molecules-logo

Journal Browser

Journal Browser

Natural Products for Cosmetic Applications II

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 July 2023) | Viewed by 4644

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
Interests: natural product chemistry; melanogenesis; skin inflammation; anti-aging; hair growth
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Natural products and their derivatives are an interesting and largely unexplored source of new functional ingredients. The global market demand for natural ingredients, such as plant extracts with skin care applications and other human health uses, is also increasing. In fact, many companies around the world are trying to develop inhibitors or activators associated with oxidation, melanogenesis, inflammation, hair growth, and obesity. In addition, more-informed consumers who use such health products tend to carefully review the mechanisms of action of these inhibitors or activators.

This Special Issue on “Natural Products for Cosmetic Applications II” is a platform not only for presenting novel data on natural products and compounds with human health benefits that act either at the enzymatic or cellular level, through original papers and short communications, but also for providing an overview of the current knowledge in this field through reviews.

Prof. Dr. Chang-Gu Hyun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • skin health
  • hair growth
  • obesity
  • reactive oxygen species
  • antioxidants
  • antibacterials
  • drug repurposing
  • microbiome

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2705 KiB  
Article
Anti-Inflammatory and Antiatopic Effects of Rorippa cantoniensis (Lour.) Ohwi in RAW 264.7 and HaCaT Cells
by Min-Jin Kim, Buyng Su Hwang, Yong Hwang, Yong Tae Jeong, Dae Won Jeong and Young Taek Oh
Molecules 2023, 28(14), 5463; https://doi.org/10.3390/molecules28145463 - 17 Jul 2023
Cited by 3 | Viewed by 1589
Abstract
This study evaluated the effects of Rorippa cantoniensis (Lour.) ohwi extract (RCE) on factors associated with inflammation-related skin lesions in RAW 264.7 and HaCaT cells. RCE inhibited the levels of proinflammatory mediators and cytokines such as nitric oxide (NO), prostaglandin E2 (PGE2 [...] Read more.
This study evaluated the effects of Rorippa cantoniensis (Lour.) ohwi extract (RCE) on factors associated with inflammation-related skin lesions in RAW 264.7 and HaCaT cells. RCE inhibited the levels of proinflammatory mediators and cytokines such as nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-6, and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. In addition, RCE significantly inhibited the expression of chemokines and cytokines such as MDC/CCL22, TARC/CCL17, RANTES/CCL5, CTSS, IL-6, IL-1β, and TNF-α in HaCaT cells costimulated by TNF-α and interferon (IFN)-γ in a concentration-dependent manner. These results suggest that RCE attenuated the TNF-α- and IFN-γ-induced release of proinflammatory chemokines and cytokines probably by suppressing the activation of MAPK (JNK and p38), NF-κB, and STAT1 signaling. Moreover, RCE significantly increased the expression of skin components such as hyaluronic acid and aquaporin, which play important roles in the physical and chemical barriers of the skin. These results suggest that RCE has significant anti-inflammatory and antiatopic activities, which may be beneficial for the topical treatment of inflammatory skin disorders. Full article
(This article belongs to the Special Issue Natural Products for Cosmetic Applications II)
Show Figures

Figure 1

13 pages, 2683 KiB  
Article
6-Methylcoumarin Promotes Melanogenesis through the PKA/CREB, MAPK, AKT/PI3K, and GSK3β/β-Catenin Signaling Pathways
by Taejin Kim, Jin-Kyu Kang and Chang-Gu Hyun
Molecules 2023, 28(11), 4551; https://doi.org/10.3390/molecules28114551 - 5 Jun 2023
Cited by 2 | Viewed by 1365
Abstract
We investigated the effects of four coumarin derivatives, namely, 6-methylcoumarin, 7-methylcoumarin, 4-hydroxy-6-methylcoumarin, and 4-hydroxy-7-methylcoumarin, which have similar structures on melanogenesis in a murine melanoma cell line from a C57BL/6J mouse called B16F10. Our results showed that only 6-methylcoumarin significantly increased the melanin synthesis [...] Read more.
We investigated the effects of four coumarin derivatives, namely, 6-methylcoumarin, 7-methylcoumarin, 4-hydroxy-6-methylcoumarin, and 4-hydroxy-7-methylcoumarin, which have similar structures on melanogenesis in a murine melanoma cell line from a C57BL/6J mouse called B16F10. Our results showed that only 6-methylcoumarin significantly increased the melanin synthesis in a concentration-dependent manner. In addition, the tyrosinase, TRP-1, TRP-2, and MITF protein levels were found to significantly increase in response to 6-methylcoumarin in a concentration-dependent manner. To elucidate the molecular mechanism whereby 6-methylcoumarin-induced melanogenesis influences the melanogenesis-related protein expression and melanogenesis-regulating protein activation, we further assessed the B16F10 cells. The inhibition of the ERK, Akt, and CREB phosphorylation, and conversely, the increased p38, JNK, and PKA phosphorylation activated the melanin synthesis via MITF upregulation, which ultimately led to increased melanin synthesis. Accordingly, 6-methylcoumarin increased the p38, JNK, and PKA phosphorylation in the B16F10 cells, whereas it decreased the phosphorylated ERK, Akt, and CREB expressions. In addition, the 6-methylcoumarin activated GSK3β and β-catenin phosphorylation and reduced the β-catenin protein level. These results suggest that 6-methylcoumarin stimulates melanogenesis through the GSK3β/β-catenin signal pathway, thereby affecting the pigmentation process. Finally, we tested the safety of 6-methylcoumarin for topical applications using a primary human skin irritation test on the normal skin of 31 healthy volunteers. We found that 6-methylcoumarin did not cause any adverse effects at concentrations of 125 and 250 μM. Our findings indicate that 6-methylcoumarin may be an effective pigmentation stimulator for use in cosmetics and the medical treatment of photoprotection and hypopigmentation disorders. Full article
(This article belongs to the Special Issue Natural Products for Cosmetic Applications II)
Show Figures

Figure 1

14 pages, 2091 KiB  
Article
Unsaturated Fatty Acids Complex Regulates Inflammatory Cytokine Production through the Hyaluronic Acid Pathway
by Gi-Beum Kim, Kwansung Seo, Jong-Ung Youn, Il Keun Kwon, Jinny Park, Kwang-Hyun Park and Jong-Suk Kim
Molecules 2023, 28(8), 3554; https://doi.org/10.3390/molecules28083554 - 18 Apr 2023
Viewed by 1227
Abstract
In this study, we aimed to develop natural and/or functional materials with antioxidant and anti-inflammatory effects. We obtained extracts from natural plants through an oil and hot-water extraction process and prepared an extract composite of an effective unsaturated fatty acid complex (EUFOC). Furthermore, [...] Read more.
In this study, we aimed to develop natural and/or functional materials with antioxidant and anti-inflammatory effects. We obtained extracts from natural plants through an oil and hot-water extraction process and prepared an extract composite of an effective unsaturated fatty acid complex (EUFOC). Furthermore, the antioxidant effect of the extract complex was evaluated, and the anti-inflammatory effect was explored by assessing its inhibitory effect on nitric oxide production through its HA-promoting effect. We conducted a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay to evaluate the cell viability of the EUFOC, and the results showed that EUFOC was not cytotoxic at the test concentrations. In addition, it showed no endogenous cytotoxicity in HaCaT (human keratinocyte) cells. The EUFOC showed excellent 1,1-diphenyl-2-picrylhydrazyl- and superoxide-scavenging abilities. Moreover, it exerted an inhibitory effect on NO production at concentrations that did not inhibit cell viability. The secretion of all the cytokines was increased by lipopolysaccharide (LPS) treatment; however, this was inhibited by the EUFOC in a concentration-dependent manner. In addition, hyaluronic acid content was markedly increased by the EUFOC in a dose-dependent manner. These results suggest that the EUFOC has excellent anti-inflammatory and antioxidant properties, and hence, it can be used as a functional material in various fields. Full article
(This article belongs to the Special Issue Natural Products for Cosmetic Applications II)
Show Figures

Figure 1

Back to TopTop