Special Issue "Mine Waste Characterization, Management and Remediation"


A special issue of Minerals (ISSN 2075-163X).

Deadline for manuscript submissions: closed (31 December 2013)

Special Issue Editors

Guest Editor
Dr. Karen Hudson-Edwards
Department of Earth and Planetary Sciences Birkbeck, University of London London WC1E 7HX UK
Website: http://www.bbk.ac.uk/geology/our-staff/karen-hudson-edwards
E-Mail: k.hudson-edwards@bbk.ac.uk
Interests: mine waste characterization; management and remediation; environmental mineralogy; mineral-microbe interactions; mineral dissolution; sulfate minerals; biogeochemical cycles; economic geology

Guest Editor
Prof. Dr. Bernhard Dold
Sustainable Mining Research & Consult EIRL (SUMIRCO EIRL) Casilla 28, San Pedro de la Paz (Biobio) Chile
E-Mail: bernhard.dold@gmail.com
Phone: +56-9-7762-6394
Interests: economic geology; mineralogy; geochemistry; geomicrobiology; biogeochemical cycles; biogeometallurgy; mine waste management; mine waste characterization and prediction; sustainability; hydrogeology; sustainable georesources management

Special Issue Information

Dear Colleagues,

Mining is a vital part of the Global economy, but the extraction of metals, metalloids and other mineral products generates vast quantities of liquid and solid wastes. These wastes can pose risks to ecosystems and humans because they can contain high concentrations of potentially toxic elements. These risks can be mitigated by implementing appropriate management or remediation schemes. Although there are a large number of such schemes available, there is still a need to research the processes, products and effectiveness of their implementation, as well as the nature of the mine wastes themselves. This special issue aims to bring together studies in the areas of mine waste characterization, management and remediation, to review the current state of knowledge and to develop improvements in current schemes. We welcome studies in all of these areas, including schemes involving bacteria and phytoremediation.

Dr. Karen Hudson-Edwards
Prof. Dr. Bernhard Dold
Guest Editors


Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed Open Access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. For this special issue, the Article Processing Charge (APC) will be waived. English correction and/or formatting fees of 250 CHF (Swiss Francs) will be charged in certain cases for those articles accepted for publication that require extensive additional formatting and/or English corrections.


  • mine waste
  • acid mine drainage, neutral mine drainage, basic mine drainage
  • tailings, metallurgical slags and waste rock
  • bioremediation
  • phytoremediation
  • permeable reactive barriers
  • passive and active treatment schemes
  • mine waste management
  • prediction and prevention
  • characterization

Published Papers (7 papers)

Minerals 2014, 4(2), 293-312; doi:10.3390/min4020293
Received: 19 February 2014; in revised form: 8 April 2014 / Accepted: 10 April 2014 / Published: 14 April 2014
Show/Hide Abstract | Download PDF Full-text (835 KB) | View HTML Full-text | Download XML Full-text |  Supplementary Files

Minerals 2014, 4(2), 279-292; doi:10.3390/min4020279
Received: 11 March 2014; in revised form: 3 April 2014 / Accepted: 10 April 2014 / Published: 14 April 2014
Show/Hide Abstract | Download PDF Full-text (756 KB) | View HTML Full-text | Download XML Full-text

Minerals 2014, 4(2), 257-278; doi:10.3390/min4020257
Received: 30 January 2014; in revised form: 29 March 2014 / Accepted: 1 April 2014 / Published: 10 April 2014
Show/Hide Abstract | Download PDF Full-text (761 KB) | Download XML Full-text

Minerals 2014, 4(2), 241-256; doi:10.3390/min4020241
Received: 28 February 2014; in revised form: 1 April 2014 / Accepted: 2 April 2014 / Published: 9 April 2014
Show/Hide Abstract | Download PDF Full-text (13391 KB)
abstract graphic

Minerals 2014, 4(1), 52-73; doi:10.3390/min4010052
Received: 21 December 2013; in revised form: 21 January 2014 / Accepted: 22 January 2014 / Published: 29 January 2014
Show/Hide Abstract | Download PDF Full-text (1092 KB)

Minerals 2014, 4(1), 37-51; doi:10.3390/min4010037
Received: 20 November 2013; in revised form: 24 January 2014 / Accepted: 24 January 2014 / Published: 28 January 2014
Show/Hide Abstract | Download PDF Full-text (1833 KB)

Minerals 2013, 3(4), 412-426; doi:10.3390/min3040412
Received: 12 October 2013; in revised form: 26 November 2013 / Accepted: 28 November 2013 / Published: 13 December 2013
Show/Hide Abstract | Download PDF Full-text (2906 KB) | View HTML Full-text
abstract graphic

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Type of Paper: Review
Title: Environmental Risk of Metal Contaminated River Bank Sediment at Redox-Transitional Zones
Authors: Sarah Lynch, Lesley Batty and Patrick Byrne
Abstract: Diffuse metal pollution from mining impacted sediment released in particulate and dissolved form is widely recognised as a potential source of contamination to river systems and may significantly hinder the achievement of European Union Water Framework Directive objectives. Redox-transitional zones that form along metal contaminated river banks as a result of flood and drought cycles can cause biogeochemical changes that alter the behaviour of di- and trivalent metals iron and manganese and anions such as sulphur. Trace metals are often partitioned with iron, manganese and sulphur minerals in mining contaminated sediment. Due to this partitioning the precipitation and dissolution of iron, manganese and sulphur may influence the mobility of potentially toxic trace metals. This article reviews the literature regarding processes that occur at the oxic-anoxic interface in metal mining contaminated river bank sediment. Research indicates that freshly precipitated metal oxides and sulphides may be more “reactive” (more adsorbent and prone to dissolution when conditions change) than older crystalline forms. Fluctuations at the oxic-anoxic interface brought about through changes in the frequency and duration of flood and drought episode may therefore influence the reactivity of secondary minerals that form in the sediment and the concentration of dissolved trace metal release. Research gaps include the biogeochemical changes that occur, and the reactivity of minerals that form, over time in these dynamic locations. In the UK climate change models predict longer dry periods for some regions, interspersed with higher magnitude flood events. If we are to fully comprehend the future environmental risk redox-transitional zones pose to river systems it is recommended that research efforts focus on identifying the primary controls on trace metal release at the oxic-anoxic interface in mining contaminated river bank sediment for flood and drought cycles of different duration and frequency.

Type of Paper: Review
Utilization of Ferric Compounds from Acid Mine Drainage Treatment Waste in the Biological Oxidation of Organic Pollutants and Ammonis in Anaerobic Wastewater Treatment
Authors: E. Elliot Lewis and Lian-Shin Lin
The acidified discharge from abandoned mine activity, commonly known as acid mine drainage (AMD), is a well-studied result of mineral exposure and leaching into the reestablished water table. Subsequent runoff from these operations impair downstream bodies and acidify the streams via the dissolved sulfate ions in the leachate, compromising the natural ecosystem. Traditionally, treatment techniques for impaired streams include passive or active treatment with a neutralizing agent such as limestone. Along with co-existing metal ions such as manganese, ferrous ions will oxidize and react with the calcium hydroxides to form iron (oxy)hydroxides as a precipitated sludge. Although this sludge is often disposed in impoundment ponds or with other mine waste, it can also be utilized in many different applications from concrete admixtures to coagulants in conventional wastewater treatment. This review focuses on the novel role of iron compounds from AMD treatment sludge in the transformation and removal of organic constituents and the oxidation of ammonia in waste water treatment. Under anoxic conditions, a consortium of bacteria is able to use organic constituents and compounds such as ammonia as electron donors, in turn oxidizing the compounds, while using ferric iron as the electron acceptor. Information is still limited, however, with regards to the identification of the microbial agents and the conditions which influence their activity as well as effects of competing ions (such as manganese, for example) in the system. Anaerobic treatment systems offer potentially significant reductions in operating costs relative to aerobic technologies, and the use of AMD sludge as an inexpensive material source reduces the environmental impact from a waste stream and offers an alternative to long-term sludge management practices such as impoundment. In order to effectively apply this potential to future wastewater treatment technology, it is recommended that future studies work to assess reaction conditions and kinetics with specific focus on composition of sludge and biological characterization.

Type of Paper: Article
Opportunities for Novel Ecosystem Design in Mine Closure: From Landscape Hierarchy to Biodiversity
Authors: David Doley, Patrick Audet, Laurence Rossato and Alex Pudmenzky
Mine closure criteria are often set with the assumption that any desired ecosystem can be established or re-established on the reconstructed mined landscape. Most mining activities are sufficiently severe, extensive and long-lasting that critical physical and biological characteristics of the original landscape are irreversibly altered. Very few reconstructed mined landscapes and their ecosystems resemble the pre-disturbance condition, so even in Australia, with a mature economy and well-developed legislation, relatively few mine leases that have been extinguished by attainment of ecologically-based completion criteria. Without relaxing environmental responsibility, novel ecosystems, in which some or all physical and biotic components are irreversibly different from the historic condition, can provide safe, stable and manageable environments with acceptable ecological functions. That is, for radically disturbed landscapes, functionality is more critical than ecological structure and composition. We propose that an acceptable landscape can be constructed that maximises physical and chemical stability and optimises economy could support vegetation communities and fauna habitats that are different from those existing prior to a disturbance, but are accepted to all stakeholders in the mining activity. As a result, mine closure criteria should be established by detailed planning that makes possible the best attainable physical and chemical conditions, with negotiated identification and testing of the most appropriate biological systems for the various parts of the reconstructed landscape. For preference, revegetation would use species native to a region, but not necessarily to a precise locality unless the physical characteristics of the pre-disturbance environment can be recreated in full. These new ecosystems would not be static, and must be expected to change with time, and to require perpetual management. However, provided landscape design and engineering are combined with appropriate species introductions, sustainable ecosystems can be maintained. We suggest a procedure for guiding decisions concerning the physical and biological properties of reconstructed landscapes that will enable novel ecosystems to meet realistic closure criteria.

Type of Paper: Article
Title: Thermal treatment of mercury mine wastes using a rotary solar kiln
Andrés Navarro, Inmaculada Cañadas and José Rodríguez
Thermal desorption, by a rotary kiln, of mercury contaminated soil and mine wastes has been used in order to volatilize mercury from the contaminated medium. Solar thermal desorption is an innovative treatment technology that utilizes solar energy to increase the volatility of contaminants which are removed from a solid matrix by a controlled air flow system. Samples of soils and mine wastes used in the experiments were collected in the abandoned Valle del Azogue mine (SE, Spain), where was mined a complex ore composed of cinnabar, As minerals (realgar and orpiment) and stibnite, mainly. Results showed that thermal treatment at temperature > 400ºC successfully lowered the Hg content to < 15 mg•kg-1. The Hg removal reached values above 99% in samples where most Hg is bound to mineral components of solid matrix.

Type of Paper: Article
Application of simulated lung and gastric fluid extractions to examine As, Cd and Pb bioaccessibility in pre-mining and mining/smelter affected soils in a historic metal mining district in Nevada
Suzette A. Morman
Simulated lung and gastric fluid extractions were used to examine soil samples from historical mine and smelter locations that ceased operation over one hundred years ago. The study had two objectives: (1) identifying what portion of the potentially toxic elements, arsenic, cadmium and lead were soluble or bioaccessible through an inhalation or ingestion exposure pathway and (2) ascertaining if the effects of the historic beneficiation were still evident and produced a discernible difference in bioaccessibility from weathering processes and background concentrations in this environment. Natural processes such as weathering produce changes in exposed mineralized areas over time and these changes affect properties such as solubility. Results demonstrate total element concentrations in soils remain elevated near the historical smelter locations for As (377 – 4700 mg/kg), Cd (12 – 328 mg/kg) and Pb (1600 – 21,300 mg/kg) above those of mineralized background samples (As 79 – 402 mg/kg, Cd 1.4 – 6 mg/kg, and Pb 304 – 1600 mg/kg). Sample bioaccessibility values were also greater near the former smelter locations for simulated gastric fluid extractions (median values 20% to greater than 30% higher) than local weathered mineralized samples. The simulated lung fluid results are significantly lower than those of the gastric fluid related in part to the near neutral extraction fluid pH but given the high total element concentration considerable amounts are still available to the body for uptake.

Last update: 13 January 2014

Minerals EISSN 2075-163X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert