E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Flavins"

Quicklinks

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry, Molecular Biology and Biophysics".

Deadline for manuscript submissions: closed (30 September 2012)

Special Issue Editor

Guest Editor
Prof. Dr. Robert J. Stanley

Department of Chemistry, Temple University, Beury Hall 130, 1901 N. 13th Street, Philadelphia, PA 19122, USA
Website | E-Mail
Phone: +1 215 204 2027

Published Papers (19 papers)

View options order results:
result details:
Displaying articles 1-19
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Synthesis and Characterization of Naphthalenediimide-Functionalized Flavin Derivatives
Int. J. Mol. Sci. 2013, 14(4), 7468-7479; doi:10.3390/ijms14047468
Received: 19 February 2013 / Revised: 22 March 2013 / Accepted: 26 March 2013 / Published: 3 April 2013
Cited by 4 | PDF Full-text (1112 KB) | HTML Full-text | XML Full-text | Correction | Supplementary Files
Abstract
Two acceptor–acceptor dyads have been synthesized featuring a flavin moiety and a naphthalenediimide (NDI) unit. The NDI unit is linked to the flavin through a short spacer group via either the N(3) or N(10) positions of the flavin. We have investigated the UV-Vis
[...] Read more.
Two acceptor–acceptor dyads have been synthesized featuring a flavin moiety and a naphthalenediimide (NDI) unit. The NDI unit is linked to the flavin through a short spacer group via either the N(3) or N(10) positions of the flavin. We have investigated the UV-Vis and redox properties of these multi-electron accepting systems which indicate that these materials display the collective properties of their component systems. Fluorescence spectroscopy measurements have revealed that their emission properties are dominated by the flavin unit. Full article
(This article belongs to the Special Issue Flavins)
Figures

Open AccessArticle Modeling of Anopheles minimus Mosquito NADPH-Cytochrome P450 Oxidoreductase (CYPOR) and Mutagenesis Analysis
Int. J. Mol. Sci. 2013, 14(1), 1788-1801; doi:10.3390/ijms14011788
Received: 25 September 2012 / Revised: 19 November 2012 / Accepted: 5 January 2013 / Published: 16 January 2013
Cited by 4 | PDF Full-text (979 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Malaria is one of the most dangerous mosquito-borne diseases in many tropical countries, including Thailand. Studies in a deltamethrin resistant strain of Anopheles minimus mosquito, suggest cytochrome P450 enzymes contribute to the detoxification of pyrethroid insecticides. Purified A. minimus CYPOR enzyme (AnCYPOR), which
[...] Read more.
Malaria is one of the most dangerous mosquito-borne diseases in many tropical countries, including Thailand. Studies in a deltamethrin resistant strain of Anopheles minimus mosquito, suggest cytochrome P450 enzymes contribute to the detoxification of pyrethroid insecticides. Purified A. minimus CYPOR enzyme (AnCYPOR), which is the redox partner of cytochrome P450s, loses flavin-adenosine di-nucleotide (FAD) and FLAVIN mono-nucleotide (FMN) cofactors that affect its enzyme activity. Replacement of leucine residues at positions 86 and 219 with phenylalanines in FMN binding domain increases FMN binding, enzyme stability, and cytochrome c reduction activity. Membrane-Bound L86F/L219F-AnCYPOR increases A. minimus P450-mediated pyrethroid metabolism in vitro. In this study, we constructed a comparative model structure of AnCYPOR using a rat CYPOR structure as a template. Overall model structure is similar to rat CYPOR, with some prominent differences. Based on primary sequence and structural analysis of rat and A. minimus CYPOR, C427R, W678A, and W678H mutations were generated together with L86F/L219F resulting in three soluble Δ55 triple mutants. The C427R triple AnCYPOR mutant retained a higher amount of FAD binding and increased cytochrome c reduction activity compared to wild-type and L86F/L219F-Δ55AnCYPOR double mutant. However W678A and W678H mutations did not increase FAD and NAD(P)H bindings. The L86F/L219F double and C427R triple membrane-bound AnCYPOR mutants supported benzyloxyresorufin O-deakylation (BROD) mediated by mosquito CYP6AA3 with a two- to three-fold increase in efficiency over wild-type AnCYPOR. The use of rat CYPOR in place of AnCYPOR most efficiently supported CYP6AA3-mediated BROD compared to all AnCYPORs. Full article
(This article belongs to the Special Issue Flavins)
Figures

Open AccessArticle Crystal Structure of Dimeric Flavodoxin from Desulfovibrio gigas Suggests a Potential Binding Region for the Electron-Transferring Partner
Int. J. Mol. Sci. 2013, 14(1), 1667-1683; doi:10.3390/ijms14011667
Received: 24 October 2012 / Revised: 3 December 2012 / Accepted: 25 December 2012 / Published: 15 January 2013
Cited by 4 | PDF Full-text (1104 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Flavodoxins, which exist widely in microorganisms, have been found in various pathways with multiple physiological functions. The flavodoxin (Fld) containing the cofactor flavin mononucleotide (FMN) from sulfur-reducing bacteria Desulfovibrio gigas (D. gigas) is a short-chain enzyme that comprises 146 residues with
[...] Read more.
Flavodoxins, which exist widely in microorganisms, have been found in various pathways with multiple physiological functions. The flavodoxin (Fld) containing the cofactor flavin mononucleotide (FMN) from sulfur-reducing bacteria Desulfovibrio gigas (D. gigas) is a short-chain enzyme that comprises 146 residues with a molecular mass of 15 kDa and plays important roles in the electron-transfer chain. To investigate its structure, we purified this Fld directly from anaerobically grown D. gigas cells. The crystal structure of Fld, determined at resolution 1.3 Å, is a dimer with two FMN packing in an orientation head to head at a distance of 17 Å, which generates a long and connected negatively charged region. Two loops, Thr59–Asp63 and Asp95–Tyr100, are located in the negatively charged region and between two FMN, and are structurally dynamic. An analysis of each monomer shows that the structure of Fld is in a semiquinone state; the positions of FMN and the surrounding residues in the active site deviate. The crystal structure of Fld from D. gigas agrees with a dimeric form in the solution state. The dimerization area, dynamic characteristics and structure variations between monomers enable us to identify a possible binding area for its functional partners. Full article
(This article belongs to the Special Issue Flavins)
Open AccessArticle Catalytic Mechanism of Short Ethoxy Chain Nonylphenol Dehydrogenase Belonging to a Polyethylene Glycol Dehydrogenase Group in the GMC Oxidoreductase Family
Int. J. Mol. Sci. 2013, 14(1), 1218-1231; doi:10.3390/ijms14011218
Received: 10 October 2012 / Revised: 21 December 2012 / Accepted: 2 January 2013 / Published: 10 January 2013
Cited by 5 | PDF Full-text (910 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol
[...] Read more.
Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor. Full article
(This article belongs to the Special Issue Flavins)
Figures

Open AccessArticle Structural and Phylogenetic Analysis of Rhodobacter capsulatus NifF: Uncovering General Features of Nitrogen-fixation (nif)-Flavodoxins
Int. J. Mol. Sci. 2013, 14(1), 1152-1163; doi:10.3390/ijms14011152
Received: 1 November 2012 / Revised: 14 November 2012 / Accepted: 20 November 2012 / Published: 9 January 2013
Cited by 4 | PDF Full-text (446 KB) | HTML Full-text | XML Full-text
Abstract
Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of
[...] Read more.
Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50’s loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as “short-chain” with the firmicutes flavodoxins and the “long-chain” with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase. Full article
(This article belongs to the Special Issue Flavins)
Figures

Open AccessArticle Bacterial Over-Expression and Purification of the 3'phosphoadenosine 5'phosphosulfate (PAPS) Reductase Domain of Human FAD Synthase: Functional Characterization and Homology Modeling
Int. J. Mol. Sci. 2012, 13(12), 16880-16898; doi:10.3390/ijms131216880
Received: 10 October 2012 / Revised: 14 November 2012 / Accepted: 20 November 2012 / Published: 11 December 2012
Cited by 5 | PDF Full-text (1119 KB) | HTML Full-text | XML Full-text
Abstract
FAD synthase (FADS, EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor, FAD. Human FADS is organized in two domains: -the 3'phosphoadenosine 5'phosphosulfate (PAPS) reductase domain, similar to yeast Fad1p, at the C-terminus, and
[...] Read more.
FAD synthase (FADS, EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor, FAD. Human FADS is organized in two domains: -the 3'phosphoadenosine 5'phosphosulfate (PAPS) reductase domain, similar to yeast Fad1p, at the C-terminus, and -the resembling molybdopterin-binding domain at the N-terminus. To understand whether the PAPS reductase domain of hFADS is sufficient to catalyze FAD synthesis, per se, and to investigate the role of the molybdopterin-binding domain, a soluble “truncated” form of hFADS lacking the N-terminal domain (Δ1-328-hFADS) has been over-produced and purified to homogeneity as a recombinant His-tagged protein. The recombinant Δ1-328-hFADS binds one mole of FAD product very tightly as the wild-type enzyme. Under turnover conditions, it catalyzes FAD assembly from ATP and FMN and, at a much lower rate, FAD pyrophosphorolytic hydrolysis. The Δ1-328-hFADS enzyme shows a slight, but not significant, change of Km values (0.24 and 6.23 µM for FMN and ATP, respectively) and of kcat (4.2 × 10−2 s−1) compared to wild-type protein in the forward direction. These results demonstrate that the molybdopterin-binding domain is not strictly required for catalysis. Its regulatory role is discussed in light of changes in divalent cations sensitivity of the Δ1-328-hFADS versus wild-type protein. Full article
(This article belongs to the Special Issue Flavins)
Open AccessArticle Electrochemical Characterization of Escherichia coli Adaptive Response Protein AidB
Int. J. Mol. Sci. 2012, 13(12), 16899-16915; doi:10.3390/ijms131216899
Received: 7 October 2012 / Revised: 26 November 2012 / Accepted: 3 December 2012 / Published: 11 December 2012
PDF Full-text (653 KB) | HTML Full-text | XML Full-text
Abstract
When exposed to known DNA-damaging alkylating agents, Escherichia coli cells increase production of four DNA repair enzymes: Ada, AlkA, AlkB, and AidB. The role of three enzymes (Ada, AlkA, and AlkB) in repairing DNA lesions has been well characterized, while the function of
[...] Read more.
When exposed to known DNA-damaging alkylating agents, Escherichia coli cells increase production of four DNA repair enzymes: Ada, AlkA, AlkB, and AidB. The role of three enzymes (Ada, AlkA, and AlkB) in repairing DNA lesions has been well characterized, while the function of AidB is poorly understood. AidB has a distinct cofactor that is potentially related to the elusive role of AidB in adaptive response: a redox active flavin adenine dinucleotide (FAD). In this study, we report the thermodynamic redox properties of the AidB flavin for the first time, both for free protein and in the presence of potential substrates. We find that the midpoint reduction potential of the AidB flavin is within a biologically relevant window for redox chemistry at −181 mV, that AidB significantly stabilizes the flavin semiquinone, and that small molecule binding perturbs the observed reduction potential. Our electrochemical results combined with structural analysis allow for fresh comparisons between AidB and the homologous acyl-coenzyme A dehydrogenase (ACAD) family of enzymes. AidB exhibits several discrepancies from ACADs that suggest a novel catalytic mechanism distinct from that of the ACAD family enzymes. Full article
(This article belongs to the Special Issue Flavins)
Open AccessArticle Role of Key Residues at the Flavin Mononucleotide (FMN):Adenylyltransferase Catalytic Site of the Bifunctional Riboflavin Kinase/Flavin Adenine Dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes
Int. J. Mol. Sci. 2012, 13(11), 14492-14517; doi:10.3390/ijms131114492
Received: 24 September 2012 / Revised: 1 November 2012 / Accepted: 2 November 2012 / Published: 8 November 2012
Cited by 7 | PDF Full-text (1522 KB) | HTML Full-text | XML Full-text
Abstract
In mammals and in yeast the conversion of Riboflavin (RF) into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) is catalysed by the sequential action of two enzymes: an ATP:riboflavin kinase (RFK) and an ATP:FMN adenylyltransferase (FMNAT). However, most prokaryotes depend on a
[...] Read more.
In mammals and in yeast the conversion of Riboflavin (RF) into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) is catalysed by the sequential action of two enzymes: an ATP:riboflavin kinase (RFK) and an ATP:FMN adenylyltransferase (FMNAT). However, most prokaryotes depend on a single bifunctional enzyme, FAD synthetase (FADS), which folds into two modules: the C-terminal associated with RFK activity and the N-terminal associated with FMNAT activity. Sequence and structural analysis suggest that the 28-HxGH-31, 123-Gx(D/N)-125 and 161-xxSSTxxR-168 motifs from FADS must be involved in ATP stabilisation for the adenylylation of FMN, as well as in FAD stabilisation for FAD phyrophosphorolysis. Mutants were produced at these motifs in the Corynebacterium ammoniagenes FADS (CaFADS). Their effects on the kinetic parameters of CaFADS activities (RFK, FMNAT and FAD pyrophosphorilase), and on substrates and product binding properties indicate that H28, H31, N125 and S164 contribute to the geometry of the catalytically competent complexes at the FMNAT-module of CaFADS. Full article
(This article belongs to the Special Issue Flavins)
Figures

Open AccessArticle Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity
Int. J. Mol. Sci. 2012, 13(11), 14149-14157; doi:10.3390/ijms131114149
Received: 20 September 2012 / Revised: 23 October 2012 / Accepted: 26 October 2012 / Published: 2 November 2012
Cited by 9 | PDF Full-text (462 KB) | HTML Full-text | XML Full-text
Abstract
Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx
[...] Read more.
Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. Full article
(This article belongs to the Special Issue Flavins)
Open AccessArticle Arabidopsis RIBA Proteins: Two out of Three Isoforms Have Lost Their Bifunctional Activity in Riboflavin Biosynthesis
Int. J. Mol. Sci. 2012, 13(11), 14086-14105; doi:10.3390/ijms131114086
Received: 11 September 2012 / Revised: 3 October 2012 / Accepted: 17 October 2012 / Published: 31 October 2012
Cited by 1 | PDF Full-text (1270 KB) | HTML Full-text | XML Full-text
Abstract
Riboflavin serves as a precursor for flavocoenzymes (FMN and FAD) and is essential for all living organisms. The two committed enzymatic steps of riboflavin biosynthesis are performed in plants by bifunctional RIBA enzymes comprised of GTP cyclohydrolase II (GCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS).
[...] Read more.
Riboflavin serves as a precursor for flavocoenzymes (FMN and FAD) and is essential for all living organisms. The two committed enzymatic steps of riboflavin biosynthesis are performed in plants by bifunctional RIBA enzymes comprised of GTP cyclohydrolase II (GCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS). Angiosperms share a small RIBA gene family consisting of three members. A reduction of AtRIBA1 expression in the Arabidopsis rfd1mutant and in RIBA1 antisense lines is not complemented by the simultaneously expressed isoforms AtRIBA2 and AtRIBA3. The intensity of the bleaching leaf phenotype of RIBA1 deficient plants correlates with the inactivation of AtRIBA1 expression, while no significant effects on the mRNA abundance of AtRIBA2 and AtRIBA3 were observed. We examined reasons why both isoforms fail to sufficiently compensate for a lack of RIBA1 expression. All three RIBA isoforms are shown to be translocated into chloroplasts as GFP fusion proteins. Interestingly, both AtRIBA2 and AtRIBA3 have amino acid exchanges in conserved peptides domains that have been found to be essential for the two enzymatic functions. In vitro activity assays of GCHII and DHBPS with all of the three purified recombinant AtRIBA proteins and complementation of E. coli ribA and ribB mutants lacking DHBPS and GCHII expression, respectively, confirmed the loss of bifunctionality for AtRIBA2 and AtRIBA3. Phylogenetic analyses imply that the monofunctional, bipartite RIBA3 proteins, which have lost DHBPS activity, evolved early in tracheophyte evolution. Full article
(This article belongs to the Special Issue Flavins)
Open AccessArticle Structural and Catalytic Differences between Two FADH2-Dependent Monooxygenases: 2,4,5-TCP 4-Monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-Monooxygenase (TcpA) from Cupriavidus necator JMP134
Int. J. Mol. Sci. 2012, 13(8), 9769-9784; doi:10.3390/ijms13089769
Received: 18 July 2012 / Revised: 27 July 2012 / Accepted: 31 July 2012 / Published: 6 August 2012
Cited by 4 | PDF Full-text (2737 KB) | HTML Full-text | XML Full-text
Abstract
2,4,5-TCP 4-monooxygenase (TftD) and 2,4,6-TCP 4-monooxygenase (TcpA) have been discovered in the biodegradation of 2,4,5-trichlorophenol (2,4,5-TCP) and 2,4,6-trichlorophenol (2,4,6-TCP). TcpA and TftD belong to the reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenases and both use 2,4,6-TCP as a substrate; however, the two
[...] Read more.
2,4,5-TCP 4-monooxygenase (TftD) and 2,4,6-TCP 4-monooxygenase (TcpA) have been discovered in the biodegradation of 2,4,5-trichlorophenol (2,4,5-TCP) and 2,4,6-trichlorophenol (2,4,6-TCP). TcpA and TftD belong to the reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenases and both use 2,4,6-TCP as a substrate; however, the two enzymes produce different end products. TftD catalyzes a typical monooxygenase reaction, while TcpA catalyzes a typical monooxygenase reaction followed by a hydrolytic dechlorination. We have previously reported the 3D structure of TftD and confirmed the catalytic residue, His289. Here we have determined the crystal structure of TcpA and investigated the apparent differences in specificity and catalysis between these two closely related monooxygenases through structural comparison. Our computational docking results suggest that Ala293 in TcpA (Ile292 in TftD) is possibly responsible for the differences in substrate specificity between the two monooxygenases. We have also identified that Arg101 in TcpA could provide inductive effects/charge stabilization during hydrolytic dechlorination. The collective information provides a fundamental understanding of the catalytic reaction mechanism and the parameters for substrate specificity. The information may provide guidance for designing bioremediation strategies for polychlorophenols, a major group of environmental pollutants. Full article
(This article belongs to the Special Issue Flavins)
Figures

Open AccessArticle Reduction–Oxidation Photocycle Dynamics of Flavins in Starch Films
Int. J. Mol. Sci. 2012, 13(7), 9157-9183; doi:10.3390/ijms13079157
Received: 10 May 2012 / Revised: 2 July 2012 / Accepted: 11 July 2012 / Published: 23 July 2012
Cited by 4 | PDF Full-text (718 KB) | HTML Full-text | XML Full-text
Abstract
The blue-light photo-reduction (conversion of oxidized flavin quinone via flavin semiquinone to fully reduced flavin hydroquinone) and dark re-oxidation of the flavins riboflavin and lumiflavin in starch (α-amylose) films was studied by absorption and luminescence spectroscopy. Blue-light photo-excitation caused an absorption, fluorescence, and
[...] Read more.
The blue-light photo-reduction (conversion of oxidized flavin quinone via flavin semiquinone to fully reduced flavin hydroquinone) and dark re-oxidation of the flavins riboflavin and lumiflavin in starch (α-amylose) films was studied by absorption and luminescence spectroscopy. Blue-light photo-excitation caused an absorption, fluorescence, and phosphorescence decrease which recovered in the dark. The photo-reduction dark-oxidation cycle could be repeated. The efficiency of photo-reduction decreased with exposed excitation energy, and the speed of re-oxidation in the dark slowed down with time after excitation. The absorption did not fully recover. The fluorescence efficiency after a long time of storage in the dark increased beyond the initial flavin quinone fluorescence efficiency. Flavin photo-excitation is thought to cause starch-flavin restructuring (static fluorescence quenching center formation), enabling enhanced photo-induced starch to flavin electron transfer with subsequent flavin reduction and starch oxidation. In the dark, after light switch-off, thermal reversion of flavin reduction and starch oxidation occurred. Full article
(This article belongs to the Special Issue Flavins)

Review

Jump to: Research

Open AccessReview MICAL, the Flavoenzyme Participating in Cytoskeleton Dynamics
Int. J. Mol. Sci. 2013, 14(4), 6920-6959; doi:10.3390/ijms14046920
Received: 2 November 2012 / Revised: 2 March 2013 / Accepted: 11 March 2013 / Published: 27 March 2013
Cited by 7 | PDF Full-text (4546 KB) | HTML Full-text | XML Full-text
Abstract
MICAL (from the Molecule Interacting with CasL) indicates a family of recently discovered cytosolic, multidomain proteins, which uniquely couple an N-terminal FAD-containing monooxygenase-like domain to typical calponine homology, LIM and coiled-coil protein-interaction modules. Genetic and cell biology approaches have demonstrated an essential
[...] Read more.
MICAL (from the Molecule Interacting with CasL) indicates a family of recently discovered cytosolic, multidomain proteins, which uniquely couple an N-terminal FAD-containing monooxygenase-like domain to typical calponine homology, LIM and coiled-coil protein-interaction modules. Genetic and cell biology approaches have demonstrated an essential role of the catalytic activity of the monooxygenase-like domain in transducing the signal initiated by semaphorins interaction with their plexin receptors, which results in local actin cytoskeleton disassembly as part of fundamental processes that include differentiation, migration and cell-cell contacts in neuronal and non-neuronal cell types. This review focuses on the structure-function relations of the MICAL monooxygenase-like domain as they are emerging from the available in vitro studies on mouse, human and Drosophila MICAL forms that demonstrated a NADPH-dependent actin depolymerizing activity of MICAL. With Drosophila MICAL forms, actin depolymerization was demonstrated to be associated to conversion of Met44 to methionine sulfone through a postulated hydroxylating reaction. Arguments supporting the concept that MICAL effect on F-actin may be reversible will be discussed. Full article
(This article belongs to the Special Issue Flavins)
Open AccessReview Why Flavins Are not Competitors of Chlorophyll in the Evolution of Biological Converters of Solar Energy
Int. J. Mol. Sci. 2013, 14(1), 575-593; doi:10.3390/ijms14010575
Received: 9 October 2012 / Revised: 10 December 2012 / Accepted: 13 December 2012 / Published: 27 December 2012
Cited by 3 | PDF Full-text (224 KB) | HTML Full-text | XML Full-text
Abstract
Excited flavin molecules can photocatalyze reactions, leading to the accumulation of free energy in the products, and the data accumulated through biochemical experiments and by modeling prebiological processes suggest that flavins were available in the earliest stages of evolution. Furthermore, model experiments have
[...] Read more.
Excited flavin molecules can photocatalyze reactions, leading to the accumulation of free energy in the products, and the data accumulated through biochemical experiments and by modeling prebiological processes suggest that flavins were available in the earliest stages of evolution. Furthermore, model experiments have shown that abiogenic flavin conjugated with a polyamino acid matrix, a pigment that photocatalyzes the phosphorylation of ADP to form ATP, could have been present in the prebiotic environment. Indeed, excited flavin molecules play key roles in many photoenzymes and regulatory photoreceptors, and the substantial structural differences between photoreceptor families indicate that evolution has repeatedly used flavins as chromophores for photoreceptor proteins. Some of these photoreceptors are equipped with a light-harvesting antenna, which transfers excitation energy to chemically reactive flavins in the reaction center. The sum of the available data suggests that evolution could have led to the formation of a flavin-based biological converter to convert light energy into energy in the form of ATP. Full article
(This article belongs to the Special Issue Flavins)
Figures

Open AccessReview Flavin-Dependent Enzymes in Cancer Prevention
Int. J. Mol. Sci. 2012, 13(12), 16751-16768; doi:10.3390/ijms131216751
Received: 20 September 2012 / Revised: 26 November 2012 / Accepted: 4 December 2012 / Published: 7 December 2012
Cited by 5 | PDF Full-text (1684 KB) | HTML Full-text | XML Full-text
Abstract
Statistical studies have demonstrated that various agents may reduce the risk of cancer’s development. One of them is activity of flavin-dependent enzymes such as flavin-containing monooxygenase (FMO)GS-OX1, FAD-dependent 5,10-methylenetetrahydrofolate reductase and flavin-dependent monoamine oxidase. In the last decade, many papers concerning
[...] Read more.
Statistical studies have demonstrated that various agents may reduce the risk of cancer’s development. One of them is activity of flavin-dependent enzymes such as flavin-containing monooxygenase (FMO)GS-OX1, FAD-dependent 5,10-methylenetetrahydrofolate reductase and flavin-dependent monoamine oxidase. In the last decade, many papers concerning their structure, reaction mechanism and role in the cancer prevention were published. In our work, we provide a more in-depth analysis of flavin-dependent enzymes and their contribution to the cancer prevention. We present the actual knowledge about the glucosinolate synthesized by flavin-containing monooxygenase (FMO)GS-OX1 and its role in cancer prevention, discuss the influence of mutations in FAD-dependent 5,10-methylenetetrahydrofolate reductase on the cancer risk, and describe FAD as an important cofactor for the demethylation of histons. We also present our views on the role of riboflavin supplements in the prevention against cancer. Full article
(This article belongs to the Special Issue Flavins)
Open AccessReview Form Follows Function: Structural and Catalytic Variation in the Class A Flavoprotein Monooxygenases
Int. J. Mol. Sci. 2012, 13(12), 15601-15639; doi:10.3390/ijms131215601
Received: 21 September 2012 / Revised: 8 November 2012 / Accepted: 9 November 2012 / Published: 23 November 2012
Cited by 9 | PDF Full-text (2595 KB) | HTML Full-text | XML Full-text
Abstract
Flavoprotein monooxygenases (FPMOs) exhibit an array of mechanistic solutions to a common chemical objective; the monooxygenation of a target substrate. Each FPMO efficiently couples reduction of a flavin cofactor by NAD(P)H to oxygenation of the target substrate via a (hydro)peroxyflavin intermediate. This purpose
[...] Read more.
Flavoprotein monooxygenases (FPMOs) exhibit an array of mechanistic solutions to a common chemical objective; the monooxygenation of a target substrate. Each FPMO efficiently couples reduction of a flavin cofactor by NAD(P)H to oxygenation of the target substrate via a (hydro)peroxyflavin intermediate. This purpose of this review is to describe in detail the Class A flavoprotein hydroxylases (FPMO) in the context of the other FPMO classes (B–F). Both one and two component FPMOs are found in nature. Two-component enzymes require, in addition to the monooxygenase, the involvement of a reductase that first catalyzes the reduction of the flavin by NAD(P)H. The Class A and B FPMOs are single-component and manage to orchestrate the same net reaction within a single peptide. The Class A enzymes have, by some considerable margin, the most complete research record. These enzymes use choreographed movements of the flavin ring that facilitate access of the organic substrates to the active site, provide a means for interaction of NADPH with the flavin, offer a mechanism to sequester the dioxygen reduction chemistry from solvent and a means to release the product. The majority of the discrete catalytic events of the catalytic cycle can be observed directly in exquisite detail using spectrophotometric kinetic methods and many of the key mechanistic conclusions are further supported by structural data. This review attempts to compile each of the key observations made for both paradigm and newly discovered examples of Class A FPMOs into a complete catalytic description of one enzymatic turnover. Full article
(This article belongs to the Special Issue Flavins)
Figures

Open AccessReview Mutations Associated with Functional Disorder of Xanthine Oxidoreductase and Hereditary Xanthinuria in Humans
Int. J. Mol. Sci. 2012, 13(11), 15475-15495; doi:10.3390/ijms131115475
Received: 7 October 2012 / Revised: 26 October 2012 / Accepted: 29 October 2012 / Published: 21 November 2012
Cited by 17 | PDF Full-text (1205 KB) | HTML Full-text | XML Full-text
Abstract
Xanthine oxidoreductase (XOR) catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O2. The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases
[...] Read more.
Xanthine oxidoreductase (XOR) catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O2. The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in urine. Xanthinuria is classified into two subtypes, type I and type II. Type I xanthinuria involves XOR deficiency due to genetic defect of XOR, whereas type II xanthinuria involves dual deficiency of XOR and aldehyde oxidase (AO, a molybdoflavo enzyme similar to XOR) due to genetic defect in the molybdenum cofactor sulfurase. Molybdenum cofactor deficiency is associated with triple deficiency of XOR, AO and sulfite oxidase, due to defective synthesis of molybdopterin, which is a precursor of molybdenum cofactor for all three enzymes. The present review focuses on mutation or chemical modification studies of mammalian XOR, as well as on XOR mutations identified in humans, aimed at understanding the reaction mechanism of XOR and the relevance of mutated XORs as models to estimate the possible side effects of clinical application of XOR inhibitors. Full article
(This article belongs to the Special Issue Flavins)
Open AccessReview Dynamic Control of Electron Transfers in Diflavin Reductases
Int. J. Mol. Sci. 2012, 13(11), 15012-15041; doi:10.3390/ijms131115012
Received: 8 October 2012 / Revised: 2 November 2012 / Accepted: 13 November 2012 / Published: 15 November 2012
Cited by 11 | PDF Full-text (1408 KB) | HTML Full-text | XML Full-text
Abstract
Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN
[...] Read more.
Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN flavins sandwiched by one or several non-catalytic domains. The catalytic domains are analogous to existing globular proteins: the FMN domain is analogous to flavodoxins while the FAD domain resembles ferredoxin reductases. The first structural determination of one member of the diflavin reductases family raised some questions about the architecture of the enzyme during catalysis: both FMN and FAD were in perfect position for interflavin transfers but the steric hindrance of the FAD domain rapidly prompted more complex hypotheses on the possible mechanisms for the electron transfer from FMN to external acceptors. Hypotheses of domain reorganization during catalysis in the context of the different members of this family were given by many groups during the past twenty years. This review will address the recent advances in various structural approaches that have highlighted specific dynamic features of diflavin reductases. Full article
(This article belongs to the Special Issue Flavins)
Figures

Open AccessReview Noncanonical Reactions of Flavoenzymes
Int. J. Mol. Sci. 2012, 13(11), 14219-14242; doi:10.3390/ijms131114219
Received: 18 September 2012 / Revised: 17 October 2012 / Accepted: 26 October 2012 / Published: 5 November 2012
Cited by 6 | PDF Full-text (6846 KB) | HTML Full-text | XML Full-text
Abstract
Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these
[...] Read more.
Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a “molecular scaffold” in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates. Full article
(This article belongs to the Special Issue Flavins)
Figures

Journal Contact

MDPI AG
IJMS Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
ijms@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to IJMS
Back to Top