Special Issue "Fluorescent Biosensors"

Quicklinks

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Biosensors".

Deadline for manuscript submissions: closed (31 October 2013)

Special Issue Editor

Guest Editor
Dr. Hui-Wang Ai
Department of Chemistry, 501 Big Springs Road, University of California, Riverside, CA 92521, USA
Website: http://research.chem.ucr.edu/groups/ai/
E-Mail: huiwang.ai@ucr.edu
Interests: fluorescent sensors; environmental chemical biology; protein engineering and protein chemistry

Special Issue Information

Dear Colleagues,

The past a few decades have witnessed extraordinary advances in fluorescent biosensors that have revolutionized the way how biology could be studied. Fluorescent biosensors are molecules and devices that measure the concentrations, locations and other dynamics of biomolecules and bioactivities by means of fluorescence. Often these probes are coupled with state-of-the-art instruments including various microscopes and macroscopes to enable the imaging of cells, tissues, and intact multicellular organisms (e.g., plants, animals and human beings).

Fluorescent biosensors are usually based on fluorescent organic molecules, nanoparticles, proteins, or combinations of organic molecules, nanoparticles and proteins. They are designed and engineered to change their fluorescent colors or intensities in response to external stimuli or physiological changes including pH fluctuations, metal ion homeostasis, cell signaling, membrane potential differences, phosphorylation, ubiquitination, redox reactions, and apoptosis. In particular, the 2008 Nobel Prize in Chemistry was awarded to three scientists who discovered and developed fluorescent proteins, which have now been developed into a very large group of biosensors.

The aim of this special issue is to highlight high-quality results (including original research articles and reviews) in the field of fluorescent biosensor. Articles that focus on or propose new ideas and new directions are particularly welcome.

Dr. Huiwang Ai
Guest Editor

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed Open Access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs).


Keywords

  • fluorescent sensor
  • ratiometric sensor
  • intensiometric sensor
  • fluorescent protein
  • synthetic probe
  • quantum dot
  • optogenetic reporter
  • genetically encoded probe
  • reaction-based fluorescent sensor

Published Papers (9 papers)

Sensors 2014, 14(1), 1358-1371; doi:10.3390/s140101358
Received: 31 October 2013; in revised form: 18 December 2013 / Accepted: 18 December 2013 / Published: 13 January 2014
Show/Hide Abstract | PDF Full-text (722 KB) | HTML Full-text | XML Full-text | Supplementary Files

Sensors 2014, 14(1), 1140-1154; doi:10.3390/s140101140
Received: 8 November 2013; in revised form: 6 December 2013 / Accepted: 19 December 2013 / Published: 10 January 2014
Show/Hide Abstract | Cited by 1 | PDF Full-text (351 KB) | HTML Full-text | XML Full-text

Sensors 2013, 13(12), 17332-17345; doi:10.3390/s131217332
Received: 1 November 2013; in revised form: 9 December 2013 / Accepted: 11 December 2013 / Published: 16 December 2013
Show/Hide Abstract | PDF Full-text (219 KB) | HTML Full-text | XML Full-text

Sensors 2013, 13(12), 16736-16758; doi:10.3390/s131216736
Received: 12 November 2013; in revised form: 27 November 2013 / Accepted: 27 November 2013 / Published: 5 December 2013
Show/Hide Abstract | Cited by 1 | PDF Full-text (857 KB) | HTML Full-text | XML Full-text

Sensors 2013, 13(12), 16330-16346; doi:10.3390/s131216330
Received: 18 October 2013; in revised form: 11 November 2013 / Accepted: 13 November 2013 / Published: 28 November 2013
Show/Hide Abstract | PDF Full-text (1081 KB) | HTML Full-text | XML Full-text

Sensors 2013, 13(11), 15422-15433; doi:10.3390/s131115422
Received: 19 October 2013; in revised form: 2 November 2013 / Accepted: 5 November 2013 / Published: 11 November 2013
Show/Hide Abstract | PDF Full-text (593 KB) | HTML Full-text | XML Full-text
abstract graphic

Sensors 2013, 13(11), 14511-14522; doi:10.3390/s131114511
Received: 22 August 2013; in revised form: 11 October 2013 / Accepted: 18 October 2013 / Published: 25 October 2013
Show/Hide Abstract | PDF Full-text (817 KB) | HTML Full-text | XML Full-text | Supplementary Files

Sensors 2013, 13(9), 11507-11521; doi:10.3390/s130911507
Received: 11 August 2013; in revised form: 27 August 2013 / Accepted: 29 August 2013 / Published: 2 September 2013
Show/Hide Abstract | Cited by 2 | PDF Full-text (1888 KB) | HTML Full-text | XML Full-text | Supplementary Files

Sensors 2013, 13(5), 5937-5944; doi:10.3390/s130505937
Received: 28 March 2013; in revised form: 25 April 2013 / Accepted: 5 May 2013 / Published: 10 May 2013
Show/Hide Abstract | Cited by 2 | PDF Full-text (430 KB) | HTML Full-text | XML Full-text
abstract graphic

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Type of Paper: Article
Title:
Signaling Properties of a Yeast Pheromone-Based Cellular Amplification System
Authors: Michael Jahn , Annett Mölle , Gerhard Rödel and Kai Ostermann
Affiliations: Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany; E-Mail: annett.gross@tu-dresden.de
Authors with equal contributions.
Abstract: In order to advance a recently described yeast pheromone-based cell communication and amplifier system [1], we examined its spatial properties in more detail. It utilizes elements of the Saccharomyces cerevisiae mating response pathway and relies on diffusion of the pheromone α–factor as the key signaling molecule. The diffusion property of the pheromone was studied in an agarose hydrogel matrix consisting of two distinct compartments with a shared boundary. One compartment contained α-factor, either synthetic or native, and the other yeast cells responding to the pheromone by forming mating projections (“shmoo”) and expressing enhanced green fluorescent protein (EGFP) as a reporter.
Shmoo formation and fluorescence by the reporter cells was observed in a gradual manner up to a maximal distance of 3 mm indicating a dynamic α–factor gradient. According to a mathematical prediction, a distance of 5 mm can be bridged by pheromone diffusion in 1% agarose. The performance of the assay to measure pheromone response was improved by employing the reporter TurboRFP as one of the brightest red fluorescent proteins, and a 3D two-compartment setup. Even with a 1:20 ratio of α–factor secreting to reporter cells a distinct fluorescence signal can be generated. When using a ratio of 1:1, the secreted pheromone induced fluorescence in a distance of up to 4 mm after six hours. We conclude from both our experimental results and the mathematical diffusion model that the maximum dimension of a compartment should not exceed 5 mm in gradient direction. A spatial separation of different cell types linked by pheromone signaling is an ideal way to amplify, diversify, or detect the original signal. Our data demonstrate the potential of pheromone-driven gene expression in yeast for technical implementation of the modular, multi-cellular signaling and amplification system.
Reference: 1. Gross, A.; Rödel, G.; Ostermann, K. Application of the yeast pheromone system for controlled cell-cell communication and signal amplification. Lett. Appl. Microbiol. 2011, 52, 521-536.

Last update: 12 August 2013

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert