Next Issue
Previous Issue

Table of Contents

Antioxidants, Volume 3, Issue 2 (June 2014), Pages 190-471

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-16
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Effect of Drying Operating Conditions on Canola Oil Tocopherol Content
Antioxidants 2014, 3(2), 190-199; doi:10.3390/antiox3020190
Received: 5 January 2014 / Revised: 19 February 2014 / Accepted: 21 March 2014 / Published: 27 March 2014
Cited by 1 | PDF Full-text (189 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this work was to evaluate two operating parameters of seed drying (temperature and initial moisture content) on the tocopherol content of canola oil. The raw material was characterized by moisture, oil, protein, crude fiber and ash content. Seeds at [...] Read more.
The aim of this work was to evaluate two operating parameters of seed drying (temperature and initial moisture content) on the tocopherol content of canola oil. The raw material was characterized by moisture, oil, protein, crude fiber and ash content. Seeds at 13.6% and 22.7% moisture content (dry basis, db) were dried at temperatures in the range of 35–100 °C to a safe storage moisture of 7% db. Oil was extracted from each treated sample. The oil extracted from the samples dried at the extreme temperatures was analyzed by means of the acidity value, peroxide index and fatty acid composition, finding no significant differences among treatments or among untreated and treated samples. Tocopherol contents in the oils obtained for all the assayed temperatures were determined. Differences were found for the samples with 22.7% (db) initial moisture content. Except at 35 °C, temperature affected negatively the oil tocopherol content. However, when 13.6% (db) moisture seeds were processed, no significant differences were observed in the amount of this minor oil component among assays. Full article
(This article belongs to the Special Issue Antioxidants in Oils)
Open AccessArticle Antioxidant Activity of Grapevine Leaf Extracts against Oxidative Stress Induced by Carbon Tetrachloride in Cerebral Cortex, Hippocampus and Cerebellum of Rats
Antioxidants 2014, 3(2), 200-211; doi:10.3390/antiox3020200
Received: 26 December 2013 / Revised: 10 March 2014 / Accepted: 17 March 2014 / Published: 2 April 2014
Cited by 2 | PDF Full-text (337 KB) | HTML Full-text | XML Full-text
Abstract
In recent years, it has become increasingly important to study the beneficial properties of derivatives of grapes and grapevine. The objective of this study was to determine the antioxidant activity of Vitis labrusca leaf extracts, comparing conventional and organic grapevines, in different [...] Read more.
In recent years, it has become increasingly important to study the beneficial properties of derivatives of grapes and grapevine. The objective of this study was to determine the antioxidant activity of Vitis labrusca leaf extracts, comparing conventional and organic grapevines, in different brain areas of rats. We used male Wistar rats treated with grapevine leaf extracts for a period of 14 days, and on the 15th day, we administered in half of the rats, mineral oil and the other half, carbon tetrachloride (CCl4). The animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were removed to assess oxidative stress parameters and the activity of antioxidant enzymes. Lipid peroxidation levels (TBARS) were unchanged. However, CCl4 induced oxidative damage to proteins in all tissues studied, and this injury was prevented by both extracts. Superoxide dismutase (SOD) activity was increased by CCl4 in the cerebral cortex and decreased in other tissues. However, CCl4 increased catalase (CAT) activity in the cerebellum and decreased it in the cerebral cortex. The SOD/CAT ratio was restored in the cerebellum by both extracts and only in the cerebral cortex by the organic extract. Full article
(This article belongs to the Special Issue Oxidative Stress and Neurodegenerative Diseases)
Open AccessArticle Distribution and Antioxidant Efficiency of Resveratrol in Stripped Corn Oil Emulsions
Antioxidants 2014, 3(2), 212-228; doi:10.3390/antiox3020212
Received: 17 January 2014 / Revised: 19 February 2014 / Accepted: 28 February 2014 / Published: 4 April 2014
Cited by 4 | PDF Full-text (1322 KB) | HTML Full-text | XML Full-text
Abstract
We investigated the effects of resveratrol (RES) on the oxidative stability of emulsions composed of stripped corn oil, acidic water and Tween 20 and determined its distribution in the intact emulsions by employing a well-established kinetic method. The distribution of RES is [...] Read more.
We investigated the effects of resveratrol (RES) on the oxidative stability of emulsions composed of stripped corn oil, acidic water and Tween 20 and determined its distribution in the intact emulsions by employing a well-established kinetic method. The distribution of RES is described by two partition constants, that between the oil-interfacial region, POI, and that between the aqueous and interfacial region, PWI. The partition constants, POI and PWI, are obtained in the intact emulsions from the variations of the observed rate constant, kobs, for the reaction between the hydrophobic 4-hexadecylbenzenediazonium ion and RES with the emulsifier volume fraction, ФI. The obtained POI and PWI values are quite high, PWI = 4374 and POI = 930, indicating that RES is primarily located in the interfacial region of the emulsions, %RESI > 90% at ФI = 0.005, increasing up to 99% at ФI = 0.04. The oxidative stability of the corn oil emulsions was determined by measuring the formation of conjugated dienes at a given time in the absence and in the presence of RES. The addition of RES did not improve their oxidative stability in spite that more than 90% of RES is located in the interfacial region of the emulsion, because of the very low radical scavenging activity of RES. Full article
(This article belongs to the Special Issue Antioxidants in Oils)
Open AccessArticle Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction
Antioxidants 2014, 3(2), 229-244; doi:10.3390/antiox3020229
Received: 27 January 2014 / Revised: 11 March 2014 / Accepted: 24 March 2014 / Published: 8 April 2014
Cited by 4 | PDF Full-text (1035 KB) | HTML Full-text | XML Full-text
Abstract
A fast, clean, energy-saving, non-toxic method for the stabilization of the antioxidant activity and the improvement of the thermal stability of oleuropein and related phenolic compounds separated from olive leaf extract via salting-out-assisted cloud point extraction (CPE) was developed using Tween 80. [...] Read more.
A fast, clean, energy-saving, non-toxic method for the stabilization of the antioxidant activity and the improvement of the thermal stability of oleuropein and related phenolic compounds separated from olive leaf extract via salting-out-assisted cloud point extraction (CPE) was developed using Tween 80. The process was based on the decrease of the solubility of polyphenols and the lowering of the cloud point temperature of Tween 80 due to the presence of elevated amounts of sulfates (salting-out) and the separation from the bulk solution with centrifugation. The optimum conditions were chosen based on polyphenols recovery (%), phase volume ratio (Vs/Vw) and concentration factor (Fc). The maximum recovery of polyphenols was in total 95.9%; Vs/Vw was 0.075 and Fc was 15 at the following conditions: pH 2.6, ambient temperature (25 °C), 4% Tween 80 (w/v), 35% Na2SO4 (w/v) and a settling time of 5 min. The total recovery of oleuropein, hydroxytyrosol, luteolin-7-O-glucoside, verbascoside and apigenin-7-O-glucoside, at optimum conditions, was 99.8%, 93.0%, 87.6%, 99.3% and 100.0%, respectively. Polyphenolic compounds entrapped in the surfactant-rich phase (Vs) showed higher thermal stability (activation energy (Ea) 23.8 kJ/mol) compared to non-entrapped ones (Ea 76.5 kJ/mol). The antioxidant activity of separated polyphenols remained unaffected as determined by the 1,1-diphenyl-2-picrylhydrazyl method. Full article
Open AccessArticle Antioxidant and Free Radical Scavenging Capacity of Seed and Shell Essential Oils Extracted from Abrus precatorius (L)
Antioxidants 2014, 3(2), 278-287; doi:10.3390/antiox3020278
Received: 10 January 2014 / Revised: 28 February 2014 / Accepted: 21 March 2014 / Published: 15 April 2014
Cited by 3 | PDF Full-text (433 KB) | HTML Full-text | XML Full-text
Abstract
Essential oils from plants have been proven safe as natural antioxidants, and few are already marketed as digestive enhancers as well as in prevention of several degenerative diseases. This study evaluated the antioxidant capacity of seed and shell essential oils of Abrus [...] Read more.
Essential oils from plants have been proven safe as natural antioxidants, and few are already marketed as digestive enhancers as well as in prevention of several degenerative diseases. This study evaluated the antioxidant capacity of seed and shell essential oils of Abrus precatorius (L), a herb used for ethno-medicinal practices in Nigeria. The essential oils were obtained by hydro-distillation. The ability of the oils to act as hydrogen/electrons donor or scavenger of radicals were determined by in-vitro antioxidant assays using 2,2-diphenyl-2-picryl-hydrazyl free radical (DPPH.) scavenging; 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging; lipid peroxide and nitric oxide radicals scavenging assays. The IC50 of the seed and shell oils (2.10 mg/mL and 1.20 mg/mL respectively) showed that antioxidant activity is higher than that for the standard drugs (3.20 mg/mL and 3.40 mg/mL) for the nitric oxide scavenging assay. The lipid peroxidation radical activity of the oils were similar to vitamin C, weak DPPH and ABTS radical scavenging activities were discovered in comparison to vitamin C and rutin. Generally, in the four antioxidant assays, a significant correlation existed between concentrations of the oils and percentage inhibition of free radicals and lipid peroxidation. The composition of A. precatorius essential oils reported earlier may account for their antioxidant capacity. Full article
Open AccessArticle A Quantum Chemical and Statistical Study of Phenolic Schiff Bases with Antioxidant Activity against DPPH Free Radical
Antioxidants 2014, 3(2), 309-322; doi:10.3390/antiox3020309
Received: 19 February 2014 / Revised: 24 March 2014 / Accepted: 10 April 2014 / Published: 21 April 2014
Cited by 4 | PDF Full-text (333 KB) | HTML Full-text | XML Full-text
Abstract
Phenolic Schiff bases are known as powerful antioxidants. To select the electronic, 2D and 3D descriptors responsible for the free radical scavenging ability of a series of 30 phenolic Schiff bases, a set of molecular descriptors were calculated by using B3P86 (Becke’s [...] Read more.
Phenolic Schiff bases are known as powerful antioxidants. To select the electronic, 2D and 3D descriptors responsible for the free radical scavenging ability of a series of 30 phenolic Schiff bases, a set of molecular descriptors were calculated by using B3P86 (Becke’s three parameter hybrid functional with Perdew 86 correlation functional) combined with 6-31 + G(d,p) basis set (i.e., at the B3P86/6-31 + G(d,p) level of theory). The chemometric methods, simple and multiple linear regressions (SLR and MLR), principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed to reduce the dimensionality and to investigate the relationship between the calculated descriptors and the antioxidant activity. The results showed that the antioxidant activity mainly depends on the first and second bond dissociation enthalpies of phenolic hydroxyl groups, the dipole moment and the hydrophobicity descriptors. The antioxidant activity is inversely proportional to the main descriptors. The selected descriptors discriminate the Schiff bases into active and inactive antioxidants. Full article
Figures

Open AccessArticle Hepatoprotective and Antioxidant Potential of Organic and Conventional Grape Juices in Rats Fed a High-Fat Diet
Antioxidants 2014, 3(2), 323-338; doi:10.3390/antiox3020323
Received: 11 January 2014 / Revised: 2 April 2014 / Accepted: 2 April 2014 / Published: 30 April 2014
Cited by 4 | PDF Full-text (846 KB) | HTML Full-text | XML Full-text
Abstract
The objective of this study was to investigate the antioxidant and hepatoprotective effect of the chronic use of conventional (CGJ) or organic (OGJ) grape juice from the Bordeaux variety grape on oxidative stress and cytoarchitecture in the liver of rats supplemented with [...] Read more.
The objective of this study was to investigate the antioxidant and hepatoprotective effect of the chronic use of conventional (CGJ) or organic (OGJ) grape juice from the Bordeaux variety grape on oxidative stress and cytoarchitecture in the liver of rats supplemented with a high-fat diet (HFD) for three months. The results demonstrated that HFD induced an increase in thiobarbituric acid-reactive substances (TBARS), catalase (CAT) activity and 2′,7′-dihydrodichlorofluorescein (DCFH) oxidation and a decrease in sulfhydryl content and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. HFD also induced hepatocellular degeneration and steatosis. These alterations were prevented by CGJ and OGJ, where OGJ was more effective. Therefore, it was concluded that HFD induced oxidative stress and liver damage and that the chronic use of grape juice was able to prevent these alterations. Full article
Figures

Open AccessArticle Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions
Antioxidants 2014, 3(2), 339-357; doi:10.3390/antiox3020339
Received: 10 December 2013 / Revised: 5 March 2014 / Accepted: 11 April 2014 / Published: 6 May 2014
Cited by 6 | PDF Full-text (440 KB) | HTML Full-text | XML Full-text
Abstract
Borage (Borago officinalis L.) is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM) and to use this [...] Read more.
Borage (Borago officinalis L.) is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM) and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC), antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50–90 °C, 0%–30%–60% ethanol (v/v), and 10–15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior. Full article
(This article belongs to the Special Issue Antioxidants in Oils)
Open AccessArticle Effects of Different Drying Methods and Storage Time on Free Radical Scavenging Activity and Total Phenolic Content of Cosmos Caudatus
Antioxidants 2014, 3(2), 358-370; doi:10.3390/antiox3020358
Received: 17 February 2014 / Revised: 7 April 2014 / Accepted: 24 April 2014 / Published: 7 May 2014
Cited by 1 | PDF Full-text (269 KB) | HTML Full-text | XML Full-text
Abstract
The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with [...] Read more.
The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained. Full article
Figures

Open AccessArticle The Effectiveness of Rambutan (Nephelium lappaceum L.) Extract in Stabilization of Sunflower Oil under Accelerated Conditions
Antioxidants 2014, 3(2), 371-386; doi:10.3390/antiox3020371
Received: 1 January 2014 / Revised: 23 April 2014 / Accepted: 28 April 2014 / Published: 9 May 2014
Cited by 4 | PDF Full-text (733 KB) | HTML Full-text | XML Full-text
Abstract
The oxidative properties of sunflower oil supplemented with rambutan extract, (crude extract and its fractionated fraction, SF II) in comparison with synthetic antioxidant were investigated. The supplemented sunflower oils were stored under accelerated conditions for 24 days at 60 °C. For every [...] Read more.
The oxidative properties of sunflower oil supplemented with rambutan extract, (crude extract and its fractionated fraction, SF II) in comparison with synthetic antioxidant were investigated. The supplemented sunflower oils were stored under accelerated conditions for 24 days at 60 °C. For every 6-day interval, the oxidative properties of the supplemented sunflower oil were evaluated based on the following tests, namely peroxide value, p-anisidine value, Thiobarbituric Acid Reactive Substances (TBARS) assay, iodine value and free fatty acids. The total oxidation (TOTOX) values were also calculated based on the peroxide values and p-anisidine values. Rambutan extract is a potential source of antioxidant. The oxidative activities of the extracts at all concentrations were significantly (p < 0.05) higher than the control. Generally, the partially fractionated fraction was more effective than the crude extract. With a 2-year storage period at ambient temperature, the fractionated fraction of the extract, SF II at 300 ppm, was observed to work more effectively than the synthetic antioxidant, t-Tocopherol, and it possessed a protective effect comparable with butylatedhydrioxynanisole (BHA). Therefore, rambutan extract could be used as a potential alternative source of antioxidant in the oil industry or other fat-based products to delay lipid oxidation. Full article
(This article belongs to the Special Issue Antioxidants in Oils)
Open AccessArticle Oxidative Stress Is Associated with Neuroinflammation in Animal Models of HIV-1 Tat Neurotoxicity
Antioxidants 2014, 3(2), 414-438; doi:10.3390/antiox3020414
Received: 12 March 2014 / Revised: 18 April 2014 / Accepted: 5 May 2014 / Published: 16 May 2014
PDF Full-text (1163 KB) | HTML Full-text | XML Full-text
Abstract
HIV-1 trans-acting protein Tat, an essential protein for viral replication, is a key mediator of neurotoxicity. If Tat oxidant injury and neurotoxicity have been described, consequent neuroinflammation is less understood. Rat caudate-putamens (CPs) were challenged with Tat, with or without prior [...] Read more.
HIV-1 trans-acting protein Tat, an essential protein for viral replication, is a key mediator of neurotoxicity. If Tat oxidant injury and neurotoxicity have been described, consequent neuroinflammation is less understood. Rat caudate-putamens (CPs) were challenged with Tat, with or without prior rSV40-delivered superoxide dismutase or glutathione peroxidase. Tat injection caused oxidative stress. Administration of Tat in the CP induced an increase in numbers of Iba-1- and CD68-positive cells, as well as an infiltration of astrocytes. We also tested the effect of more protracted Tat exposure on neuroinflammation using an experimental model of chronic Tat exposure. SV(Tat): a recombinant SV40-derived gene transfer vector was inoculated into the rat CP, leading to chronic expression of Tat, oxidative stress, and ongoing apoptosis, mainly located in neurons. Intra-CP SV(Tat) injection induced an increase in microglia and astrocytes, suggesting that protracted Tat production increased neuroinflammation. SV(SOD1) or SV(GPx1) significantly reduced neuroinflammation following Tat administration into the CP. Thus, Tat-induced oxidative stress, CNS injury, neuron loss and inflammation may be mitigated by antioxidant gene delivery. Full article
(This article belongs to the Special Issue Free Radicals and Antioxidants in Neuroinflammation)
Open AccessArticle Avocado Seeds: Extraction Optimization and Possible Use as Antioxidant in Food
Antioxidants 2014, 3(2), 439-454; doi:10.3390/antiox3020439
Received: 25 February 2014 / Revised: 18 April 2014 / Accepted: 13 May 2014 / Published: 10 June 2014
Cited by 5 | PDF Full-text (879 KB) | HTML Full-text | XML Full-text
Abstract
Consumption of avocado (Persea americana Mill) has increased worldwide in recent years. Part of this food (skin and seed) is lost during processing. However, a high proportion of bioactive substances, such as polyphenols, remain in this residue. The primary objective of [...] Read more.
Consumption of avocado (Persea americana Mill) has increased worldwide in recent years. Part of this food (skin and seed) is lost during processing. However, a high proportion of bioactive substances, such as polyphenols, remain in this residue. The primary objective of this study was to model the extraction of polyphenols from the avocado pits. In addition, a further objective was to use the extract obtained to evaluate the protective power against oxidation in food systems, as for instance oil in water emulsions and meat products. Moreover, the possible synergy between the extracts and egg albumin in the emulsions is discussed. In Response Surface Method (RSM), the variables used are: temperature, time and ethanol concentration. The results are the total polyphenols content (TPC) and the antiradical power measured by Oxygen Radical Antioxidant Capacity (ORAC). In emulsions, the primary oxidation, by Peroxide Value and in fat meat the secondary oxidation, by TBARS (Thiobarbituric acid reactive substances), were analyzed. The RSM model has an R2 of 94.69 for TPC and 96.7 for ORAC. In emulsions, the inhibition of the oxidation is about 30% for pure extracts and 60% for the combination of extracts with egg albumin. In the meat burger oxidation, the formation of TBARS is avoided by 90%. Full article
(This article belongs to the Special Issue Antioxidants in Oils)
Open AccessArticle Screening of Antioxidant Activity of Gentian Lutea Root and Its Application in Oil-in-Water Emulsions
Antioxidants 2014, 3(2), 455-471; doi:10.3390/antiox3020455
Received: 25 January 2014 / Revised: 10 April 2014 / Accepted: 12 June 2014 / Published: 19 June 2014
Cited by 6 | PDF Full-text (835 KB) | HTML Full-text | XML Full-text
Abstract
Gentiana Lutea root (G. Lutea) is a medicinal herb, traditionally used as a bitter tonic in gastrointestinal ailments for improving the digestive system. The active principles of G. Lutea were found to be secoiridoid bitter compounds as well [...] Read more.
Gentiana Lutea root (G. Lutea) is a medicinal herb, traditionally used as a bitter tonic in gastrointestinal ailments for improving the digestive system. The active principles of G. Lutea were found to be secoiridoid bitter compounds as well as many other active compounds causing the pharmacological effects. No study to date has yet determined the potential of G. Lutea antioxidant activity on lipid oxidation. Thus, the aim of this study was to evaluate the effects of an extract of G. Lutea on lipid oxidation during storage of an emulsion. G. Lutea extracts showed excellent antioxidant activity measured by DPPH scavenging assay and Trolox equivalent antioxidant capacity (TEAC) assays. An amount of 0.5% w/w G. Lutea lyophilise was able to inhibit lipid oxidation throughout storage (p < 0.05). A mixture of G. Lutea with 0.1% (w/w) BSA showed a good synergic effect and better antioxidant activity in the emulsion. Quantitative results of HPLC showed that G. Lutea contained secoiridoid-glycosides (gentiopiocroside and sweroside) and post column analysis displayed radical scavenging activity of G. Lutea extract towards the ABTS radical. The results from this study highlight the potential of G. Lutea as a food ingredient in the design of healthier food commodities. Full article
(This article belongs to the Special Issue Antioxidants in Oils)

Review

Jump to: Research

Open AccessReview Melatonin Therapy in Patients with Alzheimer’s Disease
Antioxidants 2014, 3(2), 245-277; doi:10.3390/antiox3020245
Received: 8 February 2014 / Revised: 9 March 2014 / Accepted: 17 March 2014 / Published: 10 April 2014
Cited by 3 | PDF Full-text (564 KB) | HTML Full-text | XML Full-text
Abstract
Alzheimer’s disease (AD) is a major health problem and a growing recognition exists that efforts to prevent it must be undertaken by both governmental and non-governmental organizations. In this context, the pineal product, melatonin, has a promising significance because of its chronobiotic/cytoprotective [...] Read more.
Alzheimer’s disease (AD) is a major health problem and a growing recognition exists that efforts to prevent it must be undertaken by both governmental and non-governmental organizations. In this context, the pineal product, melatonin, has a promising significance because of its chronobiotic/cytoprotective properties potentially useful for a number of aspects of AD. One of the features of advancing age is the gradual decrease in circulating melatonin levels. A limited number of therapeutic trials have indicated that melatonin has a therapeutic value as a neuroprotective drug in the treatment of AD and minimal cognitive impairment (which may evolve to AD). Both in vitro and in vivo, melatonin prevented the neurodegeneration seen in experimental models of AD. For these effects to occur, doses of melatonin about two orders of magnitude higher than those required to affect sleep and circadian rhythmicity are needed. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects, which were employed in clinical trials in sleep-disturbed or depressed patients in doses considerably higher than those employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin in the range of 50–100 mg/day are urgently needed to assess its therapeutic validity in neurodegenerative disorders such as AD. Full article
(This article belongs to the Special Issue Oxidative Stress and Neurodegenerative Diseases)
Figures

Open AccessReview Antioxidant and Metal Chelation-Based Therapies in the Treatment of Prion Disease
Antioxidants 2014, 3(2), 288-308; doi:10.3390/antiox3020288
Received: 16 January 2014 / Revised: 13 February 2014 / Accepted: 28 February 2014 / Published: 21 April 2014
Cited by 1 | PDF Full-text (838 KB) | HTML Full-text | XML Full-text
Abstract
Many neurodegenerative disorders involve the accumulation of multimeric assemblies and amyloid derived from misfolded conformers of constitutively expressed proteins. In addition, the brains of patients and experimental animals afflicted with prion disease display evidence of heightened oxidative stress and damage, as well [...] Read more.
Many neurodegenerative disorders involve the accumulation of multimeric assemblies and amyloid derived from misfolded conformers of constitutively expressed proteins. In addition, the brains of patients and experimental animals afflicted with prion disease display evidence of heightened oxidative stress and damage, as well as disturbances to transition metal homeostasis. Utilising a variety of disease model paradigms, many laboratories have demonstrated that copper can act as a cofactor in the antioxidant activity displayed by the prion protein while manganese has been implicated in the generation and stabilisation of disease-associated conformers. This and other evidence has led several groups to test dietary and chelation therapy-based regimens to manipulate brain metal concentrations in attempts to influence the progression of prion disease in experimental mice. Results have been inconsistent. This review examines published data on transition metal dyshomeostasis, free radical generation and subsequent oxidative damage in the pathogenesis of prion disease. It also comments on the efficacy of trialed therapeutics chosen to combat such deleterious changes. Full article
Open AccessReview Antioxidants in Greek Virgin Olive Oils
Antioxidants 2014, 3(2), 387-413; doi:10.3390/antiox3020387
Received: 20 January 2014 / Revised: 31 March 2014 / Accepted: 10 April 2014 / Published: 13 May 2014
Cited by 5 | PDF Full-text (297 KB) | HTML Full-text | XML Full-text
Abstract
Greece is ranked third after Spain and Italy in virgin olive oil production. The number of Greek olive cultivars—excluding clonal selections—is greater than 40; however, more than 90% of the acreage is cultivated with 20 cultivars, adapted to a wide range of [...] Read more.
Greece is ranked third after Spain and Italy in virgin olive oil production. The number of Greek olive cultivars—excluding clonal selections—is greater than 40; however, more than 90% of the acreage is cultivated with 20 cultivars, adapted to a wide range of environmental conditions. Greek virgin olive oils, produced mainly with traditional, non-intensive cultivation practices, are mostly of exceptional quality. The benefits of consuming virgin olive oil, originally attributed to its high oleic acid content, are now considered to be the combined result of several nutrient and non-nutrient phytochemicals. The present work summarizes available data regarding natural antioxidants in Greek virgin olive oils (VOO) namely, polar phenolic compounds, tocopherols, squalene, and triterpenic acids. The literature survey indicated gaps in information, which should be filled in the near future so that the intrinsic properties of this major agricultural product of Greece will be substantiated on a solid scientific basis. Full article
(This article belongs to the Special Issue Antioxidants in Oils)

Journal Contact

MDPI AG
Antioxidants Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
antioxidants@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Antioxidants
Back to Top