonly applied among them. Although previous evidence of variation in performance among assembly software exists, particularly regarding recovery of difficult-to-assemble multigene families such as snake venom metalloproteinases, much work to date still employs a single assembly method. We evaluated the performance of several commonly used de novo assembly methods for the recovery of both nontoxin transcripts and complete, high-quality venom-gene transcripts across eleven snake and four scorpion transcriptomes. We varied k-mer sizes used by some assemblers to evaluate the impact of k-mer length on transcript recovery. We showed that the recovery of nontoxin transcripts and toxin transcripts is best accomplished through different assembly software, with SDT at smaller k-mer lengths and Trinity being best for nontoxin recovery and a combination of SeqMan NGen and a seed-and-extend approach implemented in Extender as the best means of recovering a complete set of toxin transcripts. In particular, Extender was the only means tested capable of assembling multiple isoforms of the diverse snake venom metalloproteinase family, while traditional approaches such as Trinity recovered at most one metalloproteinase transcript. Our work demonstrated that traditional metrics of assembly performance are not predictive of performance in the recovery of complete and high quality toxin genes. Instead, effective venom-gland transcriptomic studies should combine and quality-filter the results of several assemblers with varying algorithmic strategies. Full article
(This article belongs to the Section Animal Venoms)
Figures

Figure 1

Open AccessCommunication Detection of Clostridium tetani Neurotoxins Inhibited In Vivo by Botulinum Antitoxin B: Potential for Misleading Mouse Test Results in Food Controls
Toxins 2018, 10(6), 248; https://doi.org/10.3390/toxins10060248 (registering DOI)
Received: 14 May 2018 / Accepted: 13 June 2018 / Published: 19 June 2018
PDF Full-text (2916 KB) | HTML Full-text | XML Full-text
Abstract
The presence of botulinum neurotoxin-producing Clostridia (BPC) in food sources is a public health concern. In favorable environmental conditions, BPC can produce botulinum neurotoxins (BoNTs) outside or inside the vertebrate host, leading to intoxications or toxico-infectious forms of botulism, respectively. BPC in food
[...] Read more.
The presence of botulinum neurotoxin-producing Clostridia (BPC) in food sources is a public health concern. In favorable environmental conditions, BPC can produce botulinum neurotoxins (BoNTs) outside or inside the vertebrate host, leading to intoxications or toxico-infectious forms of botulism, respectively. BPC in food are almost invariably detected either by PCR protocols targeted at the known neurotoxin-encoding genes, or by the mouse test to assay for the presence of BoNTs in the supernatants of enrichment broths inoculated with the tested food sample. The sample is considered positive for BPC when the supernatant contains toxic substances that are lethal to mice, heat-labile and neutralized in vivo by appropriate polyclonal antibodies raised against purified BoNTs of different serotypes. Here, we report the detection in a food sample of a Clostridium tetani strain that produces tetanus neurotoxins (TeNTs) with the above-mentioned characteristics: lethal for mice, heat-labile and neutralized by botulinum antitoxin type B. Notably, neutralization occurred with two different commercially available type B antitoxins, but not with type A, C, D, E and F antitoxins. Although TeNT and BoNT fold very similarly, evidence that antitoxin B antiserum can neutralize the neurotoxic effect of TeNT in vivo has not been documented before. The presence of C. tetani strains in food can produce misleading results in BPC detection using the mouse test. Full article
Figures

Figure 1

Open AccessArticle Staphylococcus aureus Isolates from Bovine Mastitis in Eight Countries: Genotypes, Detection of Genes Encoding Different Toxins and Other Virulence Genes
Received: 24 April 2018 / Revised: 15 June 2018 / Accepted: 15 June 2018 / Published: 17 June 2018
PDF Full-text (533 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Staphylococcus aureus is recognized worldwide as one of the major agents of dairy cow intra-mammary infections. This microorganism can express a wide spectrum of pathogenic factors used to attach, colonize, invade and infect the host. The present study evaluated 120 isolates from eight
[...] Read more.
Staphylococcus aureus is recognized worldwide as one of the major agents of dairy cow intra-mammary infections. This microorganism can express a wide spectrum of pathogenic factors used to attach, colonize, invade and infect the host. The present study evaluated 120 isolates from eight different countries that were genotyped by RS-PCR and investigated for 26 different virulence factors to increase the knowledge on the circulating genetic lineages among the cow population with mastitis. New genotypes were observed for South African strains while for all the other countries new variants of existing genotypes were detected. For each country, a specific genotypic pattern was found. Among the virulence factors, fmtB, cna, clfA and leucocidins genes were the most frequent. The sea and sei genes were present in seven out of eight countries; seh showed high frequency in South American countries (Brazil, Colombia, Argentina), while sel was harboured especially in one Mediterranean country (Tunisia). The etb, seb and see genes were not detected in any of the isolates, while only two isolates were MRSA (Germany and Italy) confirming the low diffusion of methicillin resistance microorganism among bovine mastitis isolates. This work demonstrated the wide variety of S. aureus genotypes found in dairy cattle worldwide. This condition suggests that considering the region of interest might help to formulate strategies for reducing the infection spreading. Full article
(This article belongs to the Section Bacterial Toxins)
Figures

Figure 1

Open AccessArticle Intestinal Microbiota Ecological Response to Oral Administrations of Hydrogen-Rich Water and Lactulose in Female Piglets Fed a Fusarium Toxin-Contaminated Diet
Received: 27 May 2018 / Revised: 11 June 2018 / Accepted: 13 June 2018 / Published: 16 June 2018
PDF Full-text (3153 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The objective of the current experiment was to explore the intestinal microbiota ecological response to oral administrations of hydrogen-rich water (HRW) and lactulose (LAC) in female piglets fed a Fusarium mycotoxin-contaminated diet. A total of 24 individually-housed female piglets (Landrace × large ×
[...] Read more.
The objective of the current experiment was to explore the intestinal microbiota ecological response to oral administrations of hydrogen-rich water (HRW) and lactulose (LAC) in female piglets fed a Fusarium mycotoxin-contaminated diet. A total of 24 individually-housed female piglets (Landrace × large × white; initial average body weight, 7.25 ± 1.02 kg) were randomly assigned to receive four treatments (six pigs/treatment): uncontaminated basal diet (negative control, NC), mycotoxin-contaminated diet (MC), MC diet + HRW (MC + HRW), and MC diet + LAC (MC + LAC) for 25 days. Hydrogen levels in the mucosa of different intestine segments were measured at the end of the experiment. Fecal scoring and diarrhea rate were recorded every day during the whole period of the experiment. Short-chain fatty acids (SCFAs) profiles in the digesta of the foregut and hindgut samples were assayed. The populations of selected bacteria and denaturing gradient gel electrophoresis (DGGE) profiles of total bacteria and methanogenic Archaea were also evaluated. Results showed that Fusarium mycotoxins not only reduced the hydrogen levels in the caecum but also shifted the SCFAs production, and populations and communities of microbiota. HRW treatment increased the hydrogen levels of the stomach and duodenum. HRW and LAC groups also had higher colon and caecum hydrogen levels than the MC group. Both HRW and LAC protected against the mycotoxin-contaminated diet-induced higher diarrhea rate and lower SCFA production in the digesta of the colon and caecum. In addition, the DGGE profile results indicated that HRW and LAC might shift the pathways of hydrogen-utilization bacteria, and change the diversity of intestine microbiota. Moreover, HRW and LAC administrations reversed the mycotoxin-contaminated diet-induced changing of the populations of Escherichia coli (E. coli) and Bifidobacterium in ileum digesta and hydrogen-utilizing bacteria in colon digesta. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on the Intestine)
Figures

Graphical abstract

Open AccessArticle Bordetella Pertussis Adenylate Cyclase Toxin Does Not Possess a Phospholipase A Activity; Serine 606 and Aspartate 1079 Residues Are Not Involved in Target Cell Delivery of the Adenylyl Cyclase Enzyme Domain
Received: 3 May 2018 / Revised: 6 June 2018 / Accepted: 7 June 2018 / Published: 16 June 2018
PDF Full-text (1548 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) plays a crucial role in virulence and airway colonization capacity of the whooping cough agent Bordetella pertussis. The toxin penetrates target cell membranes and exhibits three distinct biological activities. A population of CyaA conformers
[...] Read more.
The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) plays a crucial role in virulence and airway colonization capacity of the whooping cough agent Bordetella pertussis. The toxin penetrates target cell membranes and exhibits three distinct biological activities. A population of CyaA conformers forms small cation-selective pores that permeabilize the cell membrane for potassium efflux, which can provoke colloid-osmotic (oncotic) cell lysis. The other two activities are due to CyaA conformers that transiently form calcium influx conduits in the target cell membrane and translocate the adenylate cyclase (AC) enzyme into cytosol of cells. A fourth putative biological activity has recently been reported; an intrinsic phospholipase A (PLA) activity was claimed to be associated with the CyaA polypeptide and be involved in the mechanism of translocation of the AC enzyme polypeptide across cell membrane lipid bilayer. However, the conclusions drawn by the authors contradicted their own results and we show them to be erroneous. We demonstrate that highly purified CyaA is devoid of any detectable phospholipase A1 activity and that contrary to the published claims, the two putative conserved phospholipase A catalytic residues, namely the Ser606 and Asp1079 residues, are not involved in the process of membrane translocation of the AC domain of CyaA across target membranes. Full article
Figures

Figure 1

Open AccessFeature PaperReview Fusarium Molds and Mycotoxins: Potential Species-Specific Effects
Received: 30 May 2018 / Revised: 8 June 2018 / Accepted: 12 June 2018 / Published: 15 June 2018
PDF Full-text (373 KB) | HTML Full-text | XML Full-text
Abstract
This review summarizes the information on biochemical and biological activity of the main Fusarium mycotoxins, focusing on toxicological aspects in terms of species-specific effects. Both in vitro and in vivo studies have centered on the peculiarity of the responses to mycotoxins, demonstrating that
[...] Read more.
This review summarizes the information on biochemical and biological activity of the main Fusarium mycotoxins, focusing on toxicological aspects in terms of species-specific effects. Both in vitro and in vivo studies have centered on the peculiarity of the responses to mycotoxins, demonstrating that toxicokinetics, bioavailability and the mechanisms of action of these substances vary depending on the species involved, but additional studies are needed to better understand the specific responses. The aim of this review is to summarize the toxicological responses of the main species affected by Fusarium mycotoxins. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Open AccessArticle Evaluation of Mycotoxin Residues on Ready-to-Eat Food by Chromatographic Methods Coupled to Mass Spectrometry in Tandem
Received: 4 May 2018 / Revised: 21 May 2018 / Accepted: 13 June 2018 / Published: 15 June 2018
PDF Full-text (791 KB) | HTML Full-text | XML Full-text
Abstract
Simultaneous determination of twenty-seven mycotoxins in ready-to-eat food samples using “Quick Easy Cheap Rough and Safe” (QuEChERS) extraction and chromatographic methods coupled to mass spectrometry in tandem is described in this study. Mycotoxins included in this survey were aflatoxins (B1, B
[...] Read more.
Simultaneous determination of twenty-seven mycotoxins in ready-to-eat food samples using “Quick Easy Cheap Rough and Safe” (QuEChERS) extraction and chromatographic methods coupled to mass spectrometry in tandem is described in this study. Mycotoxins included in this survey were aflatoxins (B1, B2, G1, G2), enniatins (A, A1, B, B1), beauvericin (BEA), fumonisins (FB1, FB2), sterigmatocystin (STG), deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON), nivalenol (NIV), neosolaniol (NEO), diacetoxyscirpenol (DAS), fusarenon-X (FUS-X), zearalenone (ZEA), α-zearalanol (αZAL), β-zearalenone (βZAL), α-zearalenol (αZOL), β-zearalenol (βzol), T2, and HT-2 toxin. The method showed satisfactory extraction results with recoveries ranging from 63 to 119% for the different food matrix samples. Limits of detection (LODS) and quantification (LOQs) were between 0.15–1.5 µg/kg and 0.5–5 µg/kg, respectively. The method was successfully applied to the analysis of 25 ready-to-eat food samples. Results showed presence of deoxynivalenol at 36% of samples (2.61–21.59 µg/kg), enniatin B at 20% of samples (9.83–86.32 µg/kg), HT-2 toxin at 16% of samples (9.06–34.43 µg/kg), and aflatoxin G2 at 4% of samples (2.84 µg/kg). Mycotoxins were detected mainly in ready-to-eat food samples prepared with cereals, vegetables, and legumes, even at levels below those often obtained from raw food. Full article
(This article belongs to the Special Issue Dietary Mycotoxin Exposure: Emerging Risks to Human Health)
Figures

Graphical abstract

Open AccessArticle Application of Low-Fermenting Yeast Lachancea thermotolerans for the Control of Toxigenic Fungi Aspergillus parasiticus, Penicillium verrucosum and Fusarium graminearum and Their Mycotoxins
Received: 18 May 2018 / Revised: 10 June 2018 / Accepted: 13 June 2018 / Published: 14 June 2018
PDF Full-text (3173 KB) | HTML Full-text | XML Full-text
Abstract
Mycotoxins are important contaminants of food and feed. In this study, low fermenting yeast (Lachancea thermotolerans) and its derivatives were applied against toxigenic fungi and their mycotoxins. A. parasiticus, P. verrucosum and F. graminearum and their mycotoxins were exposed to
[...] Read more.
Mycotoxins are important contaminants of food and feed. In this study, low fermenting yeast (Lachancea thermotolerans) and its derivatives were applied against toxigenic fungi and their mycotoxins. A. parasiticus, P. verrucosum and F. graminearum and their mycotoxins were exposed to yeast volatile organic compounds (VOCs) and cells, respectively. VOCs reduced significantly the fungal growth (up to 48%) and the sporulation and mycotoxin synthesis (up to 96%). Very interestingly, it was shown that even 7 yeast colonies reduced Fusarium’s growth and the synthesis of its mycotoxin, deoxynivalenol (DON). Moreover, decreasing yeast nutrient concentrations did not affect the inhibition of fungal growth, but reduced DON synthesis. In addition, inactivated yeast cells were able to remove up to 82% of the ochratoxin A (OTA). As an application of these findings, the potentialities of the VOCs to protect tomatoes inoculated with F. oxysporum was explored and showed that while in the presence of VOCs, no growth was observed of F. oxysporum on the inoculated surface areas of tomatoes, in the absence of VOCs, F. oxysporum infection reached up to 76% of the tomatoes’ surface areas. These results demonstrate that the application of yeasts and their derivatives in the agriculture and food industry might be considered as a very promising and safe biocontrol approach for food contamination. Full article
Figures

Figure 1

Open AccessFeature PaperReview Toxins of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli
Received: 4 May 2018 / Revised: 7 June 2018 / Accepted: 12 June 2018 / Published: 14 June 2018
PDF Full-text (955 KB) | HTML Full-text | XML Full-text
Abstract
Studies on Shiga toxin-producing Escherichia coli (STEC) typically examine and classify the virulence gene profiles based on genomic analyses. Among the screened strains, a subgroup of STEC which lacks the locus of enterocyte effacement (LEE) has frequently been identified. This raises the question
[...] Read more.
Studies on Shiga toxin-producing Escherichia coli (STEC) typically examine and classify the virulence gene profiles based on genomic analyses. Among the screened strains, a subgroup of STEC which lacks the locus of enterocyte effacement (LEE) has frequently been identified. This raises the question about the level of pathogenicity of such strains. This review focuses on the advantages and disadvantages of the standard screening procedures in virulence profiling and summarizes the current knowledge concerning the function and regulation of toxins encoded by LEE-negative STEC. Although LEE-negative STEC usually come across as food isolates, which rarely cause infections in humans, some serotypes have been implicated in human diseases. In particular, the LEE-negative E. coli O104:H7 German outbreak strain from 2011 and the Australian O113:H21 strain isolated from a HUS patient attracted attention. Moreover, the LEE-negative STEC O113:H21 strain TS18/08 that was isolated from minced meat is remarkable in that it not only encodes multiple toxins, but in fact expresses three different toxins simultaneously. Their characterization contributes to understanding the virulence of the LEE-negative STEC. Full article
(This article belongs to the Section Bacterial Toxins)
Figures

Figure 1

Open AccessReview Functional Assays for Measuring the Catalytic Activity of Ribosome Inactivating Proteins
Received: 18 April 2018 / Revised: 1 June 2018 / Accepted: 7 June 2018 / Published: 14 June 2018
PDF Full-text (278 KB) | HTML Full-text | XML Full-text
Abstract
Ribosome-inactivating proteins (RIPs) are potent toxins that inactivate ribosomes by catalytically removing a specific adenine from the α-sarcin/ricin loop (SRL) of the large rRNA. Direct assays for measuring depurination activity and indirect assays for measuring the resulting translation inhibition have been employed to
[...] Read more.
Ribosome-inactivating proteins (RIPs) are potent toxins that inactivate ribosomes by catalytically removing a specific adenine from the α-sarcin/ricin loop (SRL) of the large rRNA. Direct assays for measuring depurination activity and indirect assays for measuring the resulting translation inhibition have been employed to determine the enzyme activity of RIPs. Rapid and sensitive methods to measure the depurination activity of RIPs are critical for assessing their reaction mechanism, enzymatic properties, interaction with ribosomal proteins, ribotoxic stress signaling, in the search for inhibitors and in the detection and diagnosis of enteric infections. Here, we review the major assays developed for measuring the catalytic activity of RIPs, discuss their advantages and disadvantages and explain how they are used in understanding the catalytic mechanism, ribosome specificity, and dynamic enzymatic features of RIPs. Full article
(This article belongs to the Special Issue Toxins:10th Anniversary)
Open AccessArticle Monocyte Response to Different Campylobacter jejuni Lysates Involves Endoplasmic Reticulum Stress and the Lysosomal–Mitochondrial Axis: When Cell Death Is Better Than Cell Survival
Received: 3 May 2018 / Revised: 6 June 2018 / Accepted: 11 June 2018 / Published: 13 June 2018
PDF Full-text (4118 KB) | HTML Full-text | XML Full-text
Abstract
Campylobacter jejuni is a Gram-negative spiral-shaped bacterium, commonly associated with gastroenteritis in humans. It explicates its virulence also by the cytolethal distending toxin (CDT), able to cause irreversible cell cycle arrest. Infection by C. jejuni may result in the development of the Guillain–Barré
[...] Read more.
Campylobacter jejuni is a Gram-negative spiral-shaped bacterium, commonly associated with gastroenteritis in humans. It explicates its virulence also by the cytolethal distending toxin (CDT), able to cause irreversible cell cycle arrest. Infection by C. jejuni may result in the development of the Guillain–Barré Syndrome, an acute peripheral neuropathy. Symptoms of this disease could be caused by CDT-induced cell death and a subsequent inflammatory response. We tested C. jejuni lysates from different strains on donor monocytes: in fact, monocytes are potent producers of both pro- and anti-inflammatory cytokines, playing a major role in innate immunity and in non-specific host responses. We found, by cytometric and confocal analyses, that mitochondria and lysosomes were differently targeted: The C. jejuni strain that induced the most relevant mitochondrial alterations was the ATCC 33291, confirming an intrinsic apoptotic pathway, whereas the C. jejuni ISS 1 wild-type strain mostly induced lysosomal alterations. Lysates from all strains induced endoplasmic reticulum (ER) stress in monocytes, suggesting that ER stress was not associated with CDT but to other C. jejuni virulence factors. The ER data were consistent with an increase in cytosolic Ca2+ content induced by the lysates. On the contrary, the changes in lysosomal acidic compartments and p53 expression (occurring together from time 0, T0, to 24 h) were mainly due to CDT. The loss of p53 may prevent or impede cell death and it was not observable with the mutant strain. CDT not only was responsible for specific death effects but also seemed to promote an apoptotic stimuli-resisting pathway. Full article
(This article belongs to the Section Bacterial Toxins)
Figures

Figure 1

Open AccessArticle A Novel ShK-Like Toxic Peptide from the Transcriptome of the Cnidarian Palythoa caribaeorum Displays Neuroprotection and Cardioprotection in Zebrafish
Received: 17 May 2018 / Revised: 7 June 2018 / Accepted: 8 June 2018 / Published: 12 June 2018
PDF Full-text (2801 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Palythoa caribaeorum (class Anthozoa) is a zoantharian which, together with other cnidarians, like jellyfishes, hydra, and sea anemones, possesses specialized structures in its tissues, the cnidocytes, which deliver an array of toxins in order to capture prey and deter predators. The whole transcriptome
[...] Read more.
Palythoa caribaeorum (class Anthozoa) is a zoantharian which, together with other cnidarians, like jellyfishes, hydra, and sea anemones, possesses specialized structures in its tissues, the cnidocytes, which deliver an array of toxins in order to capture prey and deter predators. The whole transcriptome of P. caribaeroum was deep sequenced, and a diversity of toxin-related peptide sequences were identified, and some retrieved for functional analysis. In this work, a peptide precursor containing a ShK domain, named PcShK3, was analyzed by means of computational processing, comprising structural phylogenetic analysis, model prediction, and dynamics simulation of peptide-receptor interaction. The combined data indicated that PcShK3 is a distinct peptide which is homologous to a cluster of peptides belonging to the ShK toxin family. In vivo, PcShK3 distributed across the vitelline membrane and accumulated in the yolk sac stripe of zebrafish larvae. Notably, it displayed a significant cardio-protective effect in zebrafish in concentrations inferior to the IC50 (<43.53 ± 6.45 µM), while in high concentrations (>IC50), it accumulated in the blood and caused pericardial edema, being cardiotoxic to zebrafish larvae. Remarkably, PcShK3 suppressed the 6-OHDA-induced neurotoxicity on the locomotive behavior of zebrafish. The present results indicated that PcShK3 is a novel member of ShK toxin family, and has the intrinsic ability to induce neuro- and cardio-protective effects or cause cardiac toxicity, according to its effective concentration. Full article
(This article belongs to the Special Issue Emerging Marine Biotoxins)
Figures

Graphical abstract

Back to Top