E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Remote Sensing of Wildfire"

A special issue of Remote Sensing (ISSN 2072-4292).

Deadline for manuscript submissions: 30 June 2018

Special Issue Editors

Guest Editor
Dr. Quazi K. Hassan

Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada
Website | E-Mail
Phone: +1-403-210-9494
Interests: optical/thermal remote sensing in: (i) forecasting and monitoring of natural hazards/disasters, such as forest fire, drought, and flooding; (ii) comprehending the dynamics of natural resources, such as forestry, agriculture, and water; and (iii) modelling issues related to boreal environment
Guest Editor
Dr. George P. Petropoulos

Department of Geography and Earth Sciences, University of Aberystwyth, Old College, King Street Llandinam Building, Room H4 Aberystwyth, Ceredigion SY23 3DB, UK
Website | E-Mail
Phone: +44-0-1970-621861
Interests: Earth Observation; GIS; multi- and hyper- spectral remote sensing; land use/cover mapping; change detection; natural hazards; fires; floods; land surface interactions; evapotranspiration; soil moisture; land surface temperature; land biosphere modelling; Soil Vegetation Atmosphere Transfer (SVAT) models; EO algorithms benchmarking; sensitivity analysis

Special Issue Information

Dear Colleagues,

Wildfires (which include forest fires, grass fires, brush fires, bush fires, and peat fires, among others) are an integral part of so many ecosystems across the world. In general, these fires are primarily viewed negatively despite their favorable contributions. Here, the purpose is to gather scientists/researchers related to this topic, aiming to highlight ongoing research investigations and new applications in the field. In this framework, the editors of this Special Issue would like to invite both applied and theoretical research contributions; submissions of original works furthering knowledge concerned with any aspect of the use of remote sensing in wildfires. Note that these manuscripts must be, not only unpublished, but also not under consideration for potential publication elsewhere. In addition, the manuscripts must employ one of the following remote sensing data types: Optical, thermal, hyperspectral, active and passive microwave acquired by either airborne or spaceborne remote sensing platforms, dealing with wildfires. The topics of interest include, but not limited to:

  • Comprehending of the pre-fire conditions,

  • Forecasting of wildfire danger/risk,

  • Modelling of wildfire behavior,

  • Fighting the wildfire,

  • Modelling prescribed burning,

  • Relation between vegetation phenology and fire,

  • Monitoring of the vegetation recovery following the fire events,

  • Mapping of burn area and ecological impacts,

  • Modelling of smoke propagation, and

  • Analyzing of historical fire regimes, among others.

Dr. Quazi K. Hassan
Dr. George P. Petropoulos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (1 paper)

View options order results:
result details:
Displaying articles 1-1
Export citation of selected articles as:


Open AccessArticle A Simple Normalized Difference Approach to Burnt Area Mapping Using Multi-Polarisation C-Band SAR
Remote Sens. 2017, 9(8), 764; doi:10.3390/rs9080764
Received: 12 June 2017 / Revised: 7 July 2017 / Accepted: 19 July 2017 / Published: 31 July 2017
PDF Full-text (9532 KB) | HTML Full-text | XML Full-text
In fire-prone ecosystems, periodic fires are vital for ecosystem functioning. Fire managers seek to promote the optimal fire regime by managing fire season and frequency requiring detailed information on the extent and date of previous burns. This paper investigates a Normalised Difference α-Angle
[...] Read more.
In fire-prone ecosystems, periodic fires are vital for ecosystem functioning. Fire managers seek to promote the optimal fire regime by managing fire season and frequency requiring detailed information on the extent and date of previous burns. This paper investigates a Normalised Difference α-Angle (NDαI) approach to burn-scar mapping using C-band data. Polarimetric decompositions are used to derive α-angles from pre-burn and post-burn scenes and NDαI is calculated to identify decreases in vegetation between the scenes. The technique was tested in an area affected by a wildfire in January 2016 in the Western Cape, South Africa. The quad-pol H-A-α decomposition was applied to RADARSAT-2 data and the dual-pol H-α decomposition was applied to Sentinel-1A data. The NDαI results were compared to a burn scar extracted from Sentinel-2A data. High overall accuracies of 97.4% (Kappa = 0.72) and 94.8% (Kappa = 0.57) were obtained for RADARSAT-2 and Sentinel-1A, respectively. However, large omission errors were found and correlated strongly with areas of high local incidence angle for both datasets. The combined use of data from different orbits will likely reduce these errors. Furthermore, commission errors were observed, most notably on Sentinel-1A results. These errors may be due to the inability of the dual-pol H-α decomposition to effectively distinguish between scattering mechanisms. Despite these errors, the results revealed that burnt areas could be extracted and were in good agreement with the results from Sentinel-2A. Therefore, the approach can be considered in areas where persistent cloud cover or smoke prevents the extraction of burnt area information using conventional multispectral approaches. Full article
(This article belongs to the Special Issue Remote Sensing of Wildfire)

Back to Top