
Int. J. Mol. Sci. 2013, 14, 1788-1801; doi:10.3390/ijms14011788 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Modeling of Anopheles minimus Mosquito NADPH-Cytochrome 
P450 Oxidoreductase (CYPOR) and Mutagenesis Analysis  

Songklod Sarapusit 1,*, Panida Lertkiatmongkol 2, Panida Duangkaew 3 and  

Pornpimol Rongnoparut 2 

1 Department of Biochemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand 
2 Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;  

E-Mails: prunuspersica@gmail.com (P.L.); pornpimol.ron@mahidol.ac.th (P.R.) 
3 Faculty of Animal Sciences and Agricultural Technology, Silpakorn University,  

Petchaburi IT Campus, Petchaburi 76120, Thailand; E-Mail: panida.d@su.ac.th 

* Author to whom correspondence should be addressed; E-Mail: songklod@buu.ac.th;  

Tel.: +66-038-103-058; Fax: +66-038-393-495.  

Received: 25 September 2012; in revised form: 19 November 2012 / Accepted: 5 January 2013 /  

Published: 16 January 2013 

 

Abstract: Malaria is one of the most dangerous mosquito-borne diseases in many  

tropical countries, including Thailand. Studies in a deltamethrin resistant strain of  

Anopheles minimus mosquito, suggest cytochrome P450 enzymes contribute to the 

detoxification of pyrethroid insecticides. Purified A. minimus CYPOR enzyme (AnCYPOR), 

which is the redox partner of cytochrome P450s, loses flavin-adenosine di-nucleotide 

(FAD) and FLAVIN mono-nucleotide (FMN) cofactors that affect its enzyme activity. 

Replacement of leucine residues at positions 86 and 219 with phenylalanines in FMN 

binding domain increases FMN binding, enzyme stability, and cytochrome c reduction 

activity. Membrane-Bound L86F/L219F-AnCYPOR increases A. minimus P450-mediated 

pyrethroid metabolism in vitro. In this study, we constructed a comparative model structure 

of AnCYPOR using a rat CYPOR structure as a template. Overall model structure is 

similar to rat CYPOR, with some prominent differences. Based on primary sequence and 

structural analysis of rat and A. minimus CYPOR, C427R, W678A, and W678H mutations 

were generated together with L86F/L219F resulting in three soluble Δ55 triple mutants. 

The C427R triple AnCYPOR mutant retained a higher amount of FAD binding  

and increased cytochrome c reduction activity compared to wild-type and  

L86F/L219F-Δ55AnCYPOR double mutant. However W678A and W678H mutations did 

not increase FAD and NAD(P)H bindings. The L86F/L219F double and C427R triple 
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membrane-bound AnCYPOR mutants supported benzyloxyresorufin O-deakylation 

(BROD) mediated by mosquito CYP6AA3 with a two- to three-fold increase in efficiency 

over wild-type AnCYPOR. The use of rat CYPOR in place of AnCYPOR most efficiently 

supported CYP6AA3-mediated BROD compared to all AnCYPORs.  

Keywords: Anopheles minimus mosquito; cytochrome P450 oxidoreductase (CYPOR); 

structure; FAD and NAD(P)H bindings  

 

1. Introduction 

The reemergence of malaria, a disease transmitted to humans by mosquitoes, is associated with 

vector resistance in many tropical countries due to the persistent use of pyrethroid insecticides [1,2]. 

The insecticide resistance has been reported in Anopheles minimus mosquito, one of the malaria 

primary vectors in Thailand [3]. A common mechanism for insecticide resistance involves an elevation 

in insecticide detoxification. Cytochrome P450 monooxygenases (P450) are important enzymes in 

pyrethroid metabolism and have been implicated in insecticide resistance in many insects [4]. In  

A. minimus, an elevated level of CYP6AA3 and CYP6P7 transcripts has been detected during selection 

for deltamethrin resistance [5,6]. Heterologously expressed CYP6AA3 and CYP6P7 enzymes in an 

insect-baculovirus system have shown capability to specifically metabolize type I and type II 

pyrethroids in vitro [7–9].  

Catalysis by P450 enzymes requires an electron supplement from NADPH-cytochrome P450 

oxidoreductase enzyme (CYPOR), a membrane-bound enzyme that transfers electrons, from NADPH 

to P450s via FAD and FMN cofactors [10–12]. RNA interference indicated the influential role of 

mosquito CYPOR enzyme in permethrin resistance in A. gambiae, a major malaria vector in  

Africa [13]. Thus, studies of CYPOR properties in A. minimus, may provide important information for 

the malarial vector control program in Thailand.  

The membrane-bound A. minimus CYPOR (flAnCYPOR) cDNA has been isolated and expressed in 

Escherichia coli [7]. The purified flAnCYPOR enzyme can support baculovirus-expressed CYP6AA3 

and CYP6P7 to metabolize pyrethroid insecticides and benzyloxyresorufin fluorescent substrate in vitro, 

but the purified enzyme is prone to lose FAD and FMN cofactors compared to rat CYPOR [7–9,14,15]. In 

addition, higher trypsin sensitivity of AnCYPOR indicates a more open conformation or high 

flexibility of the soluble Δ55AnCYPOR enzyme compared to rat CYPOR structure. Unlike rat and 

house fly CYPORs, the open/highly flexible structure of AnCYPOR could explain that AnCYPOR 

loosely binds flavin cofactors and can be reconstituted with exogenous FMN and FAD in vitro [14–17]. 

Substitutions of leucine 86 and leucine 219 with phenylalanine in the FMN-binding domain generate a 

L86F/L219F double mutant of both soluble (Δ55) and membrane-bound (fl) forms that improve FMN 

retention, but remain loosely bound to FAD cofactor. Binding of FAD is not improved when 

phenylalanine at 456 is replaced with the conserved alanine residue in the FAD-binding domain of the 

enzyme [14,15]. The L86F/L219F mutation increases enzyme stability and turnover number without 

drastically changing kinetic mechanism and substrate-binding constants, NADPH Km, and cytochrome 

c Km [14,15]. Consequently, a higher catalytic efficiency of L86F/L219F-flAnCYPOR increases 
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CYP6AA3-mediated deltamethrin degradation activity in vitro [15]. Addition of exogenous FAD 

contributes to a greater increase in CYP6AA3-mediated activity supported by the wild-type and 

L86F/L219F mutant flAnCYPOR enzymes. In this context, why the A. minimus CYPOR is 

enormously different from rat CYPOR in stability, activity in its native form and in the ease in which 

flavin cofactors are lost remains unanswered.  

Recently, investigation of A. gambiae CYPOR, AgCYPOR, which shares 93% of its amino acid 

sequence with A. minimus CYPOR, has indicated a loss of both FMN and FAD cofactors in the 

purified AgCYPOR enzyme. Moreover, AgCYPOR binds NAD(P)H differently from human  

CYPOR [18], suggesting substantially different enzymatic properties in mosquito CYPORs. 

Functional analyses of mosquito and mammalian CYPOR in combination with a structural comparison 

may help to explain different properties. In this study, comparative modeling of AnCYPOR was 

performed and the predicted models were compared to known crystal structure of rat CYPOR [10]. 

Based on sequence analysis and model comparison, two residues that might affect FAD binding and 

enzyme catalysis, C427 and W678, were selected to generate triple mutants, in addition to L86F and 

L219F. Biochemical properties of L86F/L219F/C427R, L86F/L219F/W678A, and L86F/L219F/W678H 

soluble Δ55-triple mutants and catalysis by L86F/L219F double and C427R triple membrane-bound 

mutants in support of BROD mediated by CYP6AA3 were investigated. Moreover, as a primary step 

to understand different properties of AnCYPOR and rat CYPOR in electron transfer to P450 partner 

enzyme, we employed rat CYPOR in place of mosquito CYPOR as a redox partner enzyme of 

mosquito P450 in the reconstitution enzymatic assay. Our results have contributed to an understanding 

of the typical nature of mosquito CYPOR compared to rat CYPOR, and its efficacy in electron transfer 

in mosquito P450-mediated metabolisms.  

2. Results and Discussion 

2.1. Overall Structure of AnCYPOR  

A predicted AnCYPOR homology model generated using rat CYPOR as a template  

(pdb code: 1JA1, [19]) was chosen based on a consensus judgment of discrete optimized protein 

energy (DOPE) and residue specific all-atom probability discriminatory function (RAPDF) scores. 

Figure 1 shows an oval, bowl-like 3D structure of the AnCYPOR homolog in the presence of NADP+, 

FAD, and FMN. The overall AnCYPOR structure contains three structural domains including  

FMN-binding, FAD/NADP+-binding, and connecting domains. The FMN, FAD and NADP(H) are 

positions in the middle of the structure as found in rat CYPOR [10,19]. The model has an overall 

ProSA-z score of −11.01. Ramachandran plot analysis revealed 88.7% and 0.6% of residues in most 

favorable and disallowed regions, respectively (Figure S1). Three residues (V256, N503, and E506) 

residing in disallowed region locate in the connecting domain which functions to bring the two flavins 

together and modulate electron transfer between them [10,19,20]. The crystal structure of rat CYPOR 

lacks 63 N-terminal amino acids and starts with Val64, so the corresponding first residue in 

AnCYPOR is Thr64. Although structure of the membrane-binding region of AnCYPOR could not be 

determined in the model, sequence alignment indicated a clear difference in membrane-binding 

sequence from rat CYPOR (Figure S2).  
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Figure 1. Homology model of wild-type Anopheles minimus CYPOR (AnCYPOR).  

Wild-Type AnCYPOR model demonstrates conserved regions of the flavin  

mono-nucleotide (FMN)-binding domain, the connecting domain, and the flavin-adenosine 

di-nucleotide (FAD)/NAD(P)H-binding domain that are colored blue, green, and red, 

respectively. The mutated positions are labeled and shown in spheres. Arrows indicate 

deviations among the structures of template rat CYPOR (PDB:1JA1) (green), wild-type 

AnCYPOR (blue), and double mutant AnCYPOR (yellow) in the FMN-binding domain, 

the connecting domain, and the FAD/NAD(P)H-binding domain. The cofactor FMN, FAD, 

and NADPH are represented by magenta, purple, and grey sticks, respectively.  

 

Figure 2. Binding interaction with FAD in AnCYPOR. Replacement of cysteine (A) with 

arginine (B) could result in more molecular interactions between the enzyme and FAD in 

mutant than in wild-type AnCYPOR in correspond to interactions towards FAD previously 

described in rat CYPOR [10]. Wild-Type and C427R triple mutant AnCYPOR are shown 

in blue and magenta cartoons, respectively. FAD is represented by grey stick. Nitrogen, 

oxygen, phosphorus, and sulfur are colored blue, red, orange, and yellow, respectively.  

 

Superimposition of the wildtype- and L86F/L219F-AnCYPOR with rat CYPOR showed topology 

differences in all domains (Figure 1). Deviations are found in one location in FMN-binding domain 
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(77QSSGRR, the connecting loop between helix A and β-sheet 1), one in FAD-binding region 

(297HKAGGR at the tip of β-sheet 8), one loop in NAD(P)H binding region (588GIINLRVA), and 
411STAPE at the tip of helix K in connecting domain. These differences may reflect enzyme properties 

and conformational change during AnCYPOR catalysis compared to rat CYPOR.  

2.2. Predicted FAD-Binding Region  

Although replacement of two leucine residues successfully increases FMN binding, possibly 

through altered topology of the loop at 77QSSGRR that superimposes well with rat structure than  

wild-type AnCYPOR, the L86F/L219F-Δ55AnCYPOR remains loosely bound to FAD cofactor. 

Therefore, a topology change in 297HKAGGR of L86F/L219F from wild-type AnCYPOR to that of rat 

CYPOR may not affect FAD binding (Figure 1). Relative to that of rat CYPOR structure, the re-side 

and the si-face of FAD ring are similarly stacked by the indole ring of W678 and the si-face by Y459 

in AnCYPOR. The interaction of FAD isoalloxazine ring with side chains of S460, T475, A476 and 

V474 of AnCYPOR is also similar to rat CYPOR [10]. The rest of the FAD molecule lies at the 

interface between the FAD-binding domain, but polypeptide chains surrounding FAD show variable 

degrees of homology with rat CYPOR (Figure 1 and supplemental Figure 2). In addition, residues 

participating in stabilization of FAD binding in AnCYPOR are notably different from rat CYPOR. 

Residues observed in rat CYPOR are R424, R454, T491, Y478 and V489 [10], while in AnCYPOR 

they are R457, T494, Y481 and V492. The rat R424, which is important for interaction with FAD, is 

missing from AnCYPOR. Instead, a Cys residue was observed at position 427 (Figure S2). The short 

chain sulfhydryl-group of C427 might drastically abolish interaction with FAD, leading to a loose 

binding of FAD to the enzyme (Figure 2). Recently, disruption of local H bonding with FAD 

pyrophosphate moiety leading to weaker FAD binding, unstable protein, and loss of catalytic activity 

has been reported in V492E and R457H two naturally occurring missense mutations of human  

CYPOR [21]. Thus we replaced Cys with Arg together with L86F/L219F and generated a soluble 

triple mutant (L86F/L219F/C427R-Δ55AnCYPOR). The triple mutant could increase FAD binding 

about 1.5 folds of double mutant L86F/L219F-Δ55AnCYPOR, and about 1.3 folds compared to the 

wild-type-Δ55AnCYPOR (Table 1). The NADPH-dependent cytochrome c reduction activity in 

C427R triple mutant without supplementation of FAD was about two and four folds higher than 

L86F/L219F double mutant and wild-type-Δ55AnCYPORs, respectively (Figure 3). Supplementation 

with FAD reduced the difference in the cytochrome c reduction activity between the C427R triple 

mutant and the double mutant. The activity of this triple mutant enzyme is about 0.5 fold of rat 

CYPOR activity (51.5 μmol/min/mg) [17]. The results suggest a role of C427 in FAD binding and as a 

consequence increased AnCYPOR catalysis. Supplementation of FAD could further elevate the 

activity of C427R triple soluble mutant, indicating another factor might also influence FAD binding. 

The absence of cytochrome c reduction activity in the reaction omitted AnCYPOR enzyme excludes 

the possibility of an external electron transfer pathway to cytochrome c by exogenous flavins 

(unreported data). This increase in enzymatic activity of mutant AnCYPORs upon FAD supplement 

during enzyme catalysis had been reported in Y459A and V492E human mutant CYPOR enzymes that 

are loosely bound to FAD [22,23]. In addition, the C427R triple mutant had similar Km values for 

NADPH and cytochrome c substrates to those of L86F/L219F double mutant, but its catalytic electron 
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transfer rate (Vmax) was approximately two folds higher (data not shown). Nonetheless Km values  

of L86F/L219F double and C427R triple mutants were not substantially different from  

wild-type-Δ55AnCYPOR indicating that the mutations did not significantly alter structure or  

substrate binding mode of enzyme (Table 2). The Km values for cytochrome c and NADPH of  

wild-type-Δ55AnCYPOR in this study is noticeably lower than that previously reported [14] due to 

enzymatic assays performed in this study were in low ionic strength (0.1 M Tris pH 7.5) condition, 

while in previous report the assays were at high ionic strength (0.3 M Potassium phosphate pH 7.7). 

Effect of ionic strength on substrate binding of CYPOR has also been reported [11].  

Table 1. Flavin content analysis of Δ55AnCYPOR.  

Enzyme FMN a FAD a 

Wild-type-Δ55AnCYPOR 0.52 ± 0.01 0.64 ± 0.03 
L86F/L219F-Δ55AnCYPOR 0.97 ± 0.02 0.56 ± 0.01 

L86F/L219F/C427R-Δ55AnCYPOR 0.98 ± 0.01 0.82 ± 0.02 
L86F/L219F/W678A-Δ55AnCYPOR 0.96 ± 0.04 0.55 ± 0.02 
L86F/L219F/W678H-Δ55AnCYPOR 0.97 ± 0.02 0.57 ± 0.04 

Δ63AgCYPOR b 0.72 ± 0.01 0.80 ± 0.01 
Human CYPOR b 0.88 ± 0.01 0.92 ± 0.02 

a Flavin content is expressed as mean ± SD for mol of flavins per mol of protein in triplicate 
experiments. Standard flavin was measured and used for a plot of standard curve; b Lian et al.,  
2011 [18]. 

Figure 3. Specific activity of Δ55AnCYPOR enzymes with cytochrome c substrate. 

Specific activity is expressed as µmol of substrate reduced/min/mg of protein. Data are the 

average of duplicate measurements. Protein concentration was determined using Bio-Rad 

protein assay reagent and bovine serum albumin (BSA) as standard. When exogenous 

cofactors were tested, 2 μM of each of exogenous flavin cofactors were added and  

pre-incubated with enzyme in each assay reaction.  
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Table 2. Kinetic constants for cytochrome c reduction under substrate saturation condition 

by Δ55AnCYPOR enzymes.  

Enzyme 
Kinetic constant (μM) a 

Cytochrome c Km NADPH Km NADH Km 

Δ55AnCYPOR    
-wt 27.39 ± 1.41 9.61 ± 0.30 8.40 ± 0.10 

-L86F/L219F 16.41 ± 2.22 6.49 ± 1.19 11.64 ± 1.44 
-L86F/L219F/C427R 17.92 ± 1.79 7.02 ± 1.75 6.67 ± 2.23 
-L86F/L219F/W678A 16.24 ± 1.56 3.34 ± 0.83 7.08 ± 2.06 
-L86F/L219F/W678H 18.43 ± 2.12 1.91 ± 0.44 7.72 ± 1.33 

a Values were obtained from substrate saturation steady-state kinetic studies in the presence of extra flavins as 

described in Materials and Methods and are means ± SD from triplicate experiments. 

2.3. FAD/NADPH Binding Residues in AnCYPOR 

Unlike FMN- and FAD-binding regions, there is no substantial alteration among residues in their 

roles in NADPH binding (R301, S597, R598, K603, Y605, T607, N636 and M637) and catalysis 

(S459, C631 and D676) in AnCYPOR model structure. However, one minor difference in rotameric 

conformation from rat CYPOR structure was found in NAD(P)H binding domain at the end of β-sheet 

21 (678WS), located at the nicotinamide-binding site and covering the isoalloxazine ring of FAD 

cofactor. This conserved tryptophan (Trp) residue has been proposed to flip and facilitate nicotinamide 

binding and thus hydride transfer [10,19]. To investigate the contribution of such difference in 

rotameric conformation in nicotinamide binding and catalysis of AnCYPOR, we replaced W678 with 

alanine and histidine as both replacements play critical role in catalytic activity and nicotinamide 

binding of human and rat CYPORs [24,25].  

In contrast to C427R construct, the Ala and His replacements at W678, (L86F/L219F/W678A-

Δ55AnCYPOR and L86F/L219F/W678H-Δ55AnCYPOR) neither increased FAD binding nor 

cytochrome c reduction activity (Table 1 and Figure 3). However, cytochrome c reduction activity was 

decreased compared to L86F/L219F double mutant and C427R triple mutant. Mutations with aliphatic 

(W678A) and planar (W678H) residue substitutions decreased catalytic activity to 77% and 55% of 

that of L86F/L219F double mutant, respectively. The decrease in cytochrome c activity has been 

reported in the W676A and W676H human CYPOR mutants that retain 5 and 22% of cytochrome c 

activity, respectively [24,25]. Moreover, non-linear regression steady-state kinetic analysis using 

cytochrome c as an electron acceptor in this study revealed that removal of bulky Trp residue in 

W678A and W678H increased NADPH binding affinity by two- to three-fold compared to wild-type 

and L86F/L219F mutant AnCYPOR enzymes, but not that to NADH (Table 2). This differs from 

human CYPOR mutants in which both W676A and W676H mutants lower both NADPH Km, and 

NADH Km [24,25]. Specific charge interactions of amino acid residues with 2′-phosphate of NADPH 

are responsible for discrimination against binding of NADH [24]. Thus, it is conceivable that W678 is 

only crucial for catalysis and NADPH binding in AnCYPOR, and not nicotinamde selectivity of 

NAD(P)H and NADH substrates. Whether deviation we observed at 588GIINLRVA (Figure 1) might 

involve in 2'-phosphate binding of NADPH is not known. This deviation might explain low binding 

affinity of A. minimus CYPOR to 2',5'-ADP column compared to human and rat CYPOR [18,26]. 
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Values of 2'AMP Ki for AnCYPOR are four-fold higher than those for rat CYPOR, suggesting 

significant differences in NAD(P)H binding property between rat CYPOR and AnCYPOR [14,15]. 

Low binding affinity to 2',5'ADP column has also been observed for the mosquito AgCYPOR [18]. A 

two-fold higher IC50 in suppression of AgCYPOR by 2'AMP has also been reported compared to 

human CYPOR [18]. It is thus speculated that W678 could affect electron transfer rate and electron 

transfer activity, while dramatic change in polypeptide chain that specifically interact with NAD(P)H 

such as that of 588GIINLRVA might result in low nucleotide (2',5'-ADP, 2'-AMP and NAD(P)H) 

binding affinity. However, the amino acids in the 588GIINLRVA polypeptide chain are distant from 

those of rat CYPOR.  

Further mutational investigation of this polypeptide on nicotinamide selectivity may provide 

important information that could help to understand the catalytic basis of AnCYPOR.  

2.4. Electron Transfer Step Is a Rate-Limiting Step in Mosquito P450 Metabolism 

As P450 catalysis requires electron supplement from CYPOR, therefore, such a mutation that 

affects cytochrome c reduction activity could affect the P450-mediated oxygenase reaction  

in vitro [27]. This is supported by an increased efficiency of L86F/L219F-flAnCYPOR and 

L86F/L219F/C427R-flAnCYPOR mutants in supporting BROD mediated by mosquito CYP6AA3 

enzyme by 2.4 and 3 times, respectively compared to wild-type (Table 3). Moreover rat CYPOR which 

has higher cytochrome c reduction activity than wild-type AnCYPOR and all AnCYPOR mutants 

could increase mosquito P450 activity more than wild-type flAnCYPOR by 5.5 times. These increases 

in velocity by L86F/L219F, C427R mutants, and rat CYPOR had no effect on substrate binding value 

(Km). The results suggest that in vitro mosquito P450 activity is an electron transfer rate dependent 

reaction. In human CYPOR, the loss of FAD and FMN from its binding site caused by mutation is the 

major cause of diminished P450 activity. For example, the R457H and V492E mutations at the  

FAD-binding site in human CYPOR result in an impaired function of CYP17A1 (17a-hydroxylase/17, 

20-lyase), CYP19A1 (aromatase) and CYP1A2 in vitro [23,28–30]. Recently, a study on heme 

oxygenase I (HO-I) activity also indicated a decrease in CYPOR activity affected HO-I catalytic rate, 

and rate of bilirubin formation by HO-I enzyme is CYPOR-activity dependent [31]. Detailed saturated 

kinetic studies reveal that a decrease in HO-I activity is caused by a decrease in catalytic rate (Vmax), 

not substrate binding (Km) of HO-I [31]. Thus, we hypothesize the high catalytic activity of the 

mosquito CYP6AA3-mediated enzymatic activity found in the present study originates from a high 

electron transfer rate of rat CYPOR, C427R and L86F/L219F-flAnCYPOR activity compared to that 

of wildtype-flAnCYPOR enzyme. This, to our knowledge, is the first mosquito P450-mammalian 

CYPOR reconstitution that is more efficient than the native mosquito P450-CYPOR complex.  
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Table 3. The in vitro reconstitution assays of CYP6AA3 mosquito P450 with three 

different CYPOR enzymes. 

CYPOR constructs 
Cytochrome c reduction 

activity (U/mg protein) a 

CYP3AA3-mediated BROD activity  

(pmole resorufin produced/min/pmol P450) a 

Km (μM) Vmax (min−1) 

wt-AnCYPOR 0.35 ± 0.02 1.90 ± 0.61 3.10 ± 0.38 

L86F/L219F-AnCYPOR 0.87 ± 0.04 1.89 ± 0.53 7.36 ± 0.78 

L86F/L219F/C427R-AnCYPOR 1.62 ± 0.09 1.73 ± 0.17 10.20 ± 0.37 

Rat CYPOR 18.55 ± 0.42 1.69 ± 0.24 17.40 ± 0.90 
a Data are average of duplicate measurements.  

3. Experimental Section  

3.1. Materials  

Flavin mono-nucleotide (FMN), flavin-adenosine di-nucleotide (FAD), cytochrome c, nicotinamide 

adenosine diphosphate (NADP+), nicotinamide adenosine diphosphate reduced form (NADPH) and 

phenylmethylsulphonyl fluoride (PMSF) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Isopropyl-β-D-thiogalactopyranoside (IPTG) was obtained from USB (Cleveland, OH, USA),  

Ni2+-NTA affinity column from Qiagen (Valencia, CA, USA), and Bio-Rad protein assay kit from  

Bio-Rad (Hercules, CA, USA). Quickchange site-directed Polymerase Chain Reaction (PCR) 

mutagenesis kit was purchased from Stratagene (LaJolla, CA, USA) and was used according to the 

manufacturer’s instructions. 

3.2. Structure Prediction of Wild-Type and Mutant CYPOR 

The amino acid sequence of wild-type A. minimus CYPOR was obtained from GenBank 

(ABL75156.1) and was used to search for template using PSI-BLAST against protein structures 

deposited in Brookhaven Protein Data Bank [32] for comparative modeling. Rat CYPOR-triple mutant 

(PDB:1JA1, [19]), exhibiting high resolved power of 1.80 Å and sharing 55% sequence identity to  

A. minimus CYPOR, was selected as the template. The first 63 residues were omitted from modeling 

since the N-terminus is associated with membrane anchor and membrane portion is absent in the 

template structure. Sequence alignment derived from ClustalW program of various CYPOR enzymes 

with some manual adjustment is shown in supplemental Figure 2. Alignments of AnCYPOR wild-type 

and mutants against the template were subsequently subjected to homology modeling using 

MODELLER9v6 [33]. A set of 1000 models for wild-type and mutant AnCYPORs was independently 

constructed. The cofactor FAD, FMN, and NADPH were positioned in target models as in the 1JA1 

template. The most promising models of wild-type and mutant CYPORs were discriminated from 

incorrectly-folded structures using DOPE [34] and RAPDF [35] scoring functions. Candidate models 

were further energy minimized using AMBER ff03 all atom force field implemented in Amber10 [36] 

to remove bad van der Waals contacts. Model refinement was performed using steepest descent (SD) 

for 3000 iterations and followed by conjugated gradient (CG) minimizations until the energy gradient 

was less than 0.05 kcal/mol. The final energy minimized models were evaluated for conformation 
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qualities using ProSAII [37,38] and Procheck [39]. Models were visualized and displayed using 

PyMOL (Schrödinger LLC, NY, USA).  

3.3. Site-Directed Mutagenesis of AnCYPORs 

Three amino acids were separately introduced into pET28a-L86F/L219FΔ55AnCYPOR plasmid 

DNA by Quickchange PCR mutagenesis kit as described in manufacturer’s instructions to generate 

triple mutants of the following substitutions: C427R, W678H and W678A. The sequences of primers 

used in this experiment are listed in Table 4. The same primer set was employed to generate C427R 

membrane-bound triple mutant using pTrc-L86F/L219F-flAnCYPOR plasmid DNA as template. All 

of the mutations were verified by DNA sequencing and the resultant plasmids were transformed into 

BL21 (DE3) E. coli cells.  

Table 4. Primer used for mutagenesis study.  

Constructs Primer Sequence 

C427R 
sense 

anti-sense 
5'-GGTACAAGACAGCCGCCGGAACGTAGTGCA-3' 
5'-TGCACTACGTTCCGGCGGCTGTCTTGTACC-3' 

W678H 
sense 

anti-sense 
5'-ACGTTACTCGGCGGACGTGCACAGCTAATCGACGGGCACA-3'  
5'-TGTGCCCGTCGATTAGCTGTGCACGTCCGCCGAGTAACGT-3' 

W678A 
sense 

anti-sense 
5'-ACGTTACTCGGCGGACGTGGCAAGCTAATCGACGGGCACA-3'  
5'-TGTGCCCGTCGATTAGCTTGCCACGTCCGCCGAGTAACGT-3' 

Mutated codons are underlined.  

3.4. Expression and Purification of AnCYPOR and Rat CYPOR Enzymes  

Protein expression and purification of AnCYPORs were performed as previously described [14,15], 

while that of rat CYPOR followed Shen et al. (1989; [17]) with a slight modification. The E. coli C43 

(DE3) carrying pIN-rat CYPOR plasmid was grown at 37 °C in TB broth containing 100 μg/mL 

ampicillin until OD600 was about 0.8 and protein expression induced by addition of 0.5 mM IPTG. 

Cells were allowed to grow for an additional 48 h and harvested by centrifugation at 5000× g for  

15 min and resuspended in binding buffer (50 mM Tris pH 7.7, 0.1 M NaCl, 10% glycerol, and 20 mM 

imidazole) containing 0.2% Triton X-100. Cells were lysed by sonication and the supernatant was 

applied to a Ni2+-NTA affinity column previously equilibrated with the binding buffer. The column 

was extensively washed with binding buffer followed by the same buffer containing 30 mM imidazole. The 

protein was eluted by increasing imidazole concentration to 100 mM. Purity of protein was assessed by 

SDS-PAGE. Pure fractions were pooled, concentrated and stored at −80 °C until use. Protein concentration 

was determined by the Bio-Rad protein assay using bovine serum albumin (BSA) as standard.  

3.5. Expression and Purification of CYP6AA3 from Insect-Baculovirus System  

Recombinant baculovirus containing CYP6AA3 cDNA was used for protein expression in 

Spodoptera frugiperda (Sf9) insect cells as previously described [7]. Briefly, Sf9 cells were infected 

with the CYP6AA3 expressed virus (2.5 × 108 plaque-forming units/mL) at the multiplicities of 

infection of 3. Infected cells were harvested at 70–80 h post infection and resuspended in sodium 

phosphate buffer pH 7.2 containing 1 mM EDTA, 0.5 mM PMSF, 5 μg/mL leupeptin, 0.1 mM DTT, 
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and 20% glycerol, and subjected to microsome preparation using differential centrifugation. 

CYP6AA3 protein expression was observed by SDS-PAGE analysis. Total P450 content was 

measured from CO-different spectrum analysis [40].  

3.6. Measurement of Flavin Contents and Activity Assay  

Commercial FMN and FAD were further purified by high performance liquid chromatography 

(HPLC) and used for generation of a standard curve and for cofactor supplementation experiments. 

Concentrations of standard FAD and FMN solutions were determined spectrophotometrically at  

450 nm using extinction coefficients of 11.3 and 12.2 mM−1 cm−1, respectively. FAD and FMN 

contents of each sample were measured using a fluorometric method as described previously [41]. The 

Bio-Rad protein assay was utilized to determine concentration of protein using rat CYPOR as standard. 

The rat CYPOR protein concentration was determined using spectrophotometric method [42]. The 

CYPOR-mediated cytochrome c reduction was carried out in 0.1 M Tris-HCl buffer, pH 7.5 as 

previously described [7] with minor modifications. After 1 min pre-incubation of enzyme in buffer 

with 40 μM cytochrome c at 25 °C, the reaction was initiated by addition of 50 μM NADPH.  

NADPH-dependent cytochrome c reduction was followed by a change in absorbance at 550 nm. 

Velocities are expressed as μmol/min/mg protein. One unit of enzyme was defined as the amount of 

enzyme catalyzing the reduction of 3 μmol of cytochrome c per minute under described  

conditions [43]. Substrate saturation steady-state kinetic studies of cytochrome c reduction were 

performed in 0.1 M Tris-Cl buffer, pH 7.5 at 25 °C in a final volume of 0.75 mL. Substrate saturation 

experiments were performed by varying NADPH concentration (2, 5, 7.5, 15, 25, 50 and 100 μM) and 

NADH concentration (0.3, 0.5, 1, 2, 5 and 10 mM). The reaction was started by addition of enzyme 

and the initial velocity data were analyzed by non-linear regression using the Grafit 6.0 software package. 

3.7. CYP6AA3-Mediated BROD Assay 

CYP6AA3-Mediated benzyloxyresorufin O-dealkylation reaction (BROD) was performed in  

50 mM Tris-HCl buffer pH 7.5, in a total volume of 500 μL. Microsomes containing CYP6AA3  

(~25 pmole) were used and enzymatic assays were reconstituted with either the purified AnCYPOR or 

rat CYPOR in the ratio of 3:1 and carried out with BR substrate (0.5, 1, 2, 4, 8 μM) as described [7]. 

Enzyme activity was measured with a RF-5301 PC spectrofluorophotometer (Shimadzu, Kyoto, Japan) 

at λex = 530 and λem = 590 nm. The amount of resorufin product was calculated referring to the 

resorufin standard curve as described in Duangkaew et al., 2011 [9]. Apparent Km and Vmax values 

were estimated by non-linear regression analysis using GraphPad Prism 5 software package. 

4. Conclusions  

In summary, comparative modeling of AnCYPOR structure demonstrated differences in topology 

arrangement of AnCYPOR enzyme compared to rat CYPOR structure. AnCYPOR overall structure is 

comparable to rat CYPOR, however, numerous differences in amino acid residues and topology were 

found. Detail analysis revealed major differences in FMN- and FAD/NAD(P)H binding domains that 

might lead to differences in enzymatic properties and catalysis of mosquito CYPOR from mammalian 
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CYPORs. Mutagenesis studies further indicated that C427 is critical for FAD binding in AnCYPOR. 

In addition, NAD(P)H binding and catalysis of this mosquito CYPOR is remarkably different from 

mammalian CYPORs. It is apparent that a low stoichiometry of FAD may not matter much in this 

enzyme, at least in vitro, as FAD can be easily reconstituted into the FAD binding site of AnCYPOR.  
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