Special Issue "Open-Source Electronics Platforms: Development and Applications"

A special issue of Electronics (ISSN 2079-9292).

Deadline for manuscript submissions: 31 October 2018

Special Issue Editor

Guest Editor
Dr. Trung Dung Ngo

The More Than One Robotics Laboratory, University of Prince Edward Island, 550 University Ave, Charlottetown PE C1A 4P3, Canada
Website | E-Mail
Interests: robotics; artificial intelligence; ubiquitous computing; embedded systems

Special Issue Information

Dear Colleagues,

Open-source electronics platforms are becoming very popular in our daily activities. Arduino- and Raspberry-compatible modules have been applied for a wide range of applications from do-it-yourself (DIY) to industrial projects. Using open-source electronics platforms as educational tools for teaching engineering and science at universities is undeniable. Influences of open-source electronics platforms in technological renovations and social impacts have been well recognized.

The aim of this Special Issue is to gather the most recent development and applications of open-source electronics platforms. We invite all papers with novel contributions in principles, development and applications of open-source electronics platforms with, but not limited to, the following topics:

  • Current state of the art of open-source electronics platforms
  • Principles and development of open-source electronics platforms
  • Software frameworks and operating systems for open-source electronics platforms
  • Using open-source electronics platforms to develop modern information systems including IoT, cyber-physical systems, sensor networks, automation, and robotics.
  • Usability of open-source electronics platforms in research and education

Dr. Trung Dung Ngo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Electronics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 550 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Hardware platforms
  • Software frameworks
  • Free operating systems
  • Open-source drivers and firmware
  • Communication protocols
  • Internet of Things
  • Cyber-physical Systems
  • Sensor networks
  • Robotics
  • Automation
  • Educational tools
  • Engineering and science education
  • Do-it-yourself (DIY) projects
  • High-level research projects

Published Papers (1 paper)

View options order results:
result details:
Displaying articles 1-1
Export citation of selected articles as:

Research

Open AccessArticle Development of EOG-Based Human Computer Interface (HCI) System Using Piecewise Linear Approximation (PLA) and Support Vector Regression (SVR)
Electronics 2018, 7(3), 38; doi:10.3390/electronics7030038
Received: 1 February 2018 / Revised: 20 February 2018 / Accepted: 8 March 2018 / Published: 9 March 2018
PDF Full-text (5926 KB) | HTML Full-text | XML Full-text
Abstract
Electrooculogram (EOG)-based human-computer interfaces (HCIs) are widely researched and considered to be a good HCI option for disabled people. However, conventional systems can only detect eye direction or blinking action. In this paper, we developed a bio-signal-based HCI that can quantitatively estimate the
[...] Read more.
Electrooculogram (EOG)-based human-computer interfaces (HCIs) are widely researched and considered to be a good HCI option for disabled people. However, conventional systems can only detect eye direction or blinking action. In this paper, we developed a bio-signal-based HCI that can quantitatively estimate the horizontal position of eyeball. A designed bio-signal acquisition system can measure EOG and temporalis electromyogram (EMG) signals simultaneously without additional electrodes. For real-time processing for practical application, modified sliding window algorithms are designed and applied for piecewise linear approximation (PLA). To find the eyeball position, support vector regression (SVR) is applied as a curve-fitting model. The average tracking error for target circle with a diameter of 3 cm showed only 1.4 cm difference on the screen with a width of 51 cm. A developed HCI system can perform operations similar to dragging and dropping used in a mouse interface in less than 5 s with only eyeball movement and bite action. Compare to conventional EOG-based HCI that detects the position of the eyeball only in 0 and 1 levels, a developed system can continuously track the eyeball position in less than 0.2 s. In addition, compared to conventional EOG-based HCI, the reduced number of electrodes can enhance the interface usability. Full article
(This article belongs to the Special Issue Open-Source Electronics Platforms: Development and Applications)
Figures

Figure 1

Back to Top