Next Issue
Previous Issue

Table of Contents

Polymers, Volume 9, Issue 12 (December 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Inspired by nature, polymer chemists have contributed phenomenal endeavors to mimic both structures [...] Read more.
View options order results:
result details:
Displaying articles 1-101
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

Open AccessEditorial Advanced Control over Cell-Material Interfaces
Polymers 2017, 9(12), 704; https://doi.org/10.3390/polym9120704
Received: 13 November 2017 / Revised: 30 November 2017 / Accepted: 30 November 2017 / Published: 12 December 2017
PDF Full-text (134 KB) | HTML Full-text | XML Full-text
Abstract
Cells in vivo sense and respond to signals from their environment (e.g., other cells and extracellular matrices) for their orchestrated behaviour and function.[...] Full article

Research

Jump to: Editorial, Review, Other

Open AccessArticle Silane Cross-Linked Sulfonted Poly(Ether Ketone/Ether Benzimidazole)s for Fuel Cell Applications
Polymers 2017, 9(12), 631; https://doi.org/10.3390/polym9120631
Received: 4 October 2017 / Revised: 14 November 2017 / Accepted: 15 November 2017 / Published: 23 November 2017
PDF Full-text (3136 KB) | HTML Full-text | XML Full-text
Abstract
γ-(2,3-epoxypropoxy) propyltrimethoxysilane (KH-560) was incorporated in various proportions into side-chain-type sulfonated poly(ether ketone/ether benzimidazole) (SPEKEBI) as a crosslinker, to make membranes with high ion exchange capacities and excellent performance for direct methanol fuel cells (DMFCs). Systematical measurements including Fourier transform infrared (FT-IR), scanning
[...] Read more.
γ-(2,3-epoxypropoxy) propyltrimethoxysilane (KH-560) was incorporated in various proportions into side-chain-type sulfonated poly(ether ketone/ether benzimidazole) (SPEKEBI) as a crosslinker, to make membranes with high ion exchange capacities and excellent performance for direct methanol fuel cells (DMFCs). Systematical measurements including Fourier transform infrared (FT-IR), scanning electron microscopy-energy-dispersive and X-ray photoelectron spectroscopy (XPS) proved the complete disappearance of epoxy groups in KH-560 and the existence of Si in the membranes. The resulting membranes showed increased mechanical strength and thermal stability compared to the unmodified sulfonated poly(ether ketone/ether benzimidazole) membrane in appropriate doping amount. Meanwhile, the methanol permeability has decreased, leading to the increase of relative selectivities of SPEKEBI-x-SiO2 membranes. Furthermore, the H2/O2 cell performance of SPEKEBI-2.5-SiO2 membrane showed a much higher peak power density compared with the pure SPEKEBI memrbrane. Full article
(This article belongs to the Special Issue Polymeric Membranes)
Figures

Graphical abstract

Open AccessArticle Microwave Assisted Preparation of Antimicrobial Chitosan with Guanidine Oligomers and Its Application in Hygiene Paper Products
Polymers 2017, 9(12), 633; https://doi.org/10.3390/polym9120633
Received: 12 October 2017 / Revised: 9 November 2017 / Accepted: 13 November 2017 / Published: 24 November 2017
Cited by 1 | PDF Full-text (1817 KB) | HTML Full-text | XML Full-text
Abstract
Guanidinylated chitosan (GCS) was prepared by grafting guanidine oligomers onto chitosan under microwave irradiation. The structure of GCS characterized by FT-IR and 1H NMR verified the covalent bonding between the guanidine oligomers and chitosan; the effects of molar ratio, reaction temperature, and
[...] Read more.
Guanidinylated chitosan (GCS) was prepared by grafting guanidine oligomers onto chitosan under microwave irradiation. The structure of GCS characterized by FT-IR and 1H NMR verified the covalent bonding between the guanidine oligomers and chitosan; the effects of molar ratio, reaction temperature, and time were investigated and the degree of substitution of GCS reached a maximum of 25.5% under optimized conditions in this work. The resulting GCS showed significantly enhanced antimicrobial activities. The results obtained from the dynamic UV absorption of Escherichia coli (E. coli) and atomic force microscopy (AFM) revealed that the deactivation of E. coli by GCS was due to the destructing of the cell membrane and the prompt release of cytoplasm from the bacterial cells. The adsorption of GCS onto cellulose fibers and the antimicrobial efficiency of the hygiene papers with GCS were also investigated. Microwave irradiation as a green assisted method was applied to promote this reaction. This facile approach allowed chitosan to be guanidinylated without tedious preparation procedures and thus broadened its application as a biocompatible antimicrobial agent. Full article
(This article belongs to the Special Issue Antimicrobial Polymers)
Figures

Graphical abstract

Open AccessArticle Prediction of Flow Effect on Crystal Growth of Semi-Crystalline Polymers Using a Multi-Scale Phase-Field Approach
Polymers 2017, 9(12), 634; https://doi.org/10.3390/polym9120634
Received: 25 October 2017 / Revised: 16 November 2017 / Accepted: 16 November 2017 / Published: 23 November 2017
PDF Full-text (3539 KB) | HTML Full-text | XML Full-text
Abstract
A multi-scale phase-field approach, which couples the mesoscopic crystallization with the microscopic orientation of chain segments and macroscopic viscoelastic melt flow, is proposed to study how the crystal growth of semi-crystalline polymers is affected by flows. To make the simulation feasible, we divide
[...] Read more.
A multi-scale phase-field approach, which couples the mesoscopic crystallization with the microscopic orientation of chain segments and macroscopic viscoelastic melt flow, is proposed to study how the crystal growth of semi-crystalline polymers is affected by flows. To make the simulation feasible, we divide the problem into three parts. In the first part, a finitely extensible nonlinear elastic (FENE) dumbbell model is used to simulate the flow induced molecular structure. In the second part, formulas for estimating the density, orientation and aspect ratio of nuclei upon the oriented molecular structure are derived. Finally, in the third part, a massive mathematical model that couples the phase-field, temperature field, flow field and orientation field is established to model the crystal growth with melt flow. Two-dimensional simulations are carried out for predicting the flow effect on the crystal growth of isotactic polystyrene under a plane Poiseuille flow. In solving the model, a semi-analytical method is adopted to avoid the numerical difficult of a “high Weissenberg number problem” in the first part, and an efficient fractional step method is used to reduce the computing complexity in the third part. The simulation results demonstrate that flow strongly affects the morphology of single crystal but does not bring a significant influence on the holistic morphology of bulk crystallization. Full article
(This article belongs to the Special Issue Phase Behavior in Polymers)
Figures

Graphical abstract

Open AccessArticle A Novel Human-Like Collagen Hydrogel Scaffold with Porous Structure and Sponge-Like Properties
Polymers 2017, 9(12), 638; https://doi.org/10.3390/polym9120638
Received: 17 October 2017 / Revised: 10 November 2017 / Accepted: 16 November 2017 / Published: 13 December 2017
Cited by 2 | PDF Full-text (5397 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this research was to prepare a novel sponge-like porous hydrogel scaffold based on human-like collagen (HLC) that could be applied in cartilage tissue regeneration. In this study, bovine serum albumin (BSA) was used as a porogen to prepare the porous
[...] Read more.
The aim of this research was to prepare a novel sponge-like porous hydrogel scaffold based on human-like collagen (HLC) that could be applied in cartilage tissue regeneration. In this study, bovine serum albumin (BSA) was used as a porogen to prepare the porous hydrogel, which had not been previously reported. Glutamine transaminase (TGase) was used as the cross-linker of the hydrogel, because it could catalyze the cross-linking of BSA. During the crosslinking process, BSA and HLC were mixed together, which affected the cross-linking of HLC. When the cross-linking was completed, the non-crosslinked section formed pores. The microstructure, porosity, swelling properties, and compressive properties of the hydrogel were studied. The results showed that the pore size of the hydrogel was between 100 and 300 μm, the porosity reached up to 93.43%, and the hydrogel had rapid water absorption and suitable mechanical properties. Finally, we applied the hydrogel to cartilage tissue engineering through in vitro and in vivo research. The in vitro cell experiments suggested that the hydrogel could promote the proliferation and adhesion of chondrocytes, and in vivo transplantation of the hydrogel could enhance the repair of cartilage. In general, the hydrogel is promising as a tissue engineering scaffold for cartilage. Full article
(This article belongs to the Special Issue Hydrogels in Tissue Engineering and Regenerative Medicine)
Figures

Graphical abstract

Open AccessArticle Transparent Low Molecular Weight Poly(Ethylene Glycol) Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs
Polymers 2017, 9(12), 639; https://doi.org/10.3390/polym9120639
Received: 10 October 2017 / Revised: 16 November 2017 / Accepted: 18 November 2017 / Published: 23 November 2017
PDF Full-text (2583 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hydrogels have shown a great potential as materials for drug delivery systems thanks to their usually excellent bio-compatibility and their ability to trap water-soluble organic molecules in a porous network. In this study, poly(ethylene glycol)-based hydrogels containing a model dye were synthesized by
[...] Read more.
Hydrogels have shown a great potential as materials for drug delivery systems thanks to their usually excellent bio-compatibility and their ability to trap water-soluble organic molecules in a porous network. In this study, poly(ethylene glycol)-based hydrogels containing a model dye were synthesized by ultraviolet (UV-A) photopolymerization of low-molecular weight macro-monomers and the material properties (dye release ability, transparency, morphology, and polymerization kinetics) were studied. Real-time infrared measurements revealed that the photopolymerization of the materials was strongly limited when the dye was added to the uncured formulation. Consequently, the procedure was adapted to allow for the formation of sufficiently cured gels that are able to capture and later on to release dye molecules in phosphate-buffered saline solution within a few hours. Due to the transparency of the materials in the 400–800 nm range, the hydrogels are suitable for the loading and excitation of photoactive molecules. These can be uptaken by and released from the polymer matrix. Therefore, such materials may find applications as cheap and tailored materials in photodynamic therapy (i.e., light-induced treatment of skin infections by bacteria, fungi, and viruses using photoactive drugs). Full article
(This article belongs to the Special Issue Hydrogels in Tissue Engineering and Regenerative Medicine)
Figures

Graphical abstract

Open AccessArticle Synthesis and Properties of a Novel Environmental Epoxidized Glycidyl Ester of Ricinoleic Acetic Ester Plasticizer for Poly(vinyl chloride)
Polymers 2017, 9(12), 640; https://doi.org/10.3390/polym9120640
Received: 20 October 2017 / Revised: 16 November 2017 / Accepted: 18 November 2017 / Published: 29 November 2017
PDF Full-text (3939 KB) | HTML Full-text | XML Full-text
Abstract
A novel renewable plasticizer based on castor oil, epoxidized glycidyl ester of ricinoleic acetic ester (EGERAE), was synthesized and applied into Poly(vinyl chloride) (PVC) for the first time. Its molecular structure was characterized by FT-IR and 1H NMR. The effects of replacement
[...] Read more.
A novel renewable plasticizer based on castor oil, epoxidized glycidyl ester of ricinoleic acetic ester (EGERAE), was synthesized and applied into Poly(vinyl chloride) (PVC) for the first time. Its molecular structure was characterized by FT-IR and 1H NMR. The effects of replacement of petroleum-based commercial plasticizer dioctyl phthalate (DOP) with EGERAE in poly(vinyl chloride) (PVC) films were researched. Thermal stability, dynamic mechanical property and mechanical properties of PVC films were investigated with thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests. The results indicated that this castor oil-based plasticizer was able to improve the thermal stability of PVC blends when partially of completely substituting for DOP. Furthermore, EGERAE endowed PVC resin with enhanced flexibility. In addition, the exudation, volatility and extraction resistance characteristics of plasticizers were researched. The degradation mechanism and possible interaction between EGERAE and PVC molecules in the plasticized system were also investigated. Full article
(This article belongs to the Special Issue Green Plasticizers for Polymers)
Figures

Graphical abstract

Open AccessArticle Low-Cost Carbon Fillers to Improve Mechanical Properties and Conductivity of Epoxy Composites
Polymers 2017, 9(12), 642; https://doi.org/10.3390/polym9120642
Received: 12 October 2017 / Revised: 19 November 2017 / Accepted: 20 November 2017 / Published: 24 November 2017
Cited by 1 | PDF Full-text (5677 KB) | HTML Full-text | XML Full-text
Abstract
In recent years, low-cost carbons derived from recycled materials have been gaining attention for their potentials as filler in composites and in other applications. The electrical and mechanical properties of polymer composites can be tuned using different percentages and different kind of fillers:
[...] Read more.
In recent years, low-cost carbons derived from recycled materials have been gaining attention for their potentials as filler in composites and in other applications. The electrical and mechanical properties of polymer composites can be tuned using different percentages and different kind of fillers: either low-cost (e.g., carbon black), ecofriendly (e.g., biochar), or sophisticated (e.g., carbon nanotubes). In this work, the mechanical and electrical behavior of composites with biochar and multiwall carbon nanotubes dispersed in epoxy resin are compared. Superior mechanical properties (ultimate tensile strength, strain at break) were noticed at low heat-treated biochar (concentrations 2–4 wt %). Furthermore, dielectric properties in the microwave range comparable to low carbon nanotubes loadings can be achieved by employing larger but manageable amounts of biochar (20 wt %), rending the production of composites for structural and functional application cost-effective. Full article
Figures

Graphical abstract

Open AccessArticle Preformulation Studies of Furosemide-Loaded Electrospun Nanofibrous Systems for Buccal Administration
Polymers 2017, 9(12), 643; https://doi.org/10.3390/polym9120643
Received: 18 October 2017 / Revised: 21 November 2017 / Accepted: 22 November 2017 / Published: 25 November 2017
PDF Full-text (8250 KB) | HTML Full-text | XML Full-text
Abstract
Furosemide loaded electrospun fibers were prepared for buccal administration, with the aim of improving the oral bioavailability of the poorly soluble and permeable crystalline drug, which can be achieved by the increased solubility and by the circumvention of the intensive first pass metabolism.
[...] Read more.
Furosemide loaded electrospun fibers were prepared for buccal administration, with the aim of improving the oral bioavailability of the poorly soluble and permeable crystalline drug, which can be achieved by the increased solubility and by the circumvention of the intensive first pass metabolism. The water soluble hydroxypropyl cellulose (HPC) was chosen as a mucoadhesive polymer. In order to improve the electrospinnability of HPC, poly (vinylpyrrolidone) (PVP) was used. During the experiments, the total polymer concentration was kept constant at 15% (w/w), and only the ratio of the two polymers (HPC-PVP = 5:5, 6:4, 7:3, 8:2, 9:1) was changed. A combination of rheological measurements with scanning electron microscopic morphological images of electrospun samples was applied for the determination of the optimum composition of the gels for fiber formation. The crystalline–amorphous transition of furosemide was tracked by Fourier transform infrared spectroscopy. A correlation was found between the rheological properties of the polymer solutions and their electrospinnability, and the consequent morphology of the resultant samples. With decreasing HPC ratio of the system, a transition from the spray-dried droplets to the randomly oriented fibrous structures was observed. The results enable the determination of the polymer ratio for the formation of applicable quality of electrospun fibers. Full article
Figures

Graphical abstract

Open AccessArticle Four Mixed-Ligand Zn(II) Three-Dimensional Metal-Organic Frameworks: Synthesis, Structural Diversity, and Photoluminescent Property
Polymers 2017, 9(12), 644; https://doi.org/10.3390/polym9120644
Received: 29 October 2017 / Revised: 21 November 2017 / Accepted: 21 November 2017 / Published: 25 November 2017
PDF Full-text (4903 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Assemblies of four three-dimensional (3D) mixed-ligand coordination polymers (CPs) having formulas, {[Zn2(bdc)2(4-bpdh)]·C2H5OH·2H2O}n (1), [Zn(bdc)(4-bpdh)]n (2), {[Zn2(bdc)2(4-bpdh)2]·(4-bpdh)}n (3), and
[...] Read more.
Assemblies of four three-dimensional (3D) mixed-ligand coordination polymers (CPs) having formulas, {[Zn2(bdc)2(4-bpdh)]·C2H5OH·2H2O}n (1), [Zn(bdc)(4-bpdh)]n (2), {[Zn2(bdc)2(4-bpdh)2]·(4-bpdh)}n (3), and {[Zn(bdc)(4-bpdh)]·C2H5OH}n (4) (bdc2− = dianion of 1,4-benzenedicarboxylic acid, 4-bpdh = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) have been synthesized and structurally characterized by single-crystal X-ray diffraction method. Structural determination reveals that the coordination numbers (geometry) of Zn(II) ions in 1, 2, 3, and 4 are five (distorted square-pyramidal (SP)), six (distorted octahedral (Oh)), five (trigonal-bipyramidal (TBP)), and four (tetrahedral (Td)), respectively, and are bridged by 4-bpdh with bis-monodentate coordination mode and bdc2− ligands with bis-bidentate in 1, chelating/bidentate in 2, bis-monodentate and bis-bidentate in 3, and bis-monodentate in 4, to generate two-fold interpenetrating 3D cube-like metal-organic framework (MOF) with pcu topology, non-interpenetrating 3D MOF, two-fold interpenetrating 3D rectangular-box-like MOF with pcu topology and five-fold interpenetrating diamondoid-like MOF with dia topology, respectively. These different intriguing architectures indicate that the coordination numbers and geometries of Zn(II) ions, coordination modes of bdc2− ligand, and guest molecules play important roles in the construction of MOFs and the formation of the structural topologies and interpenetrations. Thermal stabilities, and photoluminescence study of 14 were also studied in detail. The complexes exhibit ligands based photoluminescence properties at room temperature. Full article
(This article belongs to the Special Issue Coordination Polymer)
Figures

Graphical abstract

Open AccessArticle Effect of Zinc Oxide Modified Silica Particles on the Molecular Dynamics of Carboxylated Acrylonitrile-Butadiene Rubber Composites
Polymers 2017, 9(12), 645; https://doi.org/10.3390/polym9120645
Received: 26 October 2017 / Revised: 17 November 2017 / Accepted: 21 November 2017 / Published: 25 November 2017
PDF Full-text (2964 KB) | HTML Full-text | XML Full-text
Abstract
This work examines the molecular dynamics of carboxylated acrylonitrile-butadiene rubber crosslinked with zinc oxide modified silica particles. ZnO/SiO2 with the wide range of ZnO concentrations were used as both a crosslinking agent and filler. A series of thermal measurements were applied to
[...] Read more.
This work examines the molecular dynamics of carboxylated acrylonitrile-butadiene rubber crosslinked with zinc oxide modified silica particles. ZnO/SiO2 with the wide range of ZnO concentrations were used as both a crosslinking agent and filler. A series of thermal measurements were applied to the characterization of the samples: differential scanning calorimetry, dynamical mechanical thermal analysis, and dielectric relaxation spectroscopy. A complementary experimental technique, which is equilibrium swelling in solvents, confirms the presence of ionic crosslinks, which are created between zinc ions and the functional carboxyl groups of the rubber, within the structure of the vulcanizates. These interactions influenced not only the affinity of the vulcanizates to solvents, but also their dynamic mechanical and dielectric properties. In these investigations, the influence of concentration of ZnO on the surface of the ZnO/SiO2 on the properties of the vulcanizates are described. Full article
Figures

Graphical abstract

Open AccessArticle Assessment of Polyacrylamide Based Co-Polymers Enhanced by Functional Group Modifications with Regards to Salinity and Hardness
Polymers 2017, 9(12), 647; https://doi.org/10.3390/polym9120647
Received: 12 October 2017 / Revised: 24 November 2017 / Accepted: 25 November 2017 / Published: 27 November 2017
PDF Full-text (5969 KB) | HTML Full-text | XML Full-text
Abstract
This research aims to test four new polymers for their stability under high salinity/high hardness conditions for their possible use in polymer flooding to improve oil recovery from hydrocarbon reservoirs. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; SUPERPUSHER SAV55; THERMOASSOCIATIF; and
[...] Read more.
This research aims to test four new polymers for their stability under high salinity/high hardness conditions for their possible use in polymer flooding to improve oil recovery from hydrocarbon reservoirs. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; SUPERPUSHER SAV55; THERMOASSOCIATIF; and AN132 VHM which are basically sulfonated polyacrylamide copolymers of AM (acrylamide) with AMPS (2-Acrylamido-2-Methylpropane Sulfonate). AN132 VHM has a molecular weight of 9–11 million Daltons with 32 mol % degree of sulfonation. SUPERPUSHER SAV55 mainly has about 35 mol % sulfonation degree and a molecular weight of 9–11 million Daltons. FLOCOMB C7035, in addition, has undergone post-hydrolysis step to increase polydispersity and molecular weight above 18 million Daltons but it has a sulfonation degree much lower than 32 mol %. THERMOASSOCIATIF has a molecular weight lower than 12 million Daltons and a medium sulfonation degree of around 32 mol %, and also contains LCST (lower critical solution temperature) type block, which is responsible for its thermoassociative characteristics. This paper discusses the rheological behavior of these polymers in aqueous solutions (100–4500 ppm) with NaCl (0.1–10 wt %) measured at 25 °C. The effect of hardness was investigated by preparing a CaCl2-NaCl solution of same ionic strength as the 5 wt % of NaCl. In summary, it can be concluded that the rheological behavior of the newly modified co-polymers was in general agreement to the existing polymers, except that THERMOASSOCIATIF polymers showed unique behavior, which could possibly make them a better candidate for enhanced oil recovery (EOR) application in high salinity conditions. The other three polymers, on the other hand, are better candidates for EOR applications in reservoirs containing high divalent ions. These results are expected to be helpful in selecting and screening the polymers for an EOR application. Full article
Figures

Graphical abstract

Open AccessArticle Time Evolution of the Excimer State of a Conjugated Polymer Laser
Polymers 2017, 9(12), 648; https://doi.org/10.3390/polym9120648
Received: 28 September 2017 / Revised: 11 November 2017 / Accepted: 22 November 2017 / Published: 27 November 2017
PDF Full-text (7410 KB) | HTML Full-text | XML Full-text
Abstract
An excited dimer is an important complex formed in nano- or pico-second time scales in many photophysics and photochemistry applications. The spectral and temporal profile of the excimer state of a laser from a new conjugated polymer, namely, poly (9,9-dioctylfluorenyl-2,7-diyl) (PFO), under several
[...] Read more.
An excited dimer is an important complex formed in nano- or pico-second time scales in many photophysics and photochemistry applications. The spectral and temporal profile of the excimer state of a laser from a new conjugated polymer, namely, poly (9,9-dioctylfluorenyl-2,7-diyl) (PFO), under several concentrations in benzene were investigated. These solutions were optically pumped by intense pulsed third-harmonic Nd:YAG laser (355-nm) to obtain the amplified spontaneous emission (ASE) spectra of a monomer and an excimer with bandwidths of 6 and 7 nm, respectively. The monomer and excimer ASEs were dependent on the PFO concentration, pump power, and temperature. Employing a sophisticated picosecond spectrometer, the time evolution of the excimer state of this polymer, which is over 400 ps, can be monitored. Full article
(This article belongs to the Special Issue Polymeric Materials for Optical Applications)
Figures

Figure 1

Open AccessArticle Synthesis and Characterization of Dimmer-Acid-Based Nonisocyanate Polyurethane and Epoxy Resin Composite
Polymers 2017, 9(12), 649; https://doi.org/10.3390/polym9120649
Received: 7 November 2017 / Revised: 24 November 2017 / Accepted: 24 November 2017 / Published: 28 November 2017
PDF Full-text (4844 KB) | HTML Full-text | XML Full-text
Abstract
In this study, dimmer-acid-based hybrid nonisocyanate polyurethanes (HNIPUs) were synthesized by the one-step method without catalyst. Three polyamines and two epoxy resins were selected as raw materials for HNIPU, and cyclic carbonate was synthesized based on our previous work. All of the products
[...] Read more.
In this study, dimmer-acid-based hybrid nonisocyanate polyurethanes (HNIPUs) were synthesized by the one-step method without catalyst. Three polyamines and two epoxy resins were selected as raw materials for HNIPU, and cyclic carbonate was synthesized based on our previous work. All of the products were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Then, HNIPU coatings were prepared and determined by swelling, water absorption, and water contact angle. The results showed that the HNIPU-4551 have the best mechanical and thermal properties because of its high crosslinking density. Among the different amines, it was confirmed that tetraethylenepentamine was the best amine curing agent for HNIPU coating. Meanwhile, the epoxy resin with a higher epoxy value would also form a higher crosslinking density. Those coatings showed an excellent impact strength, adhesion, flexibility, pencil hardness, hydrophilic, and appropriate crosslinking density. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polyesters)
Figures

Graphical abstract

Open AccessArticle Effect of (Cd:Zn)S Particle Concentration and Photoexcitation on the Electrical and Ferroelectric Properties of (Cd:Zn)S/P(VDF-TrFE) Composite Films
Polymers 2017, 9(12), 650; https://doi.org/10.3390/polym9120650
Received: 20 October 2017 / Revised: 14 November 2017 / Accepted: 24 November 2017 / Published: 28 November 2017
PDF Full-text (4240 KB) | HTML Full-text | XML Full-text
Abstract
The influence of semiconductor particle concentration and photoexcitation on the electrical and ferroelectric properties of ferroelectric-semiconductor-composites was investigated. For this purpose, 32 µm thin films of poly(vinylidene fluoride-co-trifluoroethylene) with (Cd:Zn)S particle concentrations of between 0 and 20 vol % were fabricated
[...] Read more.
The influence of semiconductor particle concentration and photoexcitation on the electrical and ferroelectric properties of ferroelectric-semiconductor-composites was investigated. For this purpose, 32 µm thin films of poly(vinylidene fluoride-co-trifluoroethylene) with (Cd:Zn)S particle concentrations of between 0 and 20 vol % were fabricated and characterized by scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and optical spectroscopy. It was shown that the particle concentration has only a negligible influence on the molecular structure of the polymer but strongly determines the optical properties of the composite. For (Cd:Zn)S particle concentrations below 20 vol %, the I-V characteristics of the composites is only marginally affected by the particle concentration and the optical excitation of the composite material. On the contrary, a strong influence of both parameters on the ferro- and pyroelectric properties of the composite films was observed. For particle fractions that exhibit ferroelectric hysteresis, an increased remanent polarization and pyroelectric coefficient due to optical excitation was obtained. A theoretical approach that is based on a “three phase model” of the internal structure was developed to explain the observed results. Full article
(This article belongs to the Special Issue Fluorinated Polymers)
Figures

Figure 1

Open AccessArticle Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment
Polymers 2017, 9(12), 652; https://doi.org/10.3390/polym9120652
Received: 6 October 2017 / Revised: 23 November 2017 / Accepted: 26 November 2017 / Published: 28 November 2017
Cited by 1 | PDF Full-text (13399 KB) | HTML Full-text | XML Full-text
Abstract
Basalt fiber-reinforced polymer (BFRP) composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of
[...] Read more.
Basalt fiber-reinforced polymer (BFRP) composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of FRPs subjected to the above environments is critical for the safe design and application of BFRP composites. In the present paper, the long-term durability of BFRP sheets and the epoxy resin matrix in a wet–dry cyclic environment containing chloride ions was studied. The specimens of the BFRP sheet and epoxy resin matrix were exposed to alternative conditions of 8-h immersion in 3.5% NaCl solution at 40 °C and 16-h drying at 25 °C and 60% relative humidity (RH). The specimens were removed from the exposure chamber at the end of the 180th, 270th and 360th cycles of exposure and were analyzed for degradation with tensile tests, scanning electron microscopy (SEM) and void volume fractions. It was found that the tensile modulus of the BFRP sheet increased by 3.4%, and the tensile strength and ultimate strain decreased by 45% and 65%, respectively, after the 360th cycle of exposure. For the epoxy resin matrix, the tensile strength, tensile modulus and ultimate strain decreased by 27.8%, 3.2% and 64.8% after the 360th cycle of exposure, respectively. The results indicated that the degradation of the BFRP sheet was dominated by the damage of the interface between the basalt fiber and epoxy resin matrix. In addition, salt precipitate accelerated the fiber–matrix interfacial debonding, and hydrolysis of the epoxy resin matrix resulted in many voids, which accelerated the degradation of the BFRP sheet. Full article
Figures

Figure 1

Open AccessArticle The Multi-Template Molecularly Imprinted Polymer Based on SBA-15 for Selective Separation and Determination of Panax notoginseng Saponins Simultaneously in Biological Samples
Polymers 2017, 9(12), 653; https://doi.org/10.3390/polym9120653
Received: 20 October 2017 / Revised: 23 November 2017 / Accepted: 23 November 2017 / Published: 28 November 2017
Cited by 1 | PDF Full-text (3918 KB) | HTML Full-text | XML Full-text
Abstract
The feasible, reliable and selective multi-template molecularly imprinted polymers (MT-MIPs) based on SBA-15 (SBA-15@MT-MIPs) for the selective separation and determination of the trace level of ginsenoside Rb1 (Rb1), ginsenoside Rg1 (Rg1) and notoginsenoside R1 (R1
[...] Read more.
The feasible, reliable and selective multi-template molecularly imprinted polymers (MT-MIPs) based on SBA-15 (SBA-15@MT-MIPs) for the selective separation and determination of the trace level of ginsenoside Rb1 (Rb1), ginsenoside Rg1 (Rg1) and notoginsenoside R1 (R1) simultaneously from biological samples were developed. The polymers were constructed by SBA-15 as support, Rb1, Rg1, R1 as multi-template, acrylamide (AM) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker. The new synthetic SBA-15@MT-MIPs were satisfactorily applied to solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC) for the separation and determination of trace Rb1, Rg1 and R1 in plasma samples. Under the optimized conditions, the limits of detection (LODs) and quantitation (LOQs) of the proposed method for Rb1, Rg1 and R1 were in the range of 0.63–0.75 ng·mL−1 and 2.1–2.5 ng·mL−1, respectively. The recoveries of R1, Rb1 and Rg1 were obtained between 93.4% and 104.3% with relative standard deviations (RSDs) in the range of 3.3–4.2%. All results show that the obtained SBA-15@MT-MIPs could be a promising prospect for the practical application in the selective separation and enrichment of trace Panax notoginseng saponins (PNS) in the biological samples. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers)
Figures

Graphical abstract

Open AccessArticle Poly(piperazine-amide)/PES Composite Multi-Channel Capillary Membranes for Low-Pressure Nanofiltration
Polymers 2017, 9(12), 654; https://doi.org/10.3390/polym9120654
Received: 20 October 2017 / Revised: 23 November 2017 / Accepted: 24 November 2017 / Published: 28 November 2017
PDF Full-text (3675 KB) | HTML Full-text | XML Full-text
Abstract
The mechanical stability of conventional single-channel capillary fibres can be improved in a multi-channel geometry, which has previously found application in ultrafiltration. In this work, multi-channel polyethersulfone (PES) capillary membranes comprising seven feed channels were successfully fabricated in an enhanced steam–dry–wet spinning process
[...] Read more.
The mechanical stability of conventional single-channel capillary fibres can be improved in a multi-channel geometry, which has previously found application in ultrafiltration. In this work, multi-channel polyethersulfone (PES) capillary membranes comprising seven feed channels were successfully fabricated in an enhanced steam–dry–wet spinning process and coated on the inner surface with a thin polyamide (PA) layer via interfacial polymerization (IP). The coating procedure consisted of impregnating the support multi-channel capillary membranes (MCM) with an aqueous piperazine solution, flushing with nitrogen gas to remove excess droplets, and pumping an organic trimesoylchloride solution through the channels. Insights into the interfacial polymerization process were gained through the investigation of various parameters, including monomer ratio, contact time, and drying time. Membranes were characterised via scanning electron microscopy (SEM), atomic force microscopy (AFM), and filtration experiments. The optimisation of both the PES support membrane and IP process parameters allowed for the fabrication of composite MCM with an MgSO4 rejection of 91.4% and a solute flux of 68.8 L m−2 h−1 at an applied pressure of 3 bar. The fabricated composite MCM demonstrates that a favourable multi-channel arrangement can be upgraded with a PA layer for application in low-pressure nanofiltration. Full article
(This article belongs to the Special Issue Polymeric Membranes)
Figures

Graphical abstract

Open AccessArticle Biomimetically Reinforced Polyvinyl Alcohol-Based Hybrid Scaffolds for Cartilage Tissue Engineering
Polymers 2017, 9(12), 655; https://doi.org/10.3390/polym9120655
Received: 19 October 2017 / Revised: 24 November 2017 / Accepted: 27 November 2017 / Published: 28 November 2017
PDF Full-text (4469 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Articular cartilage has a very limited regeneration capacity. Therefore, injury or degeneration of articular cartilage results in an inferior mechanical stability, load-bearing capacity, and lubrication capability. Here, we developed a biomimetic scaffold consisting of macroporous polyvinyl alcohol (PVA) sponges as a platform material
[...] Read more.
Articular cartilage has a very limited regeneration capacity. Therefore, injury or degeneration of articular cartilage results in an inferior mechanical stability, load-bearing capacity, and lubrication capability. Here, we developed a biomimetic scaffold consisting of macroporous polyvinyl alcohol (PVA) sponges as a platform material for the incorporation of cell-embedded photocrosslinkable poly(ethylene glycol) diacrylate (PEGDA), PEGDA-methacrylated chondroitin sulfate (PEGDA-MeCS; PCS), or PEGDA-methacrylated hyaluronic acid (PEGDA-MeHA; PHA) within its pores to improve in vitro chondrocyte functions and subsequent in vivo ectopic cartilage tissue formation. Our findings demonstrated that chondrocytes encapsulated in PCS or PHA and loaded into macroporous PVA hybrid scaffolds maintained their physiological phenotypes during in vitro culture, as shown by the upregulation of various chondrogenic genes. Further, the cell-secreted extracellular matrix (ECM) improved the mechanical properties of the PVA-PCS and PVA-PHA hybrid scaffolds by 83.30% and 73.76%, respectively, compared to their acellular counterparts. After subcutaneous transplantation in vivo, chondrocytes on both PVA-PCS and PVA-PHA hybrid scaffolds significantly promoted ectopic cartilage tissue formation, which was confirmed by detecting cells positively stained with Safranin-O and for type II collagen. Consequently, the mechanical properties of the hybrid scaffolds were biomimetically reinforced by 80.53% and 210.74%, respectively, compared to their acellular counterparts. By enabling the recapitulation of biomimetically relevant structural and functional properties of articular cartilage and the regulation of in vivo mechanical reinforcement mediated by cell–matrix interactions, this biomimetic material offers an opportunity to control the desired mechanical properties of cell-laden scaffolds for cartilage tissue regeneration. Full article
(This article belongs to the Special Issue Hydrogels in Tissue Engineering and Regenerative Medicine)
Figures

Graphical abstract

Open AccessArticle The Availability of Neutral Cyan, Green, Blue and Purple Colors from Simple D–A Type Polymers with Commercially Available Thiophene Derivatives as the Donor Units
Polymers 2017, 9(12), 656; https://doi.org/10.3390/polym9120656
Received: 26 October 2017 / Revised: 19 November 2017 / Accepted: 24 November 2017 / Published: 29 November 2017
Cited by 1 | PDF Full-text (6255 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this paper, the Stille coupling reaction was used to prepare four donor–acceptor–donor (D–A–D) type monomers. For this purpose, 2,3-bis(4-methoxyphenyl) quinoxaline was used as the acceptor unit, and thiophene derivatives (3,4-ethylenedioxythiophene, or EDOT; 3-methoxythiophene, or MOTh; 3-methylthiophene, or MTh; and thiophene, or Th)
[...] Read more.
In this paper, the Stille coupling reaction was used to prepare four donor–acceptor–donor (D–A–D) type monomers. For this purpose, 2,3-bis(4-methoxyphenyl) quinoxaline was used as the acceptor unit, and thiophene derivatives (3,4-ethylenedioxythiophene, or EDOT; 3-methoxythiophene, or MOTh; 3-methylthiophene, or MTh; and thiophene, or Th) were used as the donor units. The monomers were polymerized to the corresponding polymers by the cyclic voltammetry (CV) or potentiostatic method. The band gaps and the adsorption profiles of the polymers were finely tuned with the incorporation of the different thiophene units. All four polymers have low band gaps, and switched between the colored neutral states and the highly transmissive oxidized state. We were successfully able to obtain the valuable neutral colors of cyan, green, blue, and violet for the polymers employing EDOT, MOTh, MTh, and Th as the donor unit, respectively. Furthermore, electrochromic kinetic investigations showed that all four polymers displayed excellent optical contrasts (ΔT%), fast switching times, high coloration efficiencies, and robust stabilities, indicating that these four polymers are probably promising choices for developing electrochromic devices. Full article
(This article belongs to the Special Issue Polymeric Materials for Optical Applications)
Figures

Graphical abstract

Open AccessArticle Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries
Polymers 2017, 9(12), 657; https://doi.org/10.3390/polym9120657
Received: 4 October 2017 / Revised: 25 November 2017 / Accepted: 27 November 2017 / Published: 29 November 2017
PDF Full-text (1496 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be
[...] Read more.
Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in the electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g. Full article
(This article belongs to the Special Issue Conductive Polymers 2017)
Figures

Figure 1

Open AccessArticle High Throughput Preparation of Aligned Nanofibers Using an Improved Bubble-Electrospinning
Polymers 2017, 9(12), 658; https://doi.org/10.3390/polym9120658
Received: 26 October 2017 / Revised: 21 November 2017 / Accepted: 23 November 2017 / Published: 29 November 2017
PDF Full-text (7648 KB) | HTML Full-text | XML Full-text
Abstract
An improved bubble-electrospinning, consisting of a cone shaped air nozzle, a copper solution reservoir connected directly to the power generator, and a high speed rotating copper wire drum as a collector, was presented successfully to obtain high throughput preparation of aligned nanofibers. The
[...] Read more.
An improved bubble-electrospinning, consisting of a cone shaped air nozzle, a copper solution reservoir connected directly to the power generator, and a high speed rotating copper wire drum as a collector, was presented successfully to obtain high throughput preparation of aligned nanofibers. The influences of drum rotation speed on morphology and properties of obtained nanofibers were explored and researched. The results showed that the alignment degree, diameter distribution, and properties of nanofibers were improved with the increase of the drum rotation speed. Full article
(This article belongs to the Special Issue Electrospinning of Nanofibres)
Figures

Graphical abstract

Open AccessArticle Simple and High Yield Synthesis of Metal-Polymer Nanocomposites: The Role of Theta-Centrifugation as an Essential Purification Step
Polymers 2017, 9(12), 659; https://doi.org/10.3390/polym9120659
Received: 14 November 2017 / Revised: 28 November 2017 / Accepted: 28 November 2017 / Published: 30 November 2017
PDF Full-text (2691 KB) | HTML Full-text | XML Full-text
Abstract
Nanocomposites are an important materials class, which strives to foster synergistic effects from the intimate mixture of two vastly different materials. Inorganic nanoparticles decorated with polymer ligands, for instance, aim to combine the processing flexibility of polymers with the mechanical robustness of solid
[...] Read more.
Nanocomposites are an important materials class, which strives to foster synergistic effects from the intimate mixture of two vastly different materials. Inorganic nanoparticles decorated with polymer ligands, for instance, aim to combine the processing flexibility of polymers with the mechanical robustness of solid state materials. The fabrication and purification of such composite nanoparticles, however, still presents a synthetic challenge. Here, we present a simple synthesis of silver polystyrene nanocomposites with a controllable interparticle distance. The interparticle distance can be well-controlled with a few nanometer precision using polystyrene ligands with various molecular weights. The nanoparticle and polymer ligand synthesis yield both materials on gram scales. Consequently, the polymer nanocomposites can also be fabricated in such large amounts. Most importantly, we introduce Θ-centrifugation as a purification method, which is capable of purifying large nanocomposite batches in a reproducible manner. We employ a range of characterization methods to prove the successful purification procedure, such as transmission electron microscopy, thermogravimetric analysis, and dynamic light scattering. Our contribution will be of high interest for many groups working on nanocomposite materials, where the sample purification has been a challenge up to now. Full article
(This article belongs to the Special Issue Polymers and Block Copolymers at Interfaces and Surfaces)
Figures

Graphical abstract

Open AccessArticle Coating of TPU-PDMS-TMS on Polycotton Fabrics for Versatile Protection
Polymers 2017, 9(12), 660; https://doi.org/10.3390/polym9120660
Received: 10 November 2017 / Revised: 27 November 2017 / Accepted: 28 November 2017 / Published: 30 November 2017
Cited by 2 | PDF Full-text (4473 KB) | HTML Full-text | XML Full-text
Abstract
This research aims to develop a non-fluorine based and durable coating technology that brings excellent hydrophobic, oleophobic and aqueous liquid repellent properties to polycotton fabrics (blend ratio 80/20 for cotton/polyester) while maintaining comfort to an acceptable level. A crosslinked network from thermoplastic polyurethane
[...] Read more.
This research aims to develop a non-fluorine based and durable coating technology that brings excellent hydrophobic, oleophobic and aqueous liquid repellent properties to polycotton fabrics (blend ratio 80/20 for cotton/polyester) while maintaining comfort to an acceptable level. A crosslinked network from thermoplastic polyurethane (TPU), polydimethylsiloxane (PDMS) and trimethylated silica (TMS) has been formed on the surface of polycotton fabrics by the conventional padding-knife coating-padding-curing technique. A series of characterizations have been conducted to understand the chemical components, morphology, versatile protection and comfort of the coated fabrics. The TPU-PDMS-TMS (TPT) coated fabrics showed a high hydrophobic surface with a high water contact angle of 142°, and the coating was durable against different cycles of laundering and crocking. The coated fabrics also showed excellent repellency against oils, liquids and chemicals for a long period of time. The coating has affected the air permeability and water vapor permeability together with the moisture management property of the polycotton fabrics, and the thermal resistance of the polycotton fabric has been enhanced at the same time. The coating technology developed can be further applied in protective clothing and functional textiles in different areas including military, mining and outdoor protection gear. Full article
(This article belongs to the Special Issue Textile and Textile-Based Materials)
Figures

Graphical abstract

Open AccessArticle Synthesis, Structure, and Dye Adsorption Properties of a Nickel(II) Coordination Layer Built from d-Camphorate and Bispyridyl Ligands
Polymers 2017, 9(12), 661; https://doi.org/10.3390/polym9120661
Received: 13 November 2017 / Revised: 26 November 2017 / Accepted: 28 November 2017 / Published: 30 November 2017
Cited by 1 | PDF Full-text (2016 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Reaction of NiCl2∙6H2O, d-camphoric acid (d-H2cam), and N,N′-bis(pyraz-2-yl)piperazine (bpzpip) in pure water at 150 °C afforded a novel nickel(II) coordination layer, [Ni4(d-cam)2(d-Hcam)4
[...] Read more.
Reaction of NiCl2∙6H2O, d-camphoric acid (d-H2cam), and N,N′-bis(pyraz-2-yl)piperazine (bpzpip) in pure water at 150 °C afforded a novel nickel(II) coordination layer, [Ni4(d-cam)2(d-Hcam)4(bpzpip)4(H2O)2] (1), under hydro(solvo)thermal conditions. Single-crystal X-ray structure analysis reveals that 1 adopts a six-connected two-dimensional (2D) chiral layer structure with 36-hxl topology. Dye adsorption explorations indicate that 1 readily adsorbs methyl blue (MyB) from water without destruction of crystallinity. On the contrary, methyl orange (MO) is not adsorbed at all. The pseudo-second-order kinetic model could be used to interpret the adsorption kinetics for MyB. Equilibrium isotherm studies suggest complicated adsorption processes for MyB which do not have good applicability for either the two-parameter Langmuir or Freundlich isotherm model. The saturated adsorption capacity of 1 for MyB calculated by Langmuir is 185.5 mg·g−1 at room temperature. Full article
(This article belongs to the Special Issue Coordination Polymer)
Figures

Graphical abstract

Open AccessArticle Highly Conductive 3D Segregated Graphene Architecture in Polypropylene Composite with Efficient EMI Shielding
Polymers 2017, 9(12), 662; https://doi.org/10.3390/polym9120662
Received: 3 November 2017 / Revised: 25 November 2017 / Accepted: 27 November 2017 / Published: 2 December 2017
PDF Full-text (3556 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The extensive use of electronic equipment in modern life causes potential electromagnetic pollution harmful to human health. Therefore, it is of great significance to enhance the electrical conductivity of polymers, which are widely used in electronic components, to screen out electromagnetic waves. The
[...] Read more.
The extensive use of electronic equipment in modern life causes potential electromagnetic pollution harmful to human health. Therefore, it is of great significance to enhance the electrical conductivity of polymers, which are widely used in electronic components, to screen out electromagnetic waves. The fabrication of graphene/polymer composites has attracted much attention in recent years due to the excellent electrical properties of graphene. However, the uniform distribution of graphene nanoplatelets (GNPs) in a non-polar polymer matrix like polypropylene (PP) still remains a challenge, resulting in the limited improvement of electrical conductivity of PP-based composites achieved to date. Here, we propose a single-step approach to prepare GNPs/PP composites embedded with a segregated architecture of GNPs by coating PP particles with GNPs, followed by hot-pressing. As a result, the electrical conductivity of 10 wt % GNPs-loaded composites reaches 10.86 S·cm−1, which is ≈7 times higher than that of the composites made by the melt-blending process. Accordingly, a high electromagnetic interference shielding effectiveness (EMI SE) of 19.3 dB can be achieved. Our method is green, low-cost, and scalable to develop 3D GNPs architecture in a polymer matrix, providing a versatile composite material suitable for use in electronics, aerospace, and automotive industries. Full article
(This article belongs to the Special Issue Conductive Polymers 2017)
Figures

Graphical abstract

Open AccessArticle Environmentally-Friendly Synthesis of Carbonate-Type Macrodiols and Preparation of Transparent Self-Healable Thermoplastic Polyurethanes
Polymers 2017, 9(12), 663; https://doi.org/10.3390/polym9120663
Received: 16 October 2017 / Revised: 21 November 2017 / Accepted: 29 November 2017 / Published: 30 November 2017
PDF Full-text (3931 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Carbonate-type macrodiols synthesized by base-catalyzed polycondensation of co-diols and dimethyl carbonate as an environmentally-friendly route were subsequently utilized for the preparation of transparent and self-healable thermoplastic polyurethanes (TPUs) containing a carbonate-type soft segment. Three types of macrodiols, obtained from mono, dual and triple
[...] Read more.
Carbonate-type macrodiols synthesized by base-catalyzed polycondensation of co-diols and dimethyl carbonate as an environmentally-friendly route were subsequently utilized for the preparation of transparent and self-healable thermoplastic polyurethanes (TPUs) containing a carbonate-type soft segment. Three types of macrodiols, obtained from mono, dual and triple diol-monomers for target molecular weights of 1 and 1.5 kg mol−1, were analyzed by 1H NMR integration and the OH titration value. Colorless transparent macrodiols in a liquid state at a room temperature of 20 °C were obtained, except the macrodiol from mono 1,6-hexanediol. Before TPU synthesis, macrodiols require pH neutralization to prevent gelation. TPUs synthesized by a solution pre-polymer method with 4,4′-methylene(bisphenyl isocyanate) and 1,4-butanediol as a chain extender exhibited moderate molecular weights, good transparencies and robust mechanical properties. Especially, the incorporation of 3-methyl-1,5-pentanediol within carbonate-type macrodiols enhanced the transparency of the resultant TPUs by decreasing the degree of microphase separation evidenced by ATR-FTIR and DSC. Interestingly, packing density of hard segments and the degree of microphase separation determined the self-healing efficiency of TPUs, which showed good performances in the case of sourced macrodiols from triple diol-monomers. Full article
Figures

Graphical abstract

Open AccessArticle Design Analysis of Adhesively Bonded Structures
Polymers 2017, 9(12), 664; https://doi.org/10.3390/polym9120664
Received: 23 October 2017 / Revised: 22 November 2017 / Accepted: 27 November 2017 / Published: 1 December 2017
PDF Full-text (1013 KB) | HTML Full-text | XML Full-text
Abstract
The existing analytical solutions for the peeling and shearing stresses in polymeric adhesively bonded structures are either too inaccurate or too complex for adoption by practicing engineers. This manuscript presents a closed-form solution that is reasonably accurate yet simple and concise enough to
[...] Read more.
The existing analytical solutions for the peeling and shearing stresses in polymeric adhesively bonded structures are either too inaccurate or too complex for adoption by practicing engineers. This manuscript presents a closed-form solution that is reasonably accurate yet simple and concise enough to be adopted by practicing engineers for design analysis and exploration. Analysis of these concise solutions have yielded insightful design guidelines: (i) the magnitude of peeling stress is generally higher than that of shearing stress; (ii) the peeling stress in a balanced structure may be reduced most effectively by reducing the elastic modulus of the adherends or by increasing the adhesive-to-adherend thickness ratio and less effectively by reducing the elastic modulus of the adhesive; and (iii) the peeling stress in an unbalanced structure may be reduced by increasing the in-plane compliance of the structure, which may be implemented most effectively by reducing the thicknesses of the adherends and less effectively by reducing the elastic modulus of the adherends. Full article
(This article belongs to the collection Polymeric Adhesives)
Figures

Graphical abstract

Open AccessArticle Effect of Cross-Linking on the Performances of Starch-Based Biopolymer as Gel Electrolyte for Dye-Sensitized Solar Cell Applications
Polymers 2017, 9(12), 667; https://doi.org/10.3390/polym9120667
Received: 19 October 2017 / Revised: 28 November 2017 / Accepted: 29 November 2017 / Published: 1 December 2017
PDF Full-text (3184 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Dye-sensitized solar cells (DSSCs) have become a validated and economically credible competitor to the traditional solid-state junction photovoltaic devices. DSSCs based on biopolymer gel electrolyte systems offer the perspective of competitive conversion efficiencies with a very low-cost fabrication. In this paper, a new
[...] Read more.
Dye-sensitized solar cells (DSSCs) have become a validated and economically credible competitor to the traditional solid-state junction photovoltaic devices. DSSCs based on biopolymer gel electrolyte systems offer the perspective of competitive conversion efficiencies with a very low-cost fabrication. In this paper, a new starch-based biopolymer gel electrolyte system is prepared by mixing lithium iodide and iodine with bare and citric acid cross-linked potato starches with glycerol as the plasticizing agent. The effect of the preparation methods on the starch cross-linking degree as well as the photoconversion efficiency of the resulting DSSC cells is carefully analyzed. Fourier transform spectroscopy, X-ray diffraction, and scanning electron microscopy were used to characterize the morphology and conformational changes of starch in the electrolytes. The conductivity of the biopolymer electrolytes was determined by electrochemical impedance spectroscopy. DSSC based on the starch-gel polymer electrolytes were characterized by photovoltaic measurements and electrochemical impedance spectroscopy. Results clearly show that the cross-linking increases the recombination resistance and open circuit voltage (VOC) of the DSSC, and thereby the photoconversion efficiency of the cell. In particular, electrolytes containing 1.4 g bare and cross-linked starches showed ionic conductivities of σ = 1.61, 0.59, 0.38, and 0.35 S cm−1, and the corresponding DSSCs showed efficiencies of 1.2, 1.4, 0.93, and 1.11%, respectively. Full article
(This article belongs to the Special Issue Processing-Structure-Properties Relationships in Polymers)
Figures

Graphical abstract

Open AccessArticle Surfactant-Free RAFT Emulsion Polymerization of Styrene Using Thermoresponsive macroRAFT Agents: Towards Smart Well-Defined Block Copolymers with High Molecular Weights
Polymers 2017, 9(12), 668; https://doi.org/10.3390/polym9120668
Received: 9 November 2017 / Revised: 28 November 2017 / Accepted: 30 November 2017 / Published: 3 December 2017
PDF Full-text (3450 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The combination of reversible addition–fragmentation chain transfer (RAFT) and emulsion polymerization has recently attracted much attention as a synthetic tool for high-molecular-weight block copolymers and their micellar nano-objects. Up to recently, though, the use of thermoresponsive polymers as both macroRAFT agents and latex
[...] Read more.
The combination of reversible addition–fragmentation chain transfer (RAFT) and emulsion polymerization has recently attracted much attention as a synthetic tool for high-molecular-weight block copolymers and their micellar nano-objects. Up to recently, though, the use of thermoresponsive polymers as both macroRAFT agents and latex stabilizers was impossible in aqueous media due to their hydrophobicity at the usually high polymerization temperatures. In this work, we present a straightforward surfactant-free RAFT emulsion polymerization to obtain thermoresponsive styrenic block copolymers with molecular weights of around 100 kDa and their well-defined latexes. The stability of the aqueous latexes is achieved by adding 20 vol % of the cosolvent 1,4-dioxane (DOX), increasing the phase transition temperature (PTT) of the used thermoresponsive poly(N-acryloylpyrrolidine) (PAPy) macroRAFT agents above the polymerization temperature. Furthermore, this cosolvent approach is combined with the use of poly(N,N-dimethylacrylamide)-block-poly(N-acryloylpiperidine-co-N-acryloylpyrrolidine) (PDMA-b-P(APi-co-APy)) as the macroRAFT agent owning a short stabilizing PDMA end block and a widely adjustable PTT of the P(APi-co-APy) block in between 4 and 47 °C. The temperature-induced collapse of the latter under emulsion polymerization conditions leads to the formation of RAFT nanoreactors, which allows for a very fast chain growth of the polystyrene (PS) block. In dynamic light scattering (DLS), as well as cryo-transmission electron microscopy (cryoTEM), moreover, all created latexes indeed reveal a high (temperature) stability and a reversible collapse of the thermoresponsive coronal block upon heating. Hence, this paper pioneers a versatile way towards amphiphilic thermoresponsive high-molecular-weight block copolymers and their nano-objects with tailored corona switchability. Full article
(This article belongs to the Special Issue Emulsion Polymerization)
Figures

Graphical abstract

Open AccessArticle Biosynthesis and Characterization of Recombinant Silk-Like Polypeptides Derived from the Heavy Chain of Silk Fibrion
Polymers 2017, 9(12), 669; https://doi.org/10.3390/polym9120669
Received: 10 October 2017 / Revised: 13 November 2017 / Accepted: 30 November 2017 / Published: 3 December 2017
PDF Full-text (3483 KB) | HTML Full-text | XML Full-text
Abstract
In order to investigate the impacts on the structure and biomedical function of typical fragments derived from repetitive and non-repetitive regions of the Bombyx mori silk fibroin heavy chain, several block combination genes (gs16f1, gs16f4, gs16f8, and gs16f12) were designed, cloned
[...] Read more.
In order to investigate the impacts on the structure and biomedical function of typical fragments derived from repetitive and non-repetitive regions of the Bombyx mori silk fibroin heavy chain, several block combination genes (gs16f1, gs16f4, gs16f8, and gs16f12) were designed, cloned into a fusion protein expression vector tagged with glutathione S-transferase (GST), and expressed in Escherichia coli. Fusion proteins GST-GS16F1, GST-GS16F4, and GST-GS16F8 were purified by GST affinity chromatography, and single bands were identified by SDS-PAGE. Under optimal initial cell density, in ducer concentration and induction expression time, the yield of purified GST-GS16F1, GST-GS16F4, and GST-GS16F8 per liter of bacterial culture reached 79, 53, and 28 mg, respectively. Mass spectrometry revealed molecular weights for GST-GS16F1, GST-GS16F4, and GST-GS16F8 of 37.7, 50.0, and 65.7 kDa, respectively, consistent with the theoretical values of 37.4, 49.4, and 65.5 kDa. Similarly, measured values of pI were 5.35, 4.5, and 4.2 for the fusion proteins, consistent with predicted values of 5.34, 4.44, and 4.09. CD spectra showed the molecular conformation of GS16F1 was mainly β-sheet structure, while more stable α-helix structure formed in GS16F4 and GS16F8. Full article
(This article belongs to the Special Issue Protein Biopolymer)
Figures

Graphical abstract

Open AccessArticle Grafting of Hindered Phenol Groups onto Ethylene/α-Olefin Copolymer by Nitroxide Radical Coupling
Polymers 2017, 9(12), 670; https://doi.org/10.3390/polym9120670
Received: 2 November 2017 / Revised: 29 November 2017 / Accepted: 30 November 2017 / Published: 4 December 2017
PDF Full-text (4826 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The covalent immobilization of hindered phenol groups, with potential antioxidant activity, onto an ethylene/α-olefin (EOC) copolymer was carried out by the nitroxide radical coupling (NRC) reaction performed in the melt with a peroxide and the 3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (BHB-T). Functionalized EOC (EOC-
[...] Read more.
The covalent immobilization of hindered phenol groups, with potential antioxidant activity, onto an ethylene/α-olefin (EOC) copolymer was carried out by the nitroxide radical coupling (NRC) reaction performed in the melt with a peroxide and the 3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (BHB-T). Functionalized EOC (EOC-g-(BHB-T)) was exposed to photo- and thermo-oxidation. By comparison with some model compounds bearing the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) moiety or the hindered phenol unit, it was observed that the grafted BHB-T could effectively help the stabilization of the polymer matrix both under photo- and thermo-oxidation. In addition, the immobilization of BHB-T can effectively increase the service life of the functionalized polymers when polymer films were put in contact with ethanol solution thus simulating a possible application of the modified polymer. Full article
Figures

Graphical abstract

Open AccessArticle Effect of Superabsorbent Polymer on the Properties of Concrete
Polymers 2017, 9(12), 672; https://doi.org/10.3390/polym9120672
Received: 8 November 2017 / Revised: 1 December 2017 / Accepted: 2 December 2017 / Published: 4 December 2017
Cited by 1 | PDF Full-text (3200 KB) | HTML Full-text | XML Full-text
Abstract
Incorporating superabsorbent polymer (SAP), which has the abilities of absorption and desorption in concrete can achieve the effect of internal curing. The influences of the volume, particle size and ways of entrained water of SAP on the workability, compressive strength, shrinkage, carbonation resistance
[...] Read more.
Incorporating superabsorbent polymer (SAP), which has the abilities of absorption and desorption in concrete can achieve the effect of internal curing. The influences of the volume, particle size and ways of entrained water of SAP on the workability, compressive strength, shrinkage, carbonation resistance and chloride penetration resistance of concrete were analyzed through the macroscopic and microscopic test. The results show that pre-absorbed SAP can increase the slump of the mixture, but SAP without water absorption and pre-absorbed SAP with the deduction of internal curing water from mixing water can reduce the slump. The improvement effects of SAP on compressive strength of concrete increase gradually with the increase of age. Especially from 28 days, the compressive strength of concrete increases obviously. At later age, the compressive strengths of SAP concrete under natural curing environment exceed the strength of reference concrete under natural curing environment and nearly reach the strengths of reference concrete under standard curing environment. SAP effectively reduces the shrinkage of concrete, improves the concrete’s abilities of carbonation resistance and chloride penetration resistance. The microscopic test results show that SAP can effectively improve the micro structure and make the pore structure refined. When SAP is added into concrete, the gel pores and small capillary pores are increased, the size of big capillary pores and air pores are reduced. Full article
(This article belongs to the Special Issue Polymers for Modern and Advanced Engineering Applications)
Figures

Graphical abstract

Open AccessArticle Elastic Shape Memory Hybrids Programmable at Around Body-Temperature for Comfort Fitting
Polymers 2017, 9(12), 674; https://doi.org/10.3390/polym9120674
Received: 27 October 2017 / Revised: 22 November 2017 / Accepted: 1 December 2017 / Published: 4 December 2017
PDF Full-text (5895 KB) | HTML Full-text | XML Full-text
Abstract
A series of silicone based elastic shape memory hybrids are fabricated. Their shape memory performance, mechanical behaviors at room temperature with/without programming and during fitting at 37 °C are investigated. It is found that these materials have good shape memory effect and are
[...] Read more.
A series of silicone based elastic shape memory hybrids are fabricated. Their shape memory performance, mechanical behaviors at room temperature with/without programming and during fitting at 37 °C are investigated. It is found that these materials have good shape memory effect and are always highly elastic. At 37 °C, there are 10 min or more for fitting. Thus, it is concluded that this type of material has great potential as an elastic shape memory material for comfort fitting. Full article
(This article belongs to the Special Issue Shape Memory Polymers)
Figures

Graphical abstract

Open AccessArticle Effects of Particle Size on the Morphology and Water- and Thermo-Resistance of Washed Cottonseed Meal-Based Wood Adhesives
Polymers 2017, 9(12), 675; https://doi.org/10.3390/polym9120675
Received: 13 October 2017 / Revised: 28 November 2017 / Accepted: 30 November 2017 / Published: 5 December 2017
PDF Full-text (2593 KB) | HTML Full-text | XML Full-text
Abstract
Water washing of cottonseed meal is more cost-efficient and environmentally friendly than protein isolation by means of alkaline extraction and acidic precipitation. Thus, water-washed cottonseed meal (WCSM) is more promising as biobased wood adhesives. In this work, we examined the effects of the
[...] Read more.
Water washing of cottonseed meal is more cost-efficient and environmentally friendly than protein isolation by means of alkaline extraction and acidic precipitation. Thus, water-washed cottonseed meal (WCSM) is more promising as biobased wood adhesives. In this work, we examined the effects of the particle size on the morphology and adhesive performance of WCSM. Pilot-scale produced and dried WCSM was treated by three grinding methods: (1) ground by a hammer mill and passed through a 0.5-mm screen, (2) further ground by a cyclone mill and passed through a 0.5-mm screen, or (3) further ground by a ball mill and passed through a 0.18-mm screen. Micro-morphological examination revealed two types of particles. The filament-like particles were mainly fibrous materials from residual linters. Chunk-like particles were more like aggregates or accumulations of small particles, with proteins as the major component. Further grinding of the 0.5-mm Hammer product with the Cyclone and Ball mill led to more fine (smaller) particles in the WCSM products. The impact of further grinding on the dry and soaked adhesive strengths was minimal. However, the decrease of the hot and wet strengths of WCSM products by the additional grinding was significant (p ≤ 0.05). Data presented in this work is useful in developing the industrial standards of WCSM products used in wood bonding. Full article
Figures

Graphical abstract

Open AccessArticle A Porous Cobalt (II) Metal–Organic Framework with Highly Efficient Electrocatalytic Activity for the Oxygen Evolution Reaction
Polymers 2017, 9(12), 676; https://doi.org/10.3390/polym9120676
Received: 6 November 2017 / Revised: 29 November 2017 / Accepted: 30 November 2017 / Published: 6 December 2017
PDF Full-text (2205 KB) | HTML Full-text | XML Full-text
Abstract
A 3D porous framework ([Co1.5(tib)(dcpna)]·6H2O) (1) with a Wei topology has been synthesized by solvothermal reaction of 1,3,5-tris(1-imidazolyl)-benzene (tib), 5-(3′,5′-dicarboxylphenyl)nicotinic acid (H3dcpna) and cobalt nitrate. The electrocatalytic activity for water oxidation of 1
[...] Read more.
A 3D porous framework ([Co1.5(tib)(dcpna)]·6H2O) (1) with a Wei topology has been synthesized by solvothermal reaction of 1,3,5-tris(1-imidazolyl)-benzene (tib), 5-(3′,5′-dicarboxylphenyl)nicotinic acid (H3dcpna) and cobalt nitrate. The electrocatalytic activity for water oxidation of 1 has been investigated in alkaline solution. Compound 1 exhibits good oxygen evolution reaction (OER) activities in alkaline solution, exhibiting 10 mA·cm−2 at η = 360 mV with a Tafel slope of 89 mV·dec−1. The high OER activity can be ascribe to 1D open channels along b axis of 1, which expose more activity sites and facilitate the electrolyte penetration. Full article
(This article belongs to the Special Issue Coordination Polymer)
Figures

Graphical abstract

Open AccessArticle The Preparations and Water Vapor Barrier Properties of Polyimide Films Containing Amide Moieties
Polymers 2017, 9(12), 677; https://doi.org/10.3390/polym9120677
Received: 23 September 2017 / Revised: 23 November 2017 / Accepted: 29 November 2017 / Published: 5 December 2017
PDF Full-text (6964 KB) | HTML Full-text | XML Full-text
Abstract
Flexible displays are a systematic revolution in the field of display, in which high-performance and high-barrier polymer substrates are considered to be one of the most important key materials. In this work, high water vapor barrier polyimides containing amide moieties were synthesized via
[...] Read more.
Flexible displays are a systematic revolution in the field of display, in which high-performance and high-barrier polymer substrates are considered to be one of the most important key materials. In this work, high water vapor barrier polyimides containing amide moieties were synthesized via the ternary polymerization of 4,4′-diaminobenzailide (DABA), 4,4′-diaminodipheny ether (ODA), and 3,3′,4,4′-biphenyl-tetracarboxylic acid dianhydride (BPDA) followed by thermal imidization. The relationship between the content of amide moieties and the water vapor barrier property of the prepared polyimides was studied by means of density test, water absorbing test, water contact angle test, water vapor permeation test, fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), thermogravimetry coupled with fourier transform infrared spectrometry (TG-FTIR), wide-angle X-ray diffraction analysis (WXRD), mechanical performance test, etc. The results show that the introduction of amide groups into polyimide (PI) main chains can improve the water vapor barrier properties of the polyimides effectively. The water vapor transmission rate (WVTR) of the polyimide films can be improved from 8.2365 g·(m2·24 h)−1 to 0.8670 g·(m2·24 h)−1 with the increasing content of amide moieties. Full article
(This article belongs to the Special Issue High Performance Polymers)
Figures

Graphical abstract

Open AccessArticle Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes
Polymers 2017, 9(12), 678; https://doi.org/10.3390/polym9120678
Received: 30 October 2017 / Revised: 28 November 2017 / Accepted: 30 November 2017 / Published: 6 December 2017
Cited by 1 | PDF Full-text (3159 KB) | HTML Full-text | XML Full-text
Abstract
In this study, we investigated the computer colour matching (CCM) of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated
[...] Read more.
In this study, we investigated the computer colour matching (CCM) of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE) L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE) is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM. Full article
(This article belongs to the Special Issue Textile and Textile-Based Materials)
Figures

Graphical abstract

Open AccessArticle Preparation of Fouling-Resistant Nanofibrous Composite Membranes for Separation of Oily Wastewater
Polymers 2017, 9(12), 679; https://doi.org/10.3390/polym9120679
Received: 13 November 2017 / Revised: 3 December 2017 / Accepted: 4 December 2017 / Published: 6 December 2017
Cited by 2 | PDF Full-text (6540 KB) | HTML Full-text | XML Full-text
Abstract
A facile and low-cost method has been developed for separation of oily wastewater. Polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) nanofibers laminated on a supporting layer were tested. In order to create highly permeable and fouling-resistant membranes, surface modifications of both fibers were conducted. The results of
[...] Read more.
A facile and low-cost method has been developed for separation of oily wastewater. Polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) nanofibers laminated on a supporting layer were tested. In order to create highly permeable and fouling-resistant membranes, surface modifications of both fibers were conducted. The results of oily wastewater separation showed that, after low vacuum microwave plasma treatment with Argon (Ar) and chemical modification with sodium hydroxide (NaOH), the membranes had excellent hydrophilicity, due to the formation of active carboxylic groups. However, the membrane performance failed during the cleaning procedures. Titanium dioxide (TiO2) was grafted onto the surface of membranes to give them highly permeable and fouling-resistance properties. The results of the self-cleaning experiment indicated that grafting of TiO2 on the surface of the membranes after their pre-treatment with Ar plasma and NaOH increased the permeability and the anti-fouling properties. A new surface modification method using a combination of plasma and chemical treatment was introduced. Full article
(This article belongs to the Special Issue Electrospinning of Nanofibres)
Figures

Graphical abstract

Open AccessCommunication Confinement Effects on Polymer Dynamics: Thermo-Responsive Behaviours of Hydroxypropyl Cellulose Polymers in Phospholipid-Coated Droplets (Water-in-Oil Emulsion)
Polymers 2017, 9(12), 680; https://doi.org/10.3390/polym9120680
Received: 7 November 2017 / Revised: 25 November 2017 / Accepted: 1 December 2017 / Published: 6 December 2017
Cited by 1 | PDF Full-text (1693 KB) | HTML Full-text | XML Full-text
Abstract
In order to construct the artificial cells and to understand the physicochemical properties of living cells, it is important to clarify the cell-sized confinement effect on the behaviours of bio-inspired polymers. We report the dynamic behaviours of aqueous hydroxypropyl cellulose (HPC) solution coated
[...] Read more.
In order to construct the artificial cells and to understand the physicochemical properties of living cells, it is important to clarify the cell-sized confinement effect on the behaviours of bio-inspired polymers. We report the dynamic behaviours of aqueous hydroxypropyl cellulose (HPC) solution coated with phospholipids in oil (water-in-oil droplets, W/O droplets), accompanied by an increase in the temperature. We directly observed the beginning of phase separation of HPC solution using a fluorescence microscope and confirmed the dependence of such phenomena on droplet size. The results indicate that the start time of phase separation is decreased with an increase in droplet size. The experimental results suggest that the confinement situation accelerates the phase separation of aqueous HPC solutions. Full article
(This article belongs to the Special Issue RAFT Living Radical Polymerization and Self-Assembly)
Figures

Graphical abstract

Open AccessArticle Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization
Polymers 2017, 9(12), 681; https://doi.org/10.3390/polym9120681
Received: 21 November 2017 / Revised: 4 December 2017 / Accepted: 4 December 2017 / Published: 6 December 2017
PDF Full-text (6210 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT) dispersion copolymerization of methyl methacrylate (MMA) and methyl methacrylic (MAA) for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved
[...] Read more.
Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT) dispersion copolymerization of methyl methacrylate (MMA) and methyl methacrylic (MAA) for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition) were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag) composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB) with NaBH4 as a reductant. Full article
(This article belongs to the Special Issue RAFT Living Radical Polymerization and Self-Assembly)
Figures

Graphical abstract

Open AccessArticle Modification of Rule of Mixtures for Tensile Strength Estimation of Circular GFRP Rebars
Polymers 2017, 9(12), 682; https://doi.org/10.3390/polym9120682
Received: 7 November 2017 / Revised: 28 November 2017 / Accepted: 4 December 2017 / Published: 7 December 2017
PDF Full-text (3876 KB) | HTML Full-text | XML Full-text
Abstract
The rule of mixtures (ROM) method is often used to estimate the tensile strength of fiber reinforced polymers (FRPs) reinforcing bars (rebars). Generally, the ROM method predicts the FRP rebars’ modulus of elasticity adequately but overestimates their tensile strength. This may result from
[...] Read more.
The rule of mixtures (ROM) method is often used to estimate the tensile strength of fiber reinforced polymers (FRPs) reinforcing bars (rebars). Generally, the ROM method predicts the FRP rebars’ modulus of elasticity adequately but overestimates their tensile strength. This may result from defects occurred during manufacture that prevent the used materials from exhibiting a sound performance and the shear-lag phenomenon by transmission of external forces through the surface of the rebar having a circular cross section. Due to the latter, there is a difference in fiber breaking points regarding the fibers located on the surface and fibers located at the center, and thus results in differences between the values calculated from the conventional ROM and the experimental result. In this study, for the purpose of resolving the problem, glass FRP (GFRP) rebars were shaped to have a hollow section at the center of their cross sections and were further subject to tensile strength tests. The test results were further placed under regression analysis and a modified ROM within ±5% accuracy compared to the experimental value was proposed for GFRP rebars with 13, 16, and 19 mm diameters. Full article
Figures

Figure 1

Open AccessArticle Drag Reduction Using Polysaccharides in a Taylor–Couette Flow
Polymers 2017, 9(12), 683; https://doi.org/10.3390/polym9120683
Received: 24 October 2017 / Revised: 28 November 2017 / Accepted: 1 December 2017 / Published: 7 December 2017
PDF Full-text (4812 KB) | HTML Full-text | XML Full-text
Abstract
Three different polysaccharides, aloe vera, Tamarind powder and pineapple fibers, are utilized as drag reducing agents in a turbulent flow. Using a Taylor–Couette setup, consisting of a rotating inner cylinder, for measuring the drag reduction, a range of Reynolds numbers from 4 ×
[...] Read more.
Three different polysaccharides, aloe vera, Tamarind powder and pineapple fibers, are utilized as drag reducing agents in a turbulent flow. Using a Taylor–Couette setup, consisting of a rotating inner cylinder, for measuring the drag reduction, a range of Reynolds numbers from 4 × 104 to 3 × 105 has been explored in this study. The results are in good agreement with previous studies on polysaccharides conducted in a pipe/channel flow and a maximum drag reduction of 35% has been observed. Further, novel additives such as cellulose nanocrystals (CNC), surfactants and CNC grafted with surfactants are also examined in this study for drag reduction. CNC due to its rigid rod structure reduced the drag by 30%. Surfactant, due to its unique micelle formation showed maximum drag reduction of 80% at low Re. Further, surfactant was grafted on CNC and was examined for drag reduction. However, drag reduction property of surfactant was observed to be significantly reduced after grafting on CNC. The effect of Reynolds number on drag reduction is studied for all the additives investigated in this study. Full article
(This article belongs to the Special Issue Polymers for Modern and Advanced Engineering Applications)
Figures

Graphical abstract

Open AccessArticle Impact Resistance Enhancement by Adding Core-Shell Particle to Epoxy Resin Modified with Hyperbranched Polymer
Polymers 2017, 9(12), 684; https://doi.org/10.3390/polym9120684
Received: 30 October 2017 / Revised: 26 November 2017 / Accepted: 30 November 2017 / Published: 7 December 2017
PDF Full-text (3190 KB) | HTML Full-text | XML Full-text
Abstract
A core-shell particle was fabricated by grafting amino-terminated hyperbranched polymer to the surface of silica nanoparticles. The influences of core-shell particle contents on the tensile and impact strength of the epoxy thermosets modified with amino-terminated hyperbranched polymer were discussed in detail. For comparison,
[...] Read more.
A core-shell particle was fabricated by grafting amino-terminated hyperbranched polymer to the surface of silica nanoparticles. The influences of core-shell particle contents on the tensile and impact strength of the epoxy thermosets modified with amino-terminated hyperbranched polymer were discussed in detail. For comparison, core-shell particle was added into the epoxy/polyamide system for toughness improvement. Results from tensile and impact tests are provided. The introduction of core-shell particle into the epoxy/polyamide systems just slightly enhanced the tensile and impact strength. The incorporation of 3 wt % core-shell particle could substantially improve the tensile and impact strength of epoxy/amino-terminated hyperbranched polymer thermosets. Field emission-scanning electron microscope images of the impact fracture surfaces showed that the excellent impact resistance of epoxy/amino-terminated hyperbranched polymer/core-shell particle thermosets may be attributed to the synergistic effect of shearing deformation and crack pinning/propagation, which is induced by the good compatibility between epoxy matrix and core-shell particle in the presence of amino-terminated hyperbranched polymer. Full article
(This article belongs to the collection Polymeric Adhesives)
Figures

Graphical abstract

Open AccessArticle Construction of Supramolecular Nanostructures from V-Shaped Amphiphilic Rod-Coil Molecules Incorporating Phenazine Units
Polymers 2017, 9(12), 685; https://doi.org/10.3390/polym9120685
Received: 7 November 2017 / Revised: 30 November 2017 / Accepted: 4 December 2017 / Published: 7 December 2017
PDF Full-text (3011 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of bent-shaped molecules, consisting of dibenzo[a,c]phenazine and phenyl groups connected together as a rod segment, and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 6 as the coil segment, were synthesized. The self-assembling behavior of these molecules
[...] Read more.
A series of bent-shaped molecules, consisting of dibenzo[a,c]phenazine and phenyl groups connected together as a rod segment, and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 6 as the coil segment, were synthesized. The self-assembling behavior of these molecules by differential scanning calorimetry (DSC), thermal optical polarized microscopy (POM), small-angle X-ray scattering spectroscopy (SAXS), atomic force microscopy (AFM), and transmission electron microscopy (TEM), revealed that carboxyl or butoxy carbonyl groups at the 11 position of dibenzo[a,c]phenazine noticeably influence self-organization of molecules into supramolecular aggregates in bulk and aqueous solutions. Molecules 1 and 2 with chiral or non-chiral PEO coil chains and the carboxyl group at the rod segments self-organize into a hexagonal perforated lamellar structure and a hexagonal columnar structure in the solid state. In aqueous solution, molecules 1 and 2 self-assemble into diverse lengths of nanofibers, whereas molecules 3 and 4 with butoxy carbonyl groups exhibit a self-organizing capacity to form diverse sizes of spherical aggregates. Full article
Figures

Graphical abstract

Open AccessArticle On the Limits of Benzophenone as Cross-Linker for Surface-Attached Polymer Hydrogels
Polymers 2017, 9(12), 686; https://doi.org/10.3390/polym9120686
Received: 17 November 2017 / Revised: 29 November 2017 / Accepted: 4 December 2017 / Published: 7 December 2017
Cited by 3 | PDF Full-text (1980 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The synthesis of different photo-reactive poly(alkenyl norbornenes) and poly(oxonorbornenes) containing benzophenone (BP) via ring-opening metatheses polymerization (ROMP) is described. These polymers are UV irradiated to form well-defined surface-attached polymer networks and hydrogels. The relative propensity of the polymers to cross-link is evaluated by
[...] Read more.
The synthesis of different photo-reactive poly(alkenyl norbornenes) and poly(oxonorbornenes) containing benzophenone (BP) via ring-opening metatheses polymerization (ROMP) is described. These polymers are UV irradiated to form well-defined surface-attached polymer networks and hydrogels. The relative propensity of the polymers to cross-link is evaluated by studying their gel content and its dependency on BP content, irradiation wavelength (254 or 365 nm) and energy dose applied (up to 11 J·cm2). Analysis of the UV spectra of the polymer networks demonstrates that the poly(oxonorbornenes) show the expected BP-induced crosslinking behavior at 365 nm, although high irradiation energy doses and BP content are needed. However, these polymers undergo chain scission at 254 nm. The poly(alkenyl norbornenes), on the other hand, do not cross-link at 365 nm, whereas moderate to good cross-linking is observed at 254 nm. UV spectra demonstrate that the cross-linking at 254 nm is due to BP cross-linking combined with a [2 + 2] cylcoaddition of the alkenyl double bonds. This indicates limitations of benzophenone as a universally applicable cross-linking for polymer networks and hydrogels. Full article
(This article belongs to the Special Issue Microgels and Hydrogels at Interfaces)
Figures

Graphical abstract

Open AccessArticle Biocompatibility Assessment of Conducting PANI/Chitosan Nanofibers for Wound Healing Applications
Polymers 2017, 9(12), 687; https://doi.org/10.3390/polym9120687
Received: 28 September 2017 / Revised: 23 November 2017 / Accepted: 24 November 2017 / Published: 8 December 2017
Cited by 1 | PDF Full-text (6314 KB) | HTML Full-text | XML Full-text
Abstract
As electroactive polymers have recently presented potential in applications in the tissue engineering and biomedical field, this study is aiming at the fabrication of composite nanofibrous membranes containing conducting polyaniline and at the evaluation of their biocompatibility. For that purpose, conducting polyaniline–chitosan (PANI/CS)
[...] Read more.
As electroactive polymers have recently presented potential in applications in the tissue engineering and biomedical field, this study is aiming at the fabrication of composite nanofibrous membranes containing conducting polyaniline and at the evaluation of their biocompatibility. For that purpose, conducting polyaniline–chitosan (PANI/CS) defect free nanofibres of different ratios (1:3; 3:5 and 1:1) were produced with the electrospinning method. They were characterized as for their morphology, hydrophilicity and electrical conductivity. The membranes were then evaluated for their cellular biocompatibility in terms of cell attachment, morphology and cell proliferation. The effect of the PANI content on the membrane properties is discussed. Increase in PANI content resulted in membranes with higher hydrophobicity and higher electrical conductivity. It was found that none of the membranes showed any toxic effects on osteoblasts and fibroblasts, and that they all supported cell attachment and growth, even to a greater extent than tissue culture plastic. The membrane with the PANI/CS ratio 1:3 supports better cell attachment and proliferation for both cell lines due to a synergistic effect of hydrophilicity retention due to the high chitosan content and the conductivity that PANI introduced to the membrane. Full article
(This article belongs to the Special Issue Electrospinning of Nanofibres)
Figures

Graphical abstract

Open AccessArticle Thermal Transport in Soft PAAm Hydrogels
Polymers 2017, 9(12), 688; https://doi.org/10.3390/polym9120688
Received: 23 October 2017 / Revised: 27 November 2017 / Accepted: 5 December 2017 / Published: 8 December 2017
PDF Full-text (4129 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in
[...] Read more.
As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm) hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm−1K−1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25–40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices. Full article
(This article belongs to the Special Issue Soft Materials and Systems)
Figures

Graphical abstract

Open AccessArticle Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording
Polymers 2017, 9(12), 690; https://doi.org/10.3390/polym9120690
Received: 6 November 2017 / Revised: 4 December 2017 / Accepted: 5 December 2017 / Published: 8 December 2017
PDF Full-text (5282 KB) | HTML Full-text | XML Full-text
Abstract
Conventional polymer multielectrode arrays (MEAs) have limitations resulting from a high Young’s modulus, including low conformability and gaps between the electrodes and neurons. These gaps are not a problem in soft tissues such as the brain, due to the repopulation phenomenon. However, gaps
[...] Read more.
Conventional polymer multielectrode arrays (MEAs) have limitations resulting from a high Young’s modulus, including low conformability and gaps between the electrodes and neurons. These gaps are not a problem in soft tissues such as the brain, due to the repopulation phenomenon. However, gaps can result in signal degradation when recording from a fiber bundle, such as the spinal cord. Methods: We propose a method for fabricating flexible polydimethylsiloxane (PDMS)-based MEAs featuring plateau-shaped microelectrodes. The proposed fabrication technique enables the electrodes on the surface of MEAs to make a tight connection to the neurons, because the wire of the MEA is fabricated to be plateau-shaped, as the Young’s modulus of PDMS is similar to soft tissues and PDMS follows the curvature of the neural tissue due to its high conformability compared to the other polymers. Injury caused by the movement of the MEAs can therefore be minimized. Each electrode has a diameter of 130 μm and the 8-channel array has a center-to-center electrode spacing of 300 μm. The signal-to-noise ratio of the plateau-shaped electrodes was larger than that of recessed electrodes because there was no space between the electrode and neural cell. Reliable neural recordings were possible by adjusting the position of the electrode during the experiment without trapping air under the electrodes. Simultaneous multi-channel neural recordings were successfully achieved from the spinal cord of rodents. We describe the fabrication technique, electrode 3D profile, electrode impedance, and MEA performance in in vivo experiments in rodents. Full article
(This article belongs to the Special Issue Siloxane-Based Polymers)
Figures

Graphical abstract

Open AccessArticle Metal and Ligand Effects on the Construction of Divalent Coordination Polymers Based on bis-Pyridyl-bis-amide and Polycarboxylate Ligands
Polymers 2017, 9(12), 691; https://doi.org/10.3390/polym9120691
Received: 9 October 2017 / Revised: 6 December 2017 / Accepted: 6 December 2017 / Published: 8 December 2017
PDF Full-text (7299 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Ten coordination polymers constructed from divalent metal salts, polycarboxylic acids, and bis-pyridyl-bis-amide ligands with different donor atom positions and flexibility are reported. They were structurally characterized by single-crystal X-ray diffraction. The ten coordination polymers are as follows: (1) {[Ni(L1
[...] Read more.
Ten coordination polymers constructed from divalent metal salts, polycarboxylic acids, and bis-pyridyl-bis-amide ligands with different donor atom positions and flexibility are reported. They were structurally characterized by single-crystal X-ray diffraction. The ten coordination polymers are as follows: (1) {[Ni(L1)(3,5-PDA)(H2O)3]·2H2O}n (L1 = N,N′-di(3-pyridyl)suberoamide, 3,5-H2PDA = 3,5-pyridinedicarboxylic acid); (2) {[Ni2(L1)2(1,3,5-HBTC)2(H2O)4]·H2O}n (1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid); (3) {[Ni(L2)(5-tert-IPA)(H2O)2]·2H2O}n (L2 = N,N′-di(3-pyridyl)adipoamide, 5-tert-H2IPA = 5-tert-butylisophthalic acid); (4) [Ni(L3)1.5(5-tert-IPA)]n (L3 = N,N′-di(4-pyridyl)adipoamide); (5) [Co(L1)(1,3,5-HBTC)(H2O)]n; (6) {[Co3(L1)3(1,3,5-BTC)2(H2O)2]·6H2O}n; (7) [Cu(L4)(AIPA)]n (L4 = N,N′-bis(3-pyridinyl)terephthalamide, H2AIPA = 5-acetamido isophthalic acid); (8) {[Cu(L2)0.5(AIPA)]·MeOH}n; (9) {[Zn(L4)(AIPA)]·2H2O}n; and (10) {[Zn(L2)(AIPA)]·2H2O}n. Complex 1 forms a 1D chain and 2 is a two-fold interpenetrated 2D layer with the sql topology, while 3 is a 2D layer with the hcp topology and 4 shows a self-catenated 3D framework with the rare (42·67·8)-hxg-d-5-C2/c topology. Different Co/1,3,5-H3BTC ratios were used to prepare 5 and 6, affording a 2D layer with the sql topology and a 2D layer with the (4·85)2(4)2(83)2(8) topology that can be further simplified to an hcp topology. While complex 7 is a 2D layer with the (42·67·8)(42·6)-3,5L2 topology and 8 is a 2-fold interpenetrated 3D framework with the pcu topology, complexes 9 and 10 are self-catenated 3D frameworks with the (424·64)-8T2 and the (44·610·8)-mab topologies, respectively. The effects of the identity of the metal center, the ligand isomerism, and the flexibility of the spacer ligands on the structural diversity of these divalent coordination polymers are discussed. The luminescent properties of 9 and 10 and their photocatalytic effects on the degradation of dyes are also investigated. Full article
(This article belongs to the Special Issue Coordination Polymer)
Figures

Graphical abstract

Open AccessArticle Non-Fullerene Acceptor-Based Solar Cells: From Structural Design to Interface Charge Separation and Charge Transport
Polymers 2017, 9(12), 692; https://doi.org/10.3390/polym9120692
Received: 27 October 2017 / Revised: 25 November 2017 / Accepted: 4 December 2017 / Published: 8 December 2017
Cited by 1 | PDF Full-text (6554 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The development of non-fullerene small molecule as electron acceptors is critical for overcoming the shortcomings of fullerene and its derivatives (such as limited absorption of light, poor morphological stability and high cost). We investigated the electronic and optical properties of the two selected
[...] Read more.
The development of non-fullerene small molecule as electron acceptors is critical for overcoming the shortcomings of fullerene and its derivatives (such as limited absorption of light, poor morphological stability and high cost). We investigated the electronic and optical properties of the two selected promising non-fullerene acceptors (NFAs), IDIC and IDTBR, and five conjugated donor polymers using quantum-chemical method (QM). Based on the optimized structures of the studied NFAs and the polymers, the ten donor/acceptor (D/A) interfaces were constructed and investigated using QM and Marcus semi-classical model. Firstly, for the two NFAs, IDTBR displays better electron transport capability, better optical absorption ability, and much greater electron mobility than IDIC. Secondly, the configurations of D/A yield the more bathochromic-shifted and broader sunlight absorption spectra than the single moiety. Surprisingly, although IDTBR has better optical properties than IDIC, the IDIC-based interfaces possess better electron injection abilities, optical absorption properties, smaller exciton binding energies and more effective electronic separation than the IDTBR-based interfaces. Finally, all the polymer/IDIC interfaces exhibit large charge separation rate (KCS) (up to 1012–1014 s−1) and low charge recombination rate (KCR) (<106 s−1), which are more likely to result in high power conversion efficiencies (PCEs). From above analysis, it was found that the polymer/IDIC interfaces should display better performance in the utility of bulk-heterojunction solar cells (BHJ OSC) than polymer/IDTBR interfaces. Full article
(This article belongs to the Special Issue Polymer Solar Cells)
Figures

Graphical abstract

Open AccessArticle Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates
Polymers 2017, 9(12), 693; https://doi.org/10.3390/polym9120693
Received: 17 November 2017 / Revised: 5 December 2017 / Accepted: 6 December 2017 / Published: 9 December 2017
Cited by 1 | PDF Full-text (3613 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Bio-based unsaturated polyester resins derived from itaconic acid can be an alternative to established resins of this type in the field of radical-curing resins. However, one of the challenges of these polyester itaconates is the somewhat more elaborate synthetic process, especially under polycondensation
[...] Read more.
Bio-based unsaturated polyester resins derived from itaconic acid can be an alternative to established resins of this type in the field of radical-curing resins. However, one of the challenges of these polyester itaconates is the somewhat more elaborate synthetic process, especially under polycondensation conditions used on an industrial scale. The α,β-unsaturated double bond of the itaconic acid is prone to side reactions that can lead to the gelation of the polyester resin under standard conditions. This is especially true when bio-based diols such as 1,3-propanediol or 1,4-butanediol are used to obtain resins that are 100% derived from renewable resources. It was observed in earlier studies that high amounts of these aliphatic diols in the polyester lead to low conversion and gelation of the resins. In this work, a catalytic study using different diols was performed in order to elucidate the reasons for this behavior. It was shown that the choice of catalyst has a crucial influence on the side reactions occurring during the polycondensation reactions. In addition, the side reactions taking place were identified and suppressed. These results will allow for the synthesis of polyester itaconates on a larger scale, setting the stage for their industrial application. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polyesters)
Figures

Graphical abstract

Open AccessArticle Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing
Polymers 2017, 9(12), 694; https://doi.org/10.3390/polym9120694
Received: 26 October 2017 / Revised: 1 December 2017 / Accepted: 5 December 2017 / Published: 9 December 2017
PDF Full-text (6341 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Thermoplastic vulcanizate (TPV) combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide) (PLA) and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid) (PBBSI) were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights,
[...] Read more.
Thermoplastic vulcanizate (TPV) combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide) (PLA) and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid) (PBBSI) were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights, chemical structures and compositions of the copolyesters were characterized by GPC, NMR and FTIR. Bio-based 2,3-butanediol was successfully incorporated to depress the crystallization behavior of the PBBSI copolyester. With an increase of 2,3-butanediol content, the PBBSI copolyester transformed from a rigid plastic to a soft elastomer. Furthermore, the obtained TPV has good elasticity and rheological properties, which means it can be applied as a 3D-printing material. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polyesters)
Figures

Graphical abstract

Open AccessArticle Effects of Acid and Salt Solutions on the Pasting, Rheology and Texture of Lotus Root Starch–Konjac Glucomannan Mixture
Polymers 2017, 9(12), 695; https://doi.org/10.3390/polym9120695
Received: 18 November 2017 / Revised: 1 December 2017 / Accepted: 5 December 2017 / Published: 10 December 2017
PDF Full-text (2219 KB) | HTML Full-text | XML Full-text
Abstract
To explore the functional properties of mixed biopolymer systems affected by acid and salts. The effects of acid and salt solutions (i.e., NaCl, KCl and CaCl2) on the pasting, rheology, texture and microstructure of lotus root starch–konjac glucomannan (LRS/KGM) mixtures were
[...] Read more.
To explore the functional properties of mixed biopolymer systems affected by acid and salts. The effects of acid and salt solutions (i.e., NaCl, KCl and CaCl2) on the pasting, rheology, texture and microstructure of lotus root starch–konjac glucomannan (LRS/KGM) mixtures were assessed. Acid (citric acid buffer) treatment worsened the pasting (except for breakdown viscosity), rheological (except for fluid index), and textural properties, thereby inhibiting retrogradation, weakening pseudoplasticity and thickening, and reducing mixture viscoelasticity. Furthermore, it led to destructive ruptures and large pores in the internal microstructure. Salt treatment worsened the pasting properties (except for setback viscosity), thus inhibiting retrogradation and weakening pseudoplasticity, but enhanced the rheological properties, improving thickening and fluctuating viscoelasticity of the mixture. Moreover, salt addition decreased the hardness while increasing mixture cohesiveness, and modified the elasticity, adhesiveness and internal microstructure in a salt type- and concentration-dependent manner. A salt solution concentration of 0.5 mol/L NaCl, 0.1 mol/L KCl, and 0.5 mol/L CaCl2 led to the mixture with the best texture and gel network. Full article
Figures

Graphical abstract

Open AccessArticle Experimental Investigation of the Magnetorheological Behavior of PDMS Elastomer Reinforced with Iron Micro/Nanoparticles
Polymers 2017, 9(12), 696; https://doi.org/10.3390/polym9120696
Received: 30 October 2017 / Revised: 2 December 2017 / Accepted: 6 December 2017 / Published: 10 December 2017
Cited by 1 | PDF Full-text (14478 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this article focuses on identifying how the addition of iron micro- and nanoparticles influences the physical properties of magnetorheological composite materials developed with a polydimethylsiloxane (PDMS) matrix with different contents of silicone oil used as additive. A number of characterization
[...] Read more.
The aim of this article focuses on identifying how the addition of iron micro- and nanoparticles influences the physical properties of magnetorheological composite materials developed with a polydimethylsiloxane (PDMS) matrix with different contents of silicone oil used as additive. A number of characterization techniques have been performed in order to fully characterize the samples, such as cyclic and uniaxial extension, rheology, swelling, Vibrating sample magnetometer (VSM), X-ray Diffraction (XRD), Scanning electron microscopy (SEM), Fourier-Transform Infrared (FTIR), X-ray photoelectronic spectroscopy (XPS) and Thermogravimetric analysis (TGA). The comparison between two matrices with different shore hardnesses and their mechanical and chemical properties are elucidated by swelling and tensile tests. In fact, swelling tests showed that higher crosslink density leads to increasing elongation at break and tensile strength values for the composite materials. The best mechanical performance in the magnetorheological material was observed for those samples manufactured using a higher silicone oil content in a hard polymeric matrix. Furthermore, it has been found that the magnetic properties are enhanced when nanoparticles are used as fillers instead of microparticles. Full article
(This article belongs to the Special Issue Elastomers)
Figures

Graphical abstract

Open AccessArticle Hydroxypropyltrimethyl Ammonium Chloride Chitosan Functionalized-PLGA Electrospun Fibrous Membranes as Antibacterial Wound Dressing: In Vitro and In Vivo Evaluation
Polymers 2017, 9(12), 697; https://doi.org/10.3390/polym9120697
Received: 23 November 2017 / Revised: 5 December 2017 / Accepted: 5 December 2017 / Published: 11 December 2017
Cited by 1 | PDF Full-text (4699 KB) | HTML Full-text | XML Full-text
Abstract
A novel poly(lactic-co-glycolic acid) (PLGA)-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) composite nanofiber wound dressing was prepared through electrospinning and the entrapment-graft technique as an antibacterial dressing for cutaneous wound healing. HACC with 30% degrees of substitution (DS) was immobilized onto the surface
[...] Read more.
A novel poly(lactic-co-glycolic acid) (PLGA)-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) composite nanofiber wound dressing was prepared through electrospinning and the entrapment-graft technique as an antibacterial dressing for cutaneous wound healing. HACC with 30% degrees of substitution (DS) was immobilized onto the surface of PLGA membranes via the reaction between carboxyl groups in PLGA after alkali treatment and the reactive groups (–NH2) in HACC molecules. The naked PLGA and chitosan graft PLGA (PLGA-CS) membranes served as controls. The surface immobilization was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and energy dispersive X-ray spectrometry (EDX). The morphology studies showed that the membranes remain uniform after the immobilization process. The effects of the surface modification by HACC and CS on the biological properties of the membranes were also investigated. Compared with PLGA and PLGA-CS, PLGA-HACC exhibited more effective antibacterial activity towards both Gram-positive (S. aureus) and Gram-negative (P. aeruginosa) bacteria. The newly developed fibrous membranes were evaluated in vitro for their cytotoxicity using human dermal fibroblasts (HDFs) and human keratinocytes (HaCaTs) and in vivo using a wound healing mice model. It was revealed that PLGA-HACC fibrous membranes exhibited favorable cytocompatibility and significantly stimulated adhesion, spreading and proliferation of HDFs and HaCaTs. PLGA-HACC exhibited excellent wound healing efficacy, which was confirmed using a full thickness excision wound model in S. aureus-infected mice. The experimental results in this work suggest that PLGA-HACC is a strong candidate for use as a therapeutic biomaterial in the treatment of infected wounds. Full article
(This article belongs to the Special Issue Electrospinning of Nanofibres)
Figures

Graphical abstract

Open AccessArticle Acetal-Linked Paclitaxel Polymeric Prodrug Based on Functionalized mPEG-PCL Diblock Polymer for pH-Triggered Drug Delivery
Polymers 2017, 9(12), 698; https://doi.org/10.3390/polym9120698
Received: 14 October 2017 / Revised: 17 November 2017 / Accepted: 7 December 2017 / Published: 11 December 2017
Cited by 1 | PDF Full-text (6004 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The differences in micro-environment between cancer cells and the normal ones offer the possibility to develop stimuli-responsive drug-delivery systems for overcoming the drawbacks in the clinical use of anticancer drugs, such as paclitaxel, doxorubicin, and etc. Hence, we developed a novel endosomal pH-sensitive
[...] Read more.
The differences in micro-environment between cancer cells and the normal ones offer the possibility to develop stimuli-responsive drug-delivery systems for overcoming the drawbacks in the clinical use of anticancer drugs, such as paclitaxel, doxorubicin, and etc. Hence, we developed a novel endosomal pH-sensitive paclitaxel (PTX) prodrug micelles based on functionalized poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) diblock polymer with an acid-cleavable acetal (Ace) linkage (mPEG-PCL-Ace-PTX). The mPEG-PCL-Ace-PTX5 with a high drug content of 23.5 wt % was self-assembled in phosphate buffer (pH 7.4, 10 mM) into nanosized micelles with an average diameter of 68.5 nm. The in vitro release studies demonstrated that mPEG-PCL-Ace-PTX5 micelles was highly pH-sensitive, in which 16.8%, 32.8%, and 48.2% of parent free PTX was released from mPEG-PCL-Ace-PTX5 micelles in 48 h at pH 7.4, 6.0, and 5.0, respectively. Thiazolyl Blue Tetrazolium Bromide (MTT) assays suggested that the pH-sensitive PTX prodrug micelles displayed higher therapeutic efficacy against MCF-7 cells compared with free PTX. Therefore, the PTX prodrug micelles with acetal bond may offer a promising strategy for cancer therapy. Full article
(This article belongs to the Special Issue Polymer Micelles) Printed Edition available
Figures

Graphical abstract

Open AccessArticle Macro-Micro Simulation for Polymer Crystallization in Couette Flow
Polymers 2017, 9(12), 699; https://doi.org/10.3390/polym9120699
Received: 15 November 2017 / Revised: 7 December 2017 / Accepted: 8 December 2017 / Published: 11 December 2017
Cited by 1 | PDF Full-text (4692 KB) | HTML Full-text | XML Full-text
Abstract
Polymer crystallization in manufacturing is a process where quiescent crystallization and flow-induced crystallization coexists, and heat/mass transfer on a macroscopic level interacts with crystal morphology evolution on a microscopic level. Previous numerical studies on polymer crystallization are mostly concentrated at a single scale;
[...] Read more.
Polymer crystallization in manufacturing is a process where quiescent crystallization and flow-induced crystallization coexists, and heat/mass transfer on a macroscopic level interacts with crystal morphology evolution on a microscopic level. Previous numerical studies on polymer crystallization are mostly concentrated at a single scale; they only calculate macroscale parameters, e.g., temperature and relative crystallinity, or they only predict microstructure details, e.g., crystal morphology and mean size of crystals. The multi-scale numerical works that overcome these disadvantages are unfortunately based on quiescent crystallization, in which flow effects are neglected. The objective of this work is to build up a macro-micro model and a macro-micro algorithm to consider both the thermal and flow effects on the crystallization. Our macro-micro model couples two parts: mass and heat transfer of polymeric flow at the macroscopic level, and nucleation and growth of spherulites and shish-kebabs at the microscopic level. Our macro-micro algorithm is a hybrid finite volume/Monte Carlo method, in which the finite volume method is used at the macroscopic level to calculate the flow and temperature fields, while the Monte Carlo method is used at the microscopic level to capture the development of spherulites and shish-kebabs. The macro-micro model and the macro-micro algorithm are applied to simulate polymer crystallization in Couette flow. The effects of shear rate, shear time, and wall temperature on the crystal morphology and crystallization kinetics are also discussed. Full article
(This article belongs to the Special Issue Phase Behavior in Polymers)
Figures

Graphical abstract