You are currently viewing a new version of our website. To view the old version click .

Advancing Open Science

The world's leading open access publisher. Supporting research communities and accelerating scientific discovery since 1996.

  • 6.4 billionArticle Views
  • 4.4 millionTotal Authors
  • 97%Web of Science Coverage

News & Announcements

Journals

  • The integration of modern artificial intelligence into software systems presents transformative opportunities and novel challenges for software quality assurance (SQA). While AI enables powerful enhancements in testing, monitoring, and defect prediction, it also introduces non-determinism, continuous learning, and opaque behavior that challenge traditional quality and reliability paradigms. This paper proposes a framework for addressing these issues, drawing on concepts from systems theory. We argue that AI-enabled software systems should be understood as dynamical systems, i.e., stateful adaptive systems whose behavior depends on prior inputs, feedback, and environmental interaction, as well as components embedded within broader socio-technical ecosystems. From this perspective, quality assurance becomes a matter of maintaining stability by enforcing constraints as well as designing robust feedback and control mechanisms that account for interactions across the full ecosystem of stakeholders, infrastructure, and operational environments. This paper outlines how the systems-theoretic perspective can inform the development of modern SQA processes. This ecosystem-aware approach repositions software quality as an ongoing, systemic responsibility, especially important in mission-critical AI applications.

    Software,

    13 November 2025

  • Dual Role of Bacillus velezensis EM-A8 in Maize: Biocontrol of Exserohilum Turcicum and Enhancement of Plant Growth

    • María Fiamma Grossi Vanacore,
    • Melina Sartori and
    • Francisco Giordanino
    • + 2 authors

    Northern corn leaf blight (NCLB), caused by Exserohilum turcicum, is a major foliar disease of maize worldwide. To develop sustainable alternatives that reduce chemical products, we evaluated Bacillus velezensis EM-A8 (GenBank accession number OL704805) as a biocontrol agent under greenhouse and field conditions. The aims of this study were as follows: (i) characterize phytohormone production in two formulations containing the BCA; (ii) assess the influence of the BCA on plant biomass and yield; (iii) compare the efficacy of both formulations in controlling NCLB under field conditions; and (iv) determine whether the treatments affected salicylic acid and phenolic compound levels in maize tissues. The strain synthesized a broad spectrum of phytohormones, including salicylic acid, indoleacetic acid, indolebutyric acid, jasmonic acid, abscisic acid and gibberellic acid, as well as cytokinins such as kinetin, zeatin, and 6-benzylaminopurine. Foliar application increased maize dry biomass by 30%. In field trials, both formulations effectively suppressed NCLB, reducing the number of symptomatic leaves by 25–50% compared with controls. Furthermore, treated plants exhibited yield increases exceeding 1000 kg/ha. These findings demonstrate that B. velezensis EM-A8 provides effective biocontrol of E. turcicum while simultaneously enhancing maize growth and yield under field conditions. Future work should aim to scale up the use of B. velezensis EM-A8 in integrated pest management programs and evaluate its long-term impact on soil microbiota, plant health, and yield sustainability.

    Plants,

    13 November 2025

  • Salinity is a long-standing global environmental stressor of terrestrial agroecosystems, with important implications for viticulture sustainability, especially in arid and semi-arid environments. Salt-induced physiological and biochemical disruptions to grapevines undermine yield and long-term vineyard sustainability. This review aims to integrate physiological, molecular, and omics-based insights to elucidate how grapevine rootstocks confer salinity tolerance and to identify future breeding directions for sustainable viticulture. This review critically assesses the ecological and molecular processes underlying salt stress adaptation in grapevine (Vitis spp.) rootstocks, with an emphasis on their contribution to modulating scion performance under saline conditions. Core adaptive mechanisms include morphological plasticity, ion compartmentalization, hormonal regulation, antioxidant defense, and activation of responsive genes to stress. Particular emphasis is given to recent integrative biotechnological developments—including transcriptomics, proteomics, metabolomics, and genomics—that reveal the intricate signaling and regulatory networks enabling rootstock-mediated tolerance. By integrating advances across eco-physiological, agronomic, and molecular realms, this review identifies rootstock selection as a promising strategy for bolstering resilience in grapevine production systems confronted by salinization, a phenomenon increasingly exacerbated by anthropogenic land use and climate change. The research highlights the value of stress ecology and adaptive root system strategies for alleviating the environmental consequences of soil salinity for perennial crop systems.

    Int. J. Plant Biol.,

    13 November 2025

  • Background/Objectives: Although screening for scoliosis is common among adolescents, little is known about its subtypes and their correlations in young adults. This study aimed to investigate the prevalence and classification of scoliosis (functional vs. structural) among female university students in Saudi Arabia and to examine associated factors. Methods: A cross-sectional study was conducted with 263 female students at Taibah University. Screening was performed using Adam’s forward bending test and a scoliometer. Data on age, body mass index, academic year, hand dominance, habitual sitting posture, backpack carriage method, leg-length discrepancy, painful conditions, and family history of scoliosis were collected. The association between scoliosis subtypes and contributing factors was analyzed using descriptive statistics, chi-square test, and Spearman’s correlation. Results: Scoliosis was identified in 94 students (prevalence, 35.7%). Of these, 26.2% had functional scoliosis, whereas 9.5% had structural scoliosis. Functional scoliosis was significantly associated with sitting posture, leg-length discrepancy, and age (p < 0.05), whereas structural scoliosis was associated with family history, habitual sitting posture, and painful conditions (p < 0.05). Conclusions: The high prevalence and differing profiles of scoliosis subtypes underscore the need for routine postural screening in universities. Early identification and ergonomic education may help in selecting appropriate targeted interventions for individuals with functional or structural scoliosis.

    Healthcare,

    13 November 2025

  • This study explores the machinability of Material Extrusion (MEX) printed parts made from carbon fiber-reinforced polylactic acid (PLA). MEX-printed parts typically exhibit high surface roughness, necessitating post-processing to enhance their quality. In this work, milling was used as a post-processing method to improve the surface finish. Response surface methodology (RSM) experimental design was employed to investigate the effects of cutting velocity, feed rate, and depth of cut on the surface quality of the machined surfaces. Results showed that the as-built MEX-printed sample exhibited a high average surface roughness (Sa) of ~7.982 µm, indicating the need for post-processing. Post-processing milling considerably enhances the Sa by reducing it to ~1.621 µm under the optimal condition. Statistical findings showed that all considered factors have significant influence on the Sa, with feed rate as the most influential one, contributing to 47.63% of the total variation. The Sa values varied from 1.834 µm to 4.146 µm due to changes in the considered factors. Increasing feed rate leads to the emergence of cavities and ridges along the deposited filaments associated with brittle removal mechanism, resulting in higher surface roughness.

    Machines,

    13 November 2025

  • Fungal polysaccharides represent a structurally diverse group of bioactive compounds with increasing recognition for their hepatoprotective potential. This review synthesizes current evidence on their roles in the prevention and treatment of liver diseases, including alcohol-related liver disease (ALD), metabolic dysfunction-associated fatty liver disease (MAFLD), or toxin-induced injury. The analyzed studies demonstrate that polysaccharides isolated from species such as Lentinula edodes, Grifola frondosa, Ganoderma lucidum, Coriolus versicolor, and Cordyceps militaris exert beneficial effects by reducing oxidative stress, attenuating inflammation, and improving metabolic homeostasis. Mechanistically, these effects are mediated through the regulation of multiple signaling pathways, including Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Nuclear factor erythroid 2–related factor 2 (Nrf2), and NOD-like receptor protein 3 (NLRP3) inflammasome, as well as modulation of gut microbiota. Fungal polysaccharides were also shown to improve hepatic function by lowering serum biomarkers of liver injury and ameliorating histopathological damage. Presented evidence indicates that fungal polysaccharides possess considerable potential as multifunctional hepatoprotective agents, highlighting the need for further mechanistic insight and clinical validation.

    Molecules,

    13 November 2025

  • The emergence of multidrug-resistant Shiga toxin-producing Escherichia coli (STEC) poses a major challenge to public health and necessitates the development of alternative antimicrobial strategies. This study aimed to isolate and characterize five lytic bacteriophages belonging to the genus Mosigvirus and evaluate their potential as biocontrol against MDR STEC strains and their biofilms. The five bacteriophages, designated vB_EcoM-pJBB (ΦB), vB_EcoM-pJBC (ΦC), vB_EcoM-pJBJ (ΦJ), vB_EcoM-pJBK (ΦK), and vB_EcoM-pJBL (ΦL), were isolated from sewage treatment plant samples using STEC ATCC 43895 as host. Biological characterization included host range determination against 19 MDR STEC strains, one-step growth analysis, environmental stability assays, bacteriolytic activity assessment, and antibiofilm efficacy testing. Whole-genome sequencing and phylogenetic analyses were performed to determine genomic features and taxonomic classification. The phages demonstrated varying infectious capacities, lysing between six and 12 strains, with ΦL exhibiting the broadest spectrum of activity. All phages showed MOI-independent antibiofilm activity, preventing biofilm formation by approximately 70% and disrupting pre-formed biofilms by up to 80.3%. Genomic analysis revealed the absence of lysogeny markers, virulence factors, and antimicrobial resistance genes, while identifying putative depolymerase genes associated with tail fiber proteins. Phylogenetic analysis confirmed the taxonomic position of these phages within the Mosigvirus genus in the Straboviridae family. Our findings indicate that the newly identified Mosigvirus phages are promising candidates for phage-based biocontrol applications.

    Viruses,

    13 November 2025

  • Industrial hemp (Cannabis sativa L.; Cannabaceae), traditionally cultivated for fiber, also represents a valuable source of nutrient-rich seed oil. In this study, cold-pressed hemp seed oils from three Romanian varieties (Teodora, Silvana, and Armanca) were evaluated for their fatty acid composition, minor bioactive constituents, antioxidant activity, growth-promoting property toward probiotic strains in vitro, and molecular docking interactions with probiotic targets. Gas chromatography revealed a fatty acid profile dominated by linoleic (49.4–51.9%), oleic (16.3–22.8%), and α-linolenic acids (9.8–14.4%), resulting in favorable PUFA/SFA ratios (5.17–6.39) and ω-6/ω-3 ratios (3.93–5.53). The oils also contained phenolics (118–160 mg GAE/kg), chlorophylls (6.18–8.31 mg/kg), and carotenoids (2.58–3.37 mg/kg), which contributed to their antioxidant activity (DPPH inhibition 35.92 µM TE/100 g–43.37 µM TE/100 g). Broth microdilution assays against Lacticaseibacillus rhamnosus GG, L. paracasei ATCC BAA-52, and L. acidophilus ATCC 4356 demonstrated strain- and dose-dependent potential to promote probiotic growth under in vitro conditions. While L. rhamnosus and L. paracasei were inhibited at low concentrations and only mildly stimulated at higher levels, L. acidophilus showed robust growth promotion, reaching +54.7% effect and CP = 1.55 with Teodora oil at 16 mg/mL. Molecular docking highlighted strong binding affinities of γ-linolenic and linoleic acids with key metabolic enzymes involved in probiotic metabolism (hydratase, enolase, glyceraldehyde-3-phosphate dehydrogenase, ribonucleoside hydrolase), forming stable hydrophilic and hydrophobic interactions which are explored in defining the stability of the ligand-protein complexes. These results indicate that both major fatty acids and minor bioactive constituents contribute to the nutritional and antioxidant value of Romanian hemp seed oils and reveal a potential to promote probiotic growth under in vitro conditions, as supported by complementary in silico evidence.

    Plants,

    13 November 2025

Partnerships