13 pages, 10780 KiB  
Article
Covalent Triazine Frameworks Based on the First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO2 Gas Sorption Properties
by Isabelle D. Wessely, Alexandra M. Schade, Subarna Dey, Asamanjoy Bhunia, Alexander Nuhnen, Christoph Janiak and Stefan Bräse
Materials 2021, 14(12), 3214; https://doi.org/10.3390/ma14123214 - 10 Jun 2021
Cited by 13 | Viewed by 3581
Abstract
Herein, we report the first synthesis of covalent triazine-based frameworks (CTFs) based on a hexanitrile monomer, namely the novel pseudo-octahedral hexanitrile 1,4-bis(tris(4′-cyano-phenyl)methyl)benzene 1 using both ionothermal reaction conditions with ZnCl2 at 400 °C and the milder reaction conditions with the strong Brønsted [...] Read more.
Herein, we report the first synthesis of covalent triazine-based frameworks (CTFs) based on a hexanitrile monomer, namely the novel pseudo-octahedral hexanitrile 1,4-bis(tris(4′-cyano-phenyl)methyl)benzene 1 using both ionothermal reaction conditions with ZnCl2 at 400 °C and the milder reaction conditions with the strong Brønsted acid trifluoromethanesulfonic acid (TFMS) at room temperature. Additionally, the hexanitrile was combined with different di-, tri-, and tetranitriles as a second linker based on recent work of mixed-linker CTFs, which showed enhanced carbon dioxide captures. The obtained framework structures were characterized via infrared (IR) spectroscopy, elemental analysis, scanning electron microscopy (SEM), and gas sorption measurements. Nitrogen adsorption measurements were performed at 77 K to determine the Brunauer-Emmett-Teller (BET) surface areas range from 493 m2/g to 1728 m2/g (p/p0 = 0.01–0.05). As expected, the framework CTF-hex6 synthesized from 1 with ZnCl2 possesses the highest surface area for nitrogen adsorption. On the other hand, the mixed framework structure CTF-hex4 formed from the hexanitrile 1 and 1,3,5 tricyanobenzene (4) shows the highest uptake of carbon dioxide and methane of 76.4 cm3/g and 26.6 cm3/g, respectively, at 273 K. Full article
(This article belongs to the Special Issue Advances in Microporous and Mesoporous Materials)
Show Figures

Figure 1

16 pages, 5568 KiB  
Article
Technology and Properties of Peripheral Laser-Welded Micro-Joints
by Szymon Tofil, Hubert Danielewski, Grzegorz Witkowski, Krystian Mulczyk and Bogdan Antoszewski
Materials 2021, 14(12), 3213; https://doi.org/10.3390/ma14123213 - 10 Jun 2021
Cited by 6 | Viewed by 2924
Abstract
This article presents the results of research on the technology and peripheral properties of laser-welded micro-couplings. The aim of this research was to determine the characteristics of properly made joints and to indicate the range of optimal parameters of the welding process. Thin-walled [...] Read more.
This article presents the results of research on the technology and peripheral properties of laser-welded micro-couplings. The aim of this research was to determine the characteristics of properly made joints and to indicate the range of optimal parameters of the welding process. Thin-walled AISI 316L steel pipes with diameters of 1.5 and 2 mm used in medical equipment were tested. The micro-welding process was carried out on a SISMA LM-D210 Nd:YAG laser. The research methods used were macroscopic and microscopic analyses of the samples, and assessment of the distribution of elements in the weld, the distribution of microhardness and the tear strength of the joint. As a result of the tests, the following welding parameters are recommended: a pulse energy of 2.05 J, pulse duration of 4 ms and frequency of 2 Hz, beam focusing to a diameter of 0.4 mm and a rotation speed of 0.157 rad/s. In addition, the tests show good joint properties with a strength of more than 75% of the thinner pipe, uniform distribution of alloying elements and a complex dendritic structure characteristic of pulse welding. Full article
(This article belongs to the Special Issue Development of Laser Welding and Surface Treatment of Metals)
Show Figures

Figure 1

16 pages, 2558 KiB  
Article
Chemical Characterisation of Silanised Zirconia Nanoparticles and Their Effects on the Properties of PMMA-Zirconia Nanocomposites
by Saleh Zidan, Nikolaos Silikas, Suhad Al-Nasrawi, Julfikar Haider, Abdulrahman Alshabib, Alshame Alshame and Julian Yates
Materials 2021, 14(12), 3212; https://doi.org/10.3390/ma14123212 - 10 Jun 2021
Cited by 14 | Viewed by 3912
Abstract
Objectives: The objective of this study was to investigate the mechanical properties of high-impact (HI) heat-cured acrylic resin (PMMA) reinforced with silane-treated zirconia nanoparticles. Methods: Forty-five PMMA specimens reinforced with zirconia were fabricated and divided into three groups: Pure HI PMMA [...] Read more.
Objectives: The objective of this study was to investigate the mechanical properties of high-impact (HI) heat-cured acrylic resin (PMMA) reinforced with silane-treated zirconia nanoparticles. Methods: Forty-five PMMA specimens reinforced with zirconia were fabricated and divided into three groups: Pure HI PMMA (control group), PMMA reinforced with 3 wt.% of non-silanised zirconia nanoparticles and PMMA reinforced with 3 wt.% of silanised zirconia nanoparticles. Silanised and non-silanised zirconia nanoparticles were analysed with Fourier Transform Infrared (FTIR) Spectroscopy. For measuring the flexural modulus and strength, a Zwick universal tester was used, and for surface hardness, a Vickers hardness tester were used. Furthermore, raw materials and fractured surfaces were analysed using Scanning Electron Microscopy (SEM). A one-way ANOVA test followed by a post-hoc Bonferroni test was employed to analyse the data. Results: The results showed that the mean values for flexural strength (83.5 ± 6.2 MPa) and surface hardness (20.1 ± 2.3 kg/mm2) of the group containing 3 wt.% treated zirconia increased significantly (p < 0.05) in comparison to the specimens in the group containing non-treated zirconia (59.9 ± 7.1 MPa; 15.0 ± 0.2 kg/mm2) and the control group (72.4 ± 8.6 MPa; 17.1 ± 0.9 kg/mm2). However, the group with silanised zirconia showed an increase in flexural modulus (2313 ± 161 MPa) but was not significantly different (p > 0.05) from the non-silanised group (2207 ± 252 MPa) and the control group (1971 ± 235 MPa). Conclusion: Silane-treated zirconia nano-filler improves the surface hardness and flexural strength of HI PMMA-zirconia nanocomposites, giving a potentially longer service life of the denture base. Full article
(This article belongs to the Special Issue Biomaterials in Periodontology and Implantology)
Show Figures

Figure 1

10 pages, 5014 KiB  
Article
Debunking the Concept of Dentinal Tubule Penetration of Endodontic Sealers: Sealer Staining with Rhodamine B Fluorescent Dye Is an Inadequate Method
by David Donnermeyer, Sina Schmidt, Arno Rohrbach, Johannes Berlandi, Sebastian Bürklein and Edgar Schäfer
Materials 2021, 14(12), 3211; https://doi.org/10.3390/ma14123211 - 10 Jun 2021
Cited by 23 | Viewed by 3686
Abstract
The aim of this study was to investigate the suitability of rhodamine B dye staining of an epoxy resin sealer (AH Plus) and calcium-silicate-based sealers (Total Fill BC Sealer, BioRoot RCS) to represent the penetration depth of the sealers into dentinal tubules after [...] Read more.
The aim of this study was to investigate the suitability of rhodamine B dye staining of an epoxy resin sealer (AH Plus) and calcium-silicate-based sealers (Total Fill BC Sealer, BioRoot RCS) to represent the penetration depth of the sealers into dentinal tubules after root canal obturation. In a three-step process, (1) leaching of rhodamine B from sealers into a buffer solution, (2) passive penetration of leached rhodamine B into dentinal tubules, and (3) conformity of rhodamine B penetration assessed by confocal laser scanning microscopy (CLSM), and sealer penetration assessed by scanning electron microscopy (SEM), in root-canal-filled teeth, were evaluated. Rhodamine B dye massively leached out of Total Fill BC Sealer and BioRoot RCS into the phosphate-buffered saline (PBS). A pinkish coloration of AH Plus was found after contact with PBS. Leached rhodamine B dye passively penetrated dentinal tubules from all three sealers when placed on root dentin. No correlation was observed between sealer penetration in SEM and rhodamine B penetration in CLSM. Staining of sealers using rhodamine B is an inadequate method with which to evaluate sealer penetration depth into dentinal tubules, as it overestimates the penetration of sealers into root dentin tubules. Full article
(This article belongs to the Special Issue Endodontics)
Show Figures

Figure 1

16 pages, 9561 KiB  
Article
Phase Structure Evolution of the Fe-Al Arc-Sprayed Coating Stimulated by Annealing
by Tomasz Chmielewski, Marcin Chmielewski, Anna Piątkowska, Agnieszka Grabias, Beata Skowrońska and Piotr Siwek
Materials 2021, 14(12), 3210; https://doi.org/10.3390/ma14123210 - 10 Jun 2021
Cited by 13 | Viewed by 2474
Abstract
The article presents the results of research on the structural evolution of the composite Fe-Al-based coating deposited by arc spray with initial low participation of in situ intermetallic phases. The arc spraying process was carried out by simultaneously melting two different electrode wires, [...] Read more.
The article presents the results of research on the structural evolution of the composite Fe-Al-based coating deposited by arc spray with initial low participation of in situ intermetallic phases. The arc spraying process was carried out by simultaneously melting two different electrode wires, aluminum and low alloy steel (98.6 wt.% of Fe). The aim of the research was to reach protective coatings with a composite structure consisting of a significant participation of FexAly as intermetallic phases reinforcement. Initially, synthesis of intermetallic phases took place in situ during the spraying process. In the next step, participation of FexAly fraction was increased through the annealing process, with three temperature values, 700 °C, 800 °C, and 900 °C. Phase structure evolution of the Fe-Al arc-sprayed coating, stimulated by annealing, has been described by means of SEM images taken with a QBSD backscattered electron detector and by XRD and conversion electron Mössbauer spectroscopy (CEMS) investigations. Microhardness distribution of the investigated annealed coatings has been presented. Full article
Show Figures

Figure 1

16 pages, 4701 KiB  
Article
Prediction of Crack Resistance of LFSMA-13 with and without Anti-Rut Agent Using Parameters of FTIR Spectrum under Different Aging Degrees
by Xing Wu, Aihong Kang, Bangwei Wu, Keke Lou and Zhao Fan
Materials 2021, 14(12), 3209; https://doi.org/10.3390/ma14123209 - 10 Jun 2021
Cited by 6 | Viewed by 2116
Abstract
This paper aims to better analyze the crack resistance of lignin fiber reinforced SMA-13 (LFSMA-13) asphalt mixtures, with and without polymer anti-rut agent (ARA), under different aging degrees. IDEAL-CT test and Fourier transform infrared (FTIR) spectroscopy were utilized to analyze the relationships between [...] Read more.
This paper aims to better analyze the crack resistance of lignin fiber reinforced SMA-13 (LFSMA-13) asphalt mixtures, with and without polymer anti-rut agent (ARA), under different aging degrees. IDEAL-CT test and Fourier transform infrared (FTIR) spectroscopy were utilized to analyze the relationships between the crack resistance of LFSMA-13, with and without ARA, and the parameters of the FTIR spectrum of the asphalt extracted from the test samples. A convenient testing method to predict the anti-crack ability of the mixtures in a road was also derived in this study. The test samples were prepared using the specifications listed by AASHTO. The fracture formation work (Winitial) and cracking index (CTIndex) in the IDEAL-CT test were adopted to reflect the cracking ability of the asphalt mixtures in both the crack formation stage and the crack propagation stage. The peak areas of the FTIR spectrum were utilized to reveal the chemical properties of the asphalt material inside the SMA-13 asphalt mixtures, with and without ARA under different aging degrees. Grey correlation analysis was adopted to choose the most suitable FTIR spectrum parameters to derive the prediction models of Winitial and CTIndex under different aging degrees. After conducting a series of tests, the results showed that the aging process could well affect the crack resistance of the test samples and the peak areas of the asphalt extracted from the mixtures. The FTIR parameters selected from the grey correlation analysis could be used to well predict the anti-crack ability of the asphalt mixtures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

4 pages, 935 KiB  
Editorial
Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020)
by Eva María Rubio and Ana María Camacho
Materials 2021, 14(12), 3208; https://doi.org/10.3390/ma14123208 - 10 Jun 2021
Cited by 4 | Viewed by 2243
Abstract
The Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 17 contributions published in this Special Issue of Materials present cutting-edge advances in [...] Read more.
The Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 17 contributions published in this Special Issue of Materials present cutting-edge advances in the field of Manufacturing Engineering, focusing on additive manufacturing and 3D printing; advances and innovations in manufacturing processes; sustainable and green manufacturing; manufacturing of new materials; manufacturing systems: machines, equipment and tooling; robotics, mechatronics and manufacturing automation; metrology and quality in manufacturing; Industry 4.0; design, modeling and simulation in manufacturing engineering. Among them, this issue highlights that the topic “advances and innovations in manufacturing processes” has collected a large number of contributions, followed by additive manufacturing and 3D printing; sustainable and green manufacturing; metrology and quality in manufacturing. Full article
(This article belongs to the Special Issue Special Issue of Manufacturing Engineering Society-2020 (SIMES-2020))
Show Figures

Figure 1

34 pages, 9743 KiB  
Review
Three-Dimensional Zirconia-Based Scaffolds for Load-Bearing Bone-Regeneration Applications: Prospects and Challenges
by Kumaresan Sakthiabirami, Vaiyapuri Soundharrajan, Jin-Ho Kang, Yunzhi Peter Yang and Sang-Won Park
Materials 2021, 14(12), 3207; https://doi.org/10.3390/ma14123207 - 10 Jun 2021
Cited by 22 | Viewed by 5677
Abstract
The design of zirconia-based scaffolds using conventional techniques for bone-regeneration applications has been studied extensively. Similar to dental applications, the use of three-dimensional (3D) zirconia-based ceramics for bone tissue engineering (BTE) has recently attracted considerable attention because of their high mechanical strength and [...] Read more.
The design of zirconia-based scaffolds using conventional techniques for bone-regeneration applications has been studied extensively. Similar to dental applications, the use of three-dimensional (3D) zirconia-based ceramics for bone tissue engineering (BTE) has recently attracted considerable attention because of their high mechanical strength and biocompatibility. However, techniques to fabricate zirconia-based scaffolds for bone regeneration are in a stage of infancy. Hence, the biological activities of zirconia-based ceramics for bone-regeneration applications have not been fully investigated, in contrast to the well-established calcium phosphate-based ceramics for bone-regeneration applications. This paper outlines recent research developments and challenges concerning numerous three-dimensional (3D) zirconia-based scaffolds and reviews the associated fundamental fabrication techniques, key 3D fabrication developments and practical encounters to identify the optimal 3D fabrication technique for obtaining 3D zirconia-based scaffolds suitable for real-world applications. This review mainly summarized the articles that focused on in vitro and in vivo studies along with the fundamental mechanical characterizations on the 3D zirconia-based scaffolds. Full article
Show Figures

Graphical abstract

13 pages, 3767 KiB  
Article
Ultrasonically Processed WSe2 Nanosheets Blended Bulk Heterojunction Active Layer for High-Performance Polymer Solar Cells and X-ray Detectors
by Hailiang Liu, Sajjad Hussain, Jehoon Lee, Dhanasekaran Vikraman and Jungwon Kang
Materials 2021, 14(12), 3206; https://doi.org/10.3390/ma14123206 - 10 Jun 2021
Cited by 12 | Viewed by 3233
Abstract
Two-dimensional (2D) tungsten diselenide (WSe2) has attracted considerable attention in the field of photovoltaic devices owing to its excellent structure and photoelectric properties, such as ordered 2D network structure, high electrical conductivity, and high mobility. For this test, we firstly prepared [...] Read more.
Two-dimensional (2D) tungsten diselenide (WSe2) has attracted considerable attention in the field of photovoltaic devices owing to its excellent structure and photoelectric properties, such as ordered 2D network structure, high electrical conductivity, and high mobility. For this test, we firstly prepared different sizes (NS1–NS3) of WSe2 nanosheets (NSs) through the ultrasonication method and characterized their structures using the field emission scanning electron microscope (FE-SEM), Raman spectroscopy, and X-ray powder diffraction. Moreover, we investigated the photovoltaic performance of polymer solar cells based on 5,7-Bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione(PBDB-T):(6,6)-phenyl-C71 butyric acid methyl ester (PCBM) with different WSe2 NSs as the active layer. The fabricated PBDB-T:PCBM active layer with the addition of NS2 WSe2 NSs (1.5 wt%) exhibited an improved power conversion efficiency (PCE) of 9.2%, which is higher than the pure and NS1 and NS3 WSe2 blended active layer-encompassing devices. The improved PCE is attributed to the synergic enhancement of exciton dissociation and an improvement in the charge mobility through the modified active layer for polymer solar cells. Furthermore, the highest sensitivity of 2.97 mA/Gy·cm2 was achieved for the NS2 WSe2 NSs blended active layer detected by X-ray exposure over the pure polymer, and with the NS1 and NS2 WSe2 blended active layer. These results led to the use of transition metal dichalcogenide materials in polymer solar cells and X-ray detectors. Full article
(This article belongs to the Special Issue Application of Ionic Liquids to Energy)
Show Figures

Figure 1

12 pages, 4914 KiB  
Article
Fabrication of Functionally Graded Diamond/Al Composites by Liquid–Solid Separation Technology
by Hongyu Zhou, Yaqiang Li, Huimin Wang, Minrui Ran, Zhi Tong, Weidong Zhang, Junyou Liu and Wenyue Zheng
Materials 2021, 14(12), 3205; https://doi.org/10.3390/ma14123205 - 10 Jun 2021
Cited by 10 | Viewed by 2245
Abstract
The electronic packaging shell, the necessary material for hermetic packaging of large microelectronic device chips, is made by mechanical processing of a uniform block. However, the property variety requirements at different positions of the shell due to the performance have not been solved. [...] Read more.
The electronic packaging shell, the necessary material for hermetic packaging of large microelectronic device chips, is made by mechanical processing of a uniform block. However, the property variety requirements at different positions of the shell due to the performance have not been solved. An independently developed liquid–solid separation technology is applied to fabricate the diamond/Al composites with a graded distribution of diamond particles. The diamond content decreases along a gradient from the bottom of the shell, which houses the chips, to the top of the shell wall, which is welded with the cover plate. The bottom of the shell has a thermal conductivity (TC) of 169 W/mK, coefficient of thermal expansion (CTE) of 11.0 × 10−6/K, bending strength of 88 MPa, and diamond content of 48 vol.%. The top of the shell has a TC of 108 W/mK, CTE of 19.3 × 10−6/K, bending strength of 175 MPa, and diamond content of 15 vol.%, which solves the special requirements of different parts of the shell and helps to improve the thermal stability of packaging components. Moreover, the interfacial characteristics are also investigated. This work provides a promising approach for the preparation of packaging shells by near-net shape forming. Full article
Show Figures

Figure 1

36 pages, 11113 KiB  
Article
Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part I: Evolution of Primary and Secondary Phases
by Jakob Grasserbauer, Irmgard Weißensteiner, Georg Falkinger, Thomas M. Kremmer, Peter J. Uggowitzer and Stefan Pogatscher
Materials 2021, 14(12), 3204; https://doi.org/10.3390/ma14123204 - 10 Jun 2021
Cited by 28 | Viewed by 3647
Abstract
The increasing demands for Al sheets with superior mechanical properties and excellent formability require a profound knowledge of the microstructure and texture evolution in the course of their production. The present study gives a comprehensive overview on the primary- and secondary phase formation [...] Read more.
The increasing demands for Al sheets with superior mechanical properties and excellent formability require a profound knowledge of the microstructure and texture evolution in the course of their production. The present study gives a comprehensive overview on the primary- and secondary phase formation in AlMg(Mn) alloys with varying Fe and Mn additions, including variations in processing parameters such as solidification conditions, homogenization temperature, and degree of cold rolling. Higher Fe alloying levels increase the primary phase fraction and favor the needle-shaped morphology of the constituent phases. Increasing Mn additions alter both the shape and composition of the primary phase particles, but also promote the formation of dispersoids as secondary phases. The size, morphology, and composition of primary and secondary phases is further affected by the processing parameters. The average dispersoid size increases significantly with higher homogenization temperature and large primary particles tend to fragment during cold rolling. The microstructures of the final soft annealed states reflect the important effects of the primary and secondary phase particles on their evolution. The results presented in this paper regarding the relevant secondary phases provide the basis for an in-depth discussion of the mechanisms underlying the microstructure formation, such as Zener pinning, particle stimulated nucleation, and texture evolution, which is presented in Part II of this study. Full article
(This article belongs to the Collection Alloy and Process Development of Light Metals)
Show Figures

Figure 1

12 pages, 15953 KiB  
Article
Design of Circular Composite Cylinders for Optimal Natural Frequencies
by Gokhan Serhat
Materials 2021, 14(12), 3203; https://doi.org/10.3390/ma14123203 - 10 Jun 2021
Cited by 12 | Viewed by 3114
Abstract
This study concerns optimizing the eigenfrequencies of circular cylindrical laminates. The stiffness properties are described by lamination parameters to avoid potential solution dependency on the initial assumptions of the laminate configurations. In the lamination parameter plane, novel response contours are obtained for the [...] Read more.
This study concerns optimizing the eigenfrequencies of circular cylindrical laminates. The stiffness properties are described by lamination parameters to avoid potential solution dependency on the initial assumptions of the laminate configurations. In the lamination parameter plane, novel response contours are obtained for the first and second natural frequencies as well as their difference. The influence of cylinder length, radius, thickness, and boundary conditions on the responses is investigated. The lamination parameters yielding the maximum response values are determined, and the first two mode shapes are shown for the optimum points. The results demonstrate that the maximum fundamental frequency points of the laminated cylinders mostly lie at the inner lamination parameter domain, unlike the singly curved composite panels. In addition, the second eigenfrequency shows a nonconvex response surface containing multiple local maxima for several cases. Moreover, the frequency difference contours appear as highly irregular, which is unconventional for free vibration responses. Full article
(This article belongs to the Special Issue Advances in Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

17 pages, 3135 KiB  
Article
Self-Healing Performance Evaluation of Concrete Incorporating Inorganic Materials Based on a Water Permeability Test
by Kwang-Myong Lee, Hyung-Suk Kim, Do-Keun Lee and Kyung-Joon Shin
Materials 2021, 14(12), 3202; https://doi.org/10.3390/ma14123202 - 10 Jun 2021
Cited by 23 | Viewed by 4358
Abstract
Research activities that have focused on the development and understanding of self-healing concrete have proposed various technologies intended to enhance self-healing capacity. The self-healing performance cannot be identified sufficiently with either a single test or a specific parameter because there are a number [...] Read more.
Research activities that have focused on the development and understanding of self-healing concrete have proposed various technologies intended to enhance self-healing capacity. The self-healing performance cannot be identified sufficiently with either a single test or a specific parameter because there are a number of factors that influence the performance of self-healing. Thus, it has become necessary to provide standardized test methods that make it possible to verify and compare the performance of self-healing materials. In this paper, self-healing mortars based on inorganic admixtures, which are developed for sealing 0.3 mm cracks with a healing index of 90%, are produced and used to validate the water permeability test and to propose protocols for the evaluation of self-healing performance. The healing performances of three self-healing mortars and a plain mortar as a reference are evaluated with a comparative study. The equivalent crack width, which can be estimated from the water flow rate, is suggested as a rational evaluation index. Finally, a self-healing performance chart is proposed to comprehensively show the healing performance of cement-based materials. Full article
(This article belongs to the Special Issue Self-Healing Concrete and Cement-Based Materials)
Show Figures

Figure 1

12 pages, 1818 KiB  
Article
Prediction Model of Concrete Initial Setting Time Based on Stepwise Regression Analysis
by Wei-Jia Liu, Xu-Jing Niu, Ning Yang, Yao-Shen Tan, Yu Qiao, Chun-Feng Liu, Kun Wu, Qing-Bin Li and Yu Hu
Materials 2021, 14(12), 3201; https://doi.org/10.3390/ma14123201 - 10 Jun 2021
Cited by 11 | Viewed by 3223
Abstract
Mass concrete is usually poured in layers. To ensure the interlayer bonding quality of concrete, the lower layer should be kept in a plastic state before the upper layer is added. Ultimately, it will lead to the prediction of concrete setting time as [...] Read more.
Mass concrete is usually poured in layers. To ensure the interlayer bonding quality of concrete, the lower layer should be kept in a plastic state before the upper layer is added. Ultimately, it will lead to the prediction of concrete setting time as a critical task in concrete pouring. In this experiment, the setting time of concrete in laboratory and field environments was investigated. The equivalent age of concrete at the initial setting was also analyzed based on the maturity theory. Meanwhile, factors affecting the setting time in the field environment were studied by means of multiple stepwise regression analysis. Besides, the interlayer splitting tensile strength of concrete subjected to different temperatures and wind speeds was determined. The results of laboratory tests show that both setting time and interlayer splitting tensile strength of concrete decrease significantly with the increase of air temperature and wind speed. In addition, the equivalent age of concrete at initial setting remains the same when subjected to different temperatures, while it decreases obviously with the increase of wind speed. In the field environment, the equivalent age of concrete at initial setting is greatly different, which is related to the variability of relative humidity and wind speed. The average air temperature and maximum wind speed are the main factors affecting the initial setting time of concrete. Furthermore, a prediction model is established based on the stepwise regression analysis results, which can predict the actual setting state in real-time, and hence controlling the interlayer bonding quality of dam concrete. Full article
(This article belongs to the Special Issue Concrete and Construction Materials)
Show Figures

Figure 1

22 pages, 7692 KiB  
Article
Reusing Jet Grouting Waste as Filler for Road Asphalt Mixtures of Base Layers
by Francesca Russo, Rosa Veropalumbo, Salvatore Antonio Biancardo, Cristina Oreto, Fabio Scherillo and Nunzio Viscione
Materials 2021, 14(12), 3200; https://doi.org/10.3390/ma14123200 - 10 Jun 2021
Cited by 17 | Viewed by 3332
Abstract
Secondary raw materials consist of production waste or material resulting from recycling processes, currently in large quantities, which can be injected back into the economic system as new raw materials. This study proposes jet grouting waste (JGW) as filler for hot and cold [...] Read more.
Secondary raw materials consist of production waste or material resulting from recycling processes, currently in large quantities, which can be injected back into the economic system as new raw materials. This study proposes jet grouting waste (JGW) as filler for hot and cold asphalt mixtures applied as base layers of road pavements and investigates the physical and mechanical properties. JGW is derived from soil consolidation performed during underground roadway tunnel construction. The research compares three asphalt mixtures: (a) hot mixture containing limestone aggregate-filler (HMA), (b) HMA containing JGW (HMAJ), (c) cold recycled asphalt mixture containing JGW (CRAJ). Leaching tests of JGW and reclaimed asphalt pavement (RAP) were conducted; the best configurations of the three mixtures were determined by using the volumetric method through gyratory compaction. Three mastics with filler-to-binder ratios reflecting those of the asphalt mixtures were investigated through delta ring and ball test and frequency sweep test at 0.05% stress by using a dynamic shear rheometer. The morphology of each mixture was further investigated by scanning electron microscopy. The results showed that CRAJ with 28 days of curing time reached the indirect tensile strength (ITS) of HMA (0.73 MPa) within 14 days and, among all studied mixtures, returned the lowest cumulative strain, which was on average 30% lower than that of HMA and HMAJ. The results of this study have shown that the cold alternative mixture, CRAJ, promotes the reuse of two types of waste, RAP and JGW, as it fully meets the reference Italian Technical Standard and ensures good mixture performance in addition to conserving natural resources. Full article
Show Figures

Figure 1