Special Issue "Marine Geomorphometry"

A special issue of Geosciences (ISSN 2076-3263).

Deadline for manuscript submissions: closed (31 October 2017)

Special Issue Editors

Guest Editor
Dr. Vanessa Lucieer

Institute for Marine and Antarctic Studies, University of Tasmania, Tasmania 7000, Australia
Website | E-Mail
Interests: benthic habitat mapping; multibeam bathymetry; acoustic backscatter; GEOBIA; geomorphometry; spatial analysis
Guest Editor
Dr. Margaret Dolan

Geological Survey of Norway
Website | E-Mail
Interests: seabed mapping; multibeam data; terrain analysis; benthic habitat mapping; spatial analysis; geomorphometry
Guest Editor
Dr. Vincent Lecours

Fisheries & Aquatic Sciences, University of Florida, Gainesville, 32653, USA
Website | E-Mail
Interests: GIS; remote sensing; habitat mapping; geomorphometry; spatial data quality; image analysis

Special Issue Information

Dear Colleagues,

Geomorphometry, the science of quantitative terrain analysis, originated in terrestrial investigations; however, many of the methods used in these investigations have also proven applicable in marine environments. The rise in the acquisition of high-resolution seabed data using acoustic systems and bathymetric LiDAR has prompted a growing interest in employing geomorphometric techniques to investigate the seafloor.

The aim of this Special Issue of Geosciences is to showcase quantitative geomorphological analysis techniques for geoscientific research and investigation of the seafloor. We invite contributions addressing all aspects of marine geomorphometry, from data collection and processing to the derivation of terrain attributes/features and their use in an applied context. Relevant topics for this Special Issue include, but are not limited to, new methods for terrain characterization and classification, 3D geomorphometric visualizations, the links between seafloor topography and processes occurring in the surrounding marine environment (water column, sub-surface), and issues related to spatial scale and data quality. We welcome applied studies using marine geomorphometry as part of their workflow (e.g., habitat mapping, geomorphology, geohazards modelling, submarine archaeology). Technical review articles, and submissions reviewing the challenges faced by this thriving field of research are also welcomed.

Dr. Vanessa Lucieer
Dr. Margaret Dolan
Dr. Vincent Lecours
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Geosciences is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 350 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


  • GIS
  • seabed mapping
  • marine geology
  • spatial analysis
  • marine processes
  • spatial scale
  • submarine topography
  • seafloor remote sensing
  • marine geomorphology
  • geomorphometry
  • terrain analysis
  • bathymetry
  • structure-from-motion
  • multibeam echosounder
  • bathymetric lidar

Published Papers (2 papers)

View options order results:
result details:
Displaying articles 1-2
Export citation of selected articles as:


Open AccessArticle The Morphometry of the Deep-Water Sinuous Mendocino Channel and the Immediate Environs, Northeastern Pacific Ocean
Geosciences 2017, 7(4), 124; doi:10.3390/geosciences7040124
Received: 7 September 2017 / Revised: 6 November 2017 / Accepted: 6 November 2017 / Published: 29 November 2017
PDF Full-text (23228 KB) | HTML Full-text | XML Full-text
Mendocino Channel, a deep-water sinuous channel located along the base of Gorda Escarpment, was for the first time completely mapped with a multibeam echosounder. This study uses newly acquired multibeam bathymetry and backscatter, together with supporting multichannel seismic and sediment core data to
[...] Read more.
Mendocino Channel, a deep-water sinuous channel located along the base of Gorda Escarpment, was for the first time completely mapped with a multibeam echosounder. This study uses newly acquired multibeam bathymetry and backscatter, together with supporting multichannel seismic and sediment core data to quantitatively describe the morphometry of the entire Mendocino Channel and to explore the age and possible causes that may have contributed to the formation and maintenance of the channel. The first 42 km of the channel is a linear reach followed for the next 83.8 km by a sinuous reach. The sinuous reach has a sinuosity index of 1.66 before it changes back to a linear reach for the next 22.2 km. A second sinuous reach is 40.2 km long and the two reaches are separated by a crevasse splay and a large landslide that deflected the channel northwest towards Gorda Basin. Both sinuous reaches have oxbow bends, cut-off meanders, interior and exterior terraces and extensive levee systems. The lower sinuous reach becomes more linear for the next 22.2 km before the channel relief falls below the resolution of the data. Levees suddenly decrease in height above the channel floor mid-way along the lower linear reach close to where the channel makes a 90° turn to the southwest. The entire channel floor is smooth at the resolution of the data and only two large mounds and one large sediment pile were found on the channel floor. The bathymetry and acoustic backscatter, together with previously collected seismic data and box and piston cores provide details to suggest Mendocino Channel may be no older than early Quaternary. A combination of significant and numerous earthquakes and wave-loading resuspension by storms are the most likely processes that generated turbidity currents that have formed and modified Mendocino Channel. Full article
(This article belongs to the Special Issue Marine Geomorphometry)

Figure 1

Open AccessArticle Characteristics and Dynamics of a Large Sub-Tidal Sand Wave Field—Habitat for Pacific Sand Lance (Ammodytes personatus), Salish Sea, Washington, USA
Geosciences 2017, 7(4), 107; doi:10.3390/geosciences7040107
Received: 15 August 2017 / Revised: 18 October 2017 / Accepted: 19 October 2017 / Published: 23 October 2017
PDF Full-text (21726 KB) | HTML Full-text | XML Full-text
Deep-water sand wave fields in the San Juan Archipelago of the Salish Sea and Pacific Northwest Washington, USA, have been found to harbor Pacific sand lance (PSL, Ammodytes personatus), a critical forage fish of the region. Little is known of the dynamics
[...] Read more.
Deep-water sand wave fields in the San Juan Archipelago of the Salish Sea and Pacific Northwest Washington, USA, have been found to harbor Pacific sand lance (PSL, Ammodytes personatus), a critical forage fish of the region. Little is known of the dynamics of these sand waves and the stability of the PSL sub-tidal habitats. Therefore, we have undertaken an initial investigation to determine the dynamic conditions of a well-known PSL habitat in the San Juan Channel within the Archipelago using bottom sediment sampling, an acoustical doppler current profiling (ADCP) system, and multi-beam echo sounder (MBES) bathymetry. Our study indicates that the San Juan Channel sand wave field maintained its shape and bedforms geometry throughout the years it has been studied. Based on bed phase diagrams for channelized bedforms, the sand waves appear to be in a dynamic equilibrium condition. Sea level rise may change the current regime within the Archipelago and may alter some of the deep-water or sub-tidal PSL habitats mapped there. Our findings have global significance in that these dynamic bedforms that harbor PSL and sand-eels elsewhere along the west coast of North America and in the North Sea may also be in a marginally dynamic equilibrium condition and may be prone to alteration by sea level rise, indicating an urgency in locating and investigating these habitats in order to sustain the forage fish. Full article
(This article belongs to the Special Issue Marine Geomorphometry)

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: The Impact of Acoustic Imaging Geometry on the Fidelity of Seabed Bathymetric Models
Author: John E. Hughes Clarke
Affiliation: Center for Coastal and Ocean Mapping, University of New Hampshire, USA
Abstract: Attributes derived from digital bathymetric models (DBM) are a powerful means of analyzing seabed characteristics. Those models however are inherently constrained by the method of seabed sampling. Most bathymetric models are derived by collating a number of discrete corridors of multibeam data. Within each corridor the data is collected over a wide range of distances, azimuths and elevation angles and thus the quality varies significantly. That variability therefore becomes imprinted into the DBM. Subsequent users of the DBM, unfamiliar with the original acquisition geometry, may potentially misinterpret such variability as attributes of the seabed.
This paper examines the impact on accuracy and resolution of the resultant derived model as a function of the imaging geometry. This can be broken down into the range, angle, azimuth and overlap attributes. These in turn are impacted by the sonar configuration including beam widths, beam spacing, bottom detection algorithms, stabilization strategies, platform speed and stability.
Superimposed over the imaging geometry are residual effects due to imperfect integration of ancillary sensors. As the platform (normally a surface vessel), is moving with characteristic motions resulting from the ocean wave spectrum, periodic residuals in the seafloor can become imprinted that may again be misinterpreted as geomorphological information.
Keywords: Swath geometry. Multibeam spatial resolution, Integration artefacts

Title: An Automatic Procedure for the Quantitative Characterization of Submarine Landforms 
Authors: Massimo Di Stefano, Larry Mayer
Abstract: A model for the extraction and quantitative characterization of submarine landforms from high-resolution multibeam bathymetry is presented. The procedure is fully automated and comprises two parts. The first part consists of an analytical model which extracts quantitative information from a Digital Elevation Model in the form of objects with similar parametric characteristics (terrain objects). The second part is a rule-based model where the terrain objects are reclassified into distinct landforms with well-defined 3-dimensional characteristics. For the focus of this work, quantitative characterization of isolated dunes (heights greater than 2 m) was performed. The primary metrics used by the analytical model to extract terrain objects were the flatness threshold, and the search radius. Once dune areas are identified, a sequence of spatial analysis routine is applied to identify and compute metrics for each dune including length, height, width, ray of curvature and slopes for each stoss and lee side, and dune symmetry. These routines were tailored to this particular landform, however they can be modified for other landform types by dividing the model into two parts, one scale dependent and another centered on the shape of the landform. Using this approach the model can be applied to other submarine landforms like sand ripples, mega ripples, and coral reefs, which also have well-defined 3-dimensional characteristics.

Title: The Morphometry of the Deep-Water Sinuous Mendocino Channel and the Immediate Environs, Northeastern Pacific Ocean
Author: James V. Gardner 
Affiliation: Center for Coastal & Ocean Mapping, University of New Hampshire, 24 Colovos Road, Durham, New Hampshire 03824, USA
Abstract: Mendocino Channel is a deep-water sinuous channel that has a westward linear trend along the base of Gorda Escarpment for 42 km before becoming a sinuous channel for t   The sinuous reach channel has a sinuosity index that ranges from 1.11 to 3.03 before it becomes a linear channel for the next 22.2 km.  The two sinuous reaches are separated by a crevasse splay and a large landslide that has deflected the channel towards the basin.  Both sinuous reaches have oxbow-like bends, a cutoff loop, interior and exterior terraces and the entire length of the channel has a levee system along the north side.  For the first time, the entire Mendocino Channel has been mapped with a 30-kHz modern multibeam system.  The new bathymetry and acoustic backscatter, together with previously collected multichannel seismic-reflection profiles and both box and piston cores provide details into the nature of the channel.

Title: Realistic Paleobathymetry of the Cenomanian-Turonian (94 Ma) Boundary Ocean
Authors: Arghya Goswami 1*, Anand Gnanadesikan2, Linda Hinnov3 and Taylor Young1
Affiliation: 1 Department of Natural Sciences, Northwest Missouri State University, Maryville, Missouri, USA
2 Earth & Planetary Sciences, Johns Hopkins University; Baltimore, Maryland, USA
3 Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia, USA
Abstract: Current paleoclimate simulations are prepared with a bathtub-like, flat, featureless and steep walled ocean bathymetry, which is neither realistic nor suitable. In this article, we present the first enhanced version of a reconstructed paleobathymetry for Cenomanian-Turonian (94 Ma) time in a 0.1°x0.1° resolution, that is realistic and suitable for the use in paleo-climate studies. This reconstruction is an extrapolation of a parameterized modern ocean bathymetry that combines simple geophysical models (standard plate cooling model for the oceanic lithosphere) based on ocean crustal age, global modern oceanic sediment thicknesses, and generalized shelf-slope-rise structures calibrated from a published global relief model of the modern world (ETOPO1) at active and passive continental margins. The base version of this Cenomanian-Turonian paleobathymetry reconstruction is then updated with known submarine large igneous provinces (LIPs) and plateaus, and seamounts to minimize the difference between the reconstructed paleobathymetry and the real bathymetry that once existed.
Keywords: Cretaceous, Cenomanian-Turonian, paleobathymetry, paleoclimate, paleoceanography, reconstruction, simulation, shelf-slope-rise

Title: Mapping of Cold-Water Coral Mounds Based on Geomorphometric Features: an Object-Based Approach
Authors: Markus Diesing and Terje Thorsnes
Affiliation: Geological Survey of Norway, Trondheim, Norway
Abstract: Cold-water coral reefs are rich, yet fragile ecosystems found in colder oceanic waters. Knowledge of their spatial distribution on continental shelves, slopes, seamounts and ridge systems is vital for marine spatial planning and conservation. Cold-water corals frequently form conspicuous mounds of varying sizes, which are identifiable from multibeam echosounder bathymetry and derived geomorphometric attributes. However, the often large number of mounds makes manual interpretation and mapping a tedious process. In this contribution, we present a methodology that combines image segmentation and spatial prediction methods with the aim to derive maps of coral mounds and an associated measure of confidence in the predictions.

Title:  Shoreline to Shelf Break: Creation of a Seamless Bathymetry Model to Explore Reef Morphology in a Subtropical Setting
Authors: Linklater, M.1,*, Hamylton, S.M.1, Brooke, B.P.2, Nichol, S.L.2, Jordan, A.3, Woodroffe, C.D.1
Affiliation: 1 University of Wollongong, Northfields Ave, Gwynneville, NSW 2522, Australia
2 Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
3 New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, NSW 2315, Australia

Title: Geomorphological Features and Late Pleisticene-Holocene Sedimentation Processes of the Eastern Gulf of Finland
Authors: Ryabchuk D.V.1,2, Sergeev A.Yu.1, Krek A.V.3, Kapustina M.V.3, Tkacheva E.S.3,4, Zhamoida V.A.1,2, Budanov L.M.1,5, Moskovtsev A.A.1
Affiliation: 1 A.P.Karpinsky Russian Geological Research Institute (VSEGEI), St.Petersburg, Russia
2 St. Petersburg State University
3P.P. Shirshov Institute of Oceanology, Russia Academy of Sciences, Kaliningrad, Russia
4 I. Kant Baltic Federal University, Kaliningrad, Russia; 5Saint-Petersburg Mining University, Russia
Abstract: In 2017 during the cruise of RV "Academic Nikolaj Strakhov" in the eastern Gulf of Finland the bathymetric survey of the sea bottom was fulfilled within two key-areas using the multi-beam echo sounder SeaBat 8111 (operating frequency 100 kHz). Primary multi-beam data were cleaned with filters using software package PDS2000 and exported to ASCII format (xyz) for creation of GRID DEM using the Natural neighbor method with a 5 m cell in ArcGIS 10.0. This survey was accompanied by acoustic profiling using EdgeTech 3300-HM sub-bottom profiler (the frequency range is 2 - 10 kHz, the pulse length is 20 ms). Device control and data logging was produced in the EdgeTech Discover Sub-Bottom 3.52 software installed on the EdgeTechXStar PC terminal, which is connected via TCP/IP protocol to a digital signal processor and a transceiver unit. Processing of acoustic-seismic data was carried out using RadExPro software. The program is suited for in-depth HR/UHR marine seismic processing, real-time marine 2D/3D seismic QC, complete processing of near–surface seismic data. GIS-analyses of bottom relief and accompanied dataset of geophysical data has been carried out using GIS ArcGIS™ software. Analysis of digital bottom relief model was provided using multi-beam dataset with cell size 3 m, with calculating Aspect, Slope, Terrain Ruggedness, Bathymetric position index (tools of Spatial Analyst and Benthic Terrain Modeler (ArcGIS software)). It allows identifying specific geomorphological features such as downslope direction, degrees of slope inclination, terrain ruggedness and local relative relief rises and depressions, irrespective of their absolute values. High-resolution marine geophysical research allowed to reveal submerged and buried glacial relief features (glacial till ridges, De Geer moraine, end-moraine ridges, areas of glaciofluvial deposits development) important for reconstruction of deglaciation of the eastern Gulf of Finland, which took place between 13.8-13.3 ka BP (Pandivere-Neva stage) and 12.25 ka BP (Salpausselkä I stage). Analyses of acoustic sub-bottom profiling results indicate a drastic changes of sedimentation processes in Holocene basins (Ancylus Lake and Littorina Sea) which are marked by inner erosion layers in silty-clayey mud. Research is supported by Russian Science Foundation (project NO. 17-77-20041).

Title: Seabed Morphology and Sedimentary Regimes defining Benthic Habitats and Fishing Grounds along the Eastern Brazilian Shelf 
Authors: Bourguignon, S., Bastos, A.C., Quaresma, V.S, Vedoato, F., Pinheiro, H., Teixeira, J.B
Affiliation: Dept of Oceanography, Universidade Federal do Espirito Santo, Brazil
Abstract: Shelf geomorphology and sedimentary regimes are influenced by processes operating on several temporal and spatial scales and are considered important records of sea-level changes and sediment supply and/or carbonate production. The northern continental shelf of Espírito Santo contains evidence of different sedimentary regimes that distribute diverse and complex marine habitats. Herein, seabed morphology, acoustic images of the seafloor (side scan sonar and sub-bottom profiler) and sediment samples were used to investigate the influence of sedimentary regimes on marine habitat distribution. Habitat distribution is also integrated with available data on fisheries to understand the influence of habitat distribution in the usage of distinct fishing gears. The results indicate five habitat domains: muddy bottom, sandy bottom, rhodolith beds, carbonate gravel with rhodoliths and hardground. Through an integrated analysis of the geomorphology and sedimentary distribution, two domains of distinct sedimentation regimes were identified: a sediment-fed shelf adjacent to the Doce River associated with a major mud depocenter and a delta front morphology, and a sediment-starved shelf dominated by carbonate sedimentation and irregular morphology. These contrasting regimes are a result of sedimentary response to sea level fluctuation during Late Quaternary, specially, during the deglaciation processes after the Last Glacial Maximum. The morphological and sedimentary contrasts along the area defines the benthic habitat distribution. The sediment supply regime area is associated with a terrigenous fine/muddy sedimentation bed, which control the local morphology and favors progradation of the seabed. This habitat is a well-known shrimp fishing ground where intense trawling takes place, as well as weakfish and croakers species, caught with gillnets. The accommodation regime or low sediment influx area is characterized by carbonate sedimentation associated with hardgrounds and rhodolith beds. In contrast, this habitat with scarce sediment supply, facilitates extensive benthic colonization of primarily calcareous algae, which attracts many fisheries such as angling, longlines, gillnets and spearfishing. Rhodoliths show a high diversity of coralline calcareous algae and the occurrence of an endemic kelp species. Thus, long-term geological processes, such as relative sea-level fluctuations and sediment supply, is a legacy for the distribution of physical benthic habitats, and  their resulting morphology can be a surrogate for predicting fishing activities  or a first-base analysis for marine spatial planning.

Title: Origin of High Density Pockmark Fields in a Marine Reserve and Their Use in Inferring Near-Seabed Current
Authors: Kim Picard1, David K Williams2, Lynda Radke1, Justy Siwabessy1 and Scott Nichol1
Affiliation: 1 Geoscience Australia, GPO Box 378, Canberra, ACT, Australia
2 Australian Institute of Marine Science, PO Box 41775, Darwin, NT, Australia
Abstract: Pockmarks have been observed around the world’s ocean and lake beds for decades. They indicate shallow and/or deep sub-surface fluid seepage, and may occur in isolation or in groups. Dense fields of pockmarks were identified in three areas (510 km2) mapped using multibeam sonar in the Oceanic Shoals Commonwealth Marine Reserve, located in the tropical Timor Sea on the Australian continental shelf. The pockmarks occur in flat, barren, silty plains (~105 m water depth) which surround extensive carbonate banks and terraces (~40-75 m water depth). The banks hosted rich communities of benthic organisms including sponge gardens and corals. A distinctive feature of many of the pockmarks in this area is a linear scour mark that extends up to 200 m from pockmark depressions. Previous numerical and flume tank simulations have shown that scouring of pockmarks occurs in the direction of the dominant near-seabed flow. These geomorphic features may therefore serve as a proxy for local-scale bottom currents, which may in turn provide information on sediment processes influencing biodiversity patterns in the region.
In this presentation, we: 1) provide information on the methods used to characterise and count the scoured and non-scoured depressions (i.e. an automated method involving ArcGIS spatial analyst tools); (2) draw on other datasets to provide information on why the pockmarks developed (e.g. multibeam backscatter and geochemical variables); and 3) investigate their potential as an environmental proxy (oceanographic) for benthic habitat studies. 


Back to Top