Next Issue
Previous Issue

Table of Contents

Nanomaterials, Volume 3, Issue 2 (June 2013), Pages 204-316

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-7
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Effects of Microstructure on Electrode Properties of Nanosheet-Derived Hx(Ni1/3Co1/3Mn1/3)O2 for Electrochemical Capacitors
Nanomaterials 2013, 3(2), 204-220; doi:10.3390/nano3020204
Received: 8 January 2013 / Revised: 17 February 2013 / Accepted: 12 March 2013 / Published: 25 March 2013
Cited by 2 | PDF Full-text (3163 KB) | HTML Full-text | XML Full-text
Abstract
Nanosheet-derived Hx(Ni1/3Co1/3Mn1/3)O2 was prepared by restacking (Ni1/3Co1/3Mn1/3)O2 nanosheets with large or small lateral sizes and their electrochemical properties in a 1 M KOH aqueous solution; microstructural factors
[...] Read more.
Nanosheet-derived Hx(Ni1/3Co1/3Mn1/3)O2 was prepared by restacking (Ni1/3Co1/3Mn1/3)O2 nanosheets with large or small lateral sizes and their electrochemical properties in a 1 M KOH aqueous solution; microstructural factors were compared with those of bulk Hx(Ni1/3Co1/3Mn1/3)O2 (HNCM). The electrodes composed of small nanosheets exhibited very large capacitances of 1241 F·g−1 (395 mAh·g−1) at a current density of 50 mA·g−1, and 430 F·g−1 (100 mAh·g−1) at a large current density of 1000 mA·g−1. These large capacitances resulted from a heterogeneous layer structure with a large surface area and pore volume. The electrodes of large nanosheets, with a strongly interconnected microstructure and a surface area slightly larger than that of HNCM, exhibited good cycle stability and capacitances larger than that of HNCM. Microstructural control through the restacking of (Ni1/3Co1/3Mn1/3)O2 nanosheets improved the electrochemical properties of Hx(Ni, Co, Mn)O2. Full article
Figures

Open AccessCommunication Separation of Short Single- and Double-Stranded DNA Based on Their Adsorption Kinetics Difference on Graphene Oxide
Nanomaterials 2013, 3(2), 221-228; doi:10.3390/nano3020221
Received: 18 March 2013 / Revised: 27 March 2013 / Accepted: 28 March 2013 / Published: 4 April 2013
Cited by 14 | PDF Full-text (196 KB) | HTML Full-text | XML Full-text
Abstract
Separation of short single- and double-stranded DNA typically requires gel electrophoresis followed by DNA extraction, which is a time consuming process. Graphene oxide adsorbs single-stranded DNA more quickly than double-stranded ones, allowing for selective removal of the former with a simple mixing and
[...] Read more.
Separation of short single- and double-stranded DNA typically requires gel electrophoresis followed by DNA extraction, which is a time consuming process. Graphene oxide adsorbs single-stranded DNA more quickly than double-stranded ones, allowing for selective removal of the former with a simple mixing and centrifugation operation. The effect of DNA length and salt on adsorption selectivity has been characterized and its application in DNA melting curve measurement has been demonstrated. Full article
(This article belongs to the Special Issue Nanomaterials in Sensors)
Figures

Open AccessArticle A Thermal Model for Carbon Nanotube Interconnects
Nanomaterials 2013, 3(2), 229-241; doi:10.3390/nano3020229
Received: 11 March 2013 / Revised: 10 April 2013 / Accepted: 12 April 2013 / Published: 26 April 2013
Cited by 6 | PDF Full-text (277 KB) | HTML Full-text | XML Full-text
Abstract
In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the
[...] Read more.
In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters. Full article
(This article belongs to the Special Issue CNT based Nanomaterials)
Figures

Open AccessArticle Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates
Nanomaterials 2013, 3(2), 272-288; doi:10.3390/nano3020272
Received: 12 March 2013 / Revised: 2 May 2013 / Accepted: 5 May 2013 / Published: 13 May 2013
Cited by 16 | PDF Full-text (4303 KB) | HTML Full-text | XML Full-text
Abstract
Fabrication of uniform thin coatings of multi-walled carbon nanotubes (MWCNTs) by electrophoretic deposition (EPD) on semiconductor (silicon) substrates with 3-aminopropyl-triethoxysilane (APTES) surface functionalization has been studied extensively in this report. The gradual deposition and eventual film formation of the carbon nanotubes (CNTs) is
[...] Read more.
Fabrication of uniform thin coatings of multi-walled carbon nanotubes (MWCNTs) by electrophoretic deposition (EPD) on semiconductor (silicon) substrates with 3-aminopropyl-triethoxysilane (APTES) surface functionalization has been studied extensively in this report. The gradual deposition and eventual film formation of the carbon nanotubes (CNTs) is greatly assisted by the Coulombic force of attraction existing between the positively charged –NH2 surface groups of APTES and the acid treated, negatively charged nanotubes migrating towards the deposition surfaces. The remarkable deposition characteristics of the CNT coatings by EPD in comparison to the dip coating method and the influence of isopropyl (IPA)-based CNT suspension in the fabricated film quality has also been revealed in this study. The effect of varying APTES concentration (5%–100%) on the Raman spectroscopy and thickness of the deposited CNT film has been discussed in details, as well. The deposition approach has eliminated the need of metal deposition in the electrophoretic deposition approach and, therefore, establishes a cost-effective, fast and entirely room temperature-based fabrication strategy of CNT thin films for a wide range of next generation electronic applications. Full article
(This article belongs to the Special Issue CNT based Nanomaterials)
Open AccessArticle Desorption of 1,3,5-Trichlorobenzene from Multi-Walled Carbon Nanotubes: Impact of Solution Chemistry and Surface Chemistry
Nanomaterials 2013, 3(2), 289-302; doi:10.3390/nano3020289
Received: 28 March 2013 / Revised: 2 May 2013 / Accepted: 8 May 2013 / Published: 17 May 2013
Cited by 1 | PDF Full-text (733 KB) | HTML Full-text | XML Full-text
Abstract
The strong affinity of carbon nanotubes (CNTs) to environmental contaminants has raised serious concern that CNTs may function as a carrier of environmental pollutants and lead to contamination in places where the environmental pollutants are not expected. However, this concern will not be
[...] Read more.
The strong affinity of carbon nanotubes (CNTs) to environmental contaminants has raised serious concern that CNTs may function as a carrier of environmental pollutants and lead to contamination in places where the environmental pollutants are not expected. However, this concern will not be realized until the contaminants are desorbed from CNTs. It is well recognized that the desorption of environmental pollutants from pre-laden CNTs varies with the environmental conditions, such as the solution pH and ionic strength. However, comprehensive investigation on the influence of solution chemistry on the desorption process has not been carried out, even though numerous investigations have been conducted to investigate the impact of solution chemistry on the adsorption of environmental pollutants on CNTs. The main objective of this study was to determine the influence of solution chemistry (e.g., pH, ionic strength) and surface functionalization on the desorption of preloaded 1,3,5-trichlorobenzene (1,3,5-TCB) from multi-walled carbon nanotubes (MWNTs). The results suggested that higher pH, ionic strength and natural organic matter in solution generally led to higher desorption of 1,3,5-TCB from MWNTs. However, the extent of change varied at different values of the tested parameters (e.g., pH < 7 vs. pH > 7). In addition, the impact of these parameters varied with MWNTs possessing different surface functional groups, suggesting that surface functionalization could considerably alter the environmental behaviors and impact of MWNTs. Full article
(This article belongs to the Special Issue CNT based Nanomaterials)
Figures

Open AccessArticle Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM
Nanomaterials 2013, 3(2), 303-316; doi:10.3390/nano3020303
Received: 4 April 2013 / Revised: 25 April 2013 / Accepted: 8 May 2013 / Published: 17 May 2013
Cited by 1 | PDF Full-text (1250 KB) | HTML Full-text | XML Full-text
Abstract
This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic
[...] Read more.
This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. Full article
(This article belongs to the Special Issue New Developments in Nanomaterial Analysis)
Figures

Review

Jump to: Research

Open AccessReview Nanostructured Biomaterials and Their Applications
Nanomaterials 2013, 3(2), 242-271; doi:10.3390/nano3020242
Received: 18 March 2013 / Revised: 23 April 2013 / Accepted: 24 April 2013 / Published: 10 May 2013
Cited by 2 | PDF Full-text (1870 KB) | HTML Full-text | XML Full-text
Abstract
Some of the most important advances in the life sciences have come from transitioning to thinking of materials and their properties on the nanoscale rather than the macro or even microscale. Improvements in imaging technology have allowed us to see nanofeatures that directly
[...] Read more.
Some of the most important advances in the life sciences have come from transitioning to thinking of materials and their properties on the nanoscale rather than the macro or even microscale. Improvements in imaging technology have allowed us to see nanofeatures that directly impact chemical and mechanical properties of natural and man-made materials. Now that these can be imaged and quantified, substantial advances have been made in the fields of biomimetics, tissue engineering, and drug delivery. For the first time, scientists can determine the importance of nanograins and nanoasperities in nacre, direct the nucleation of apatite and the growth of cells on nanostructured scaffolds, and pass drugs tethered to nanoparticles through the blood-brain barrier. This review examines some of the most interesting materials whose nanostructure and hierarchical organization have been shown to correlate directly with favorable properties and their resulting applications. Full article
(This article belongs to the Special Issue Trends of Nanomaterials in Life Sciences)

Journal Contact

MDPI AG
Nanomaterials Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
nanomaterials@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Nanomaterials
Back to Top